期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 信号通信论文

信号通信论文精品(七篇)

时间:2022-03-18 02:04:17

信号通信论文

信号通信论文篇(1)

关键词:DDSFPGA频率合成器跳频通信

在众多的通信技术中,扩频通信技术由于具有独特的抗干扰能力以及宽的使用频带而在军事通信领域倍受青睐。根据扩频通信调制方式的不同,它可以分为直接序列扩频方式(DS)、跳频方式(FH)、跳时方式(FT)及兼有以上方式中二种以上的混合方式。其中跳频通信具有保密性好、不易受远近干扰和多径干扰的影响等优点,是一种很有前景的通信方式。跳频系统的频率跳变,受到伪随机码的控制。不同的时间、不同的伪码相位,频率合成器产生的相应频率也不同。把跳频系统的频率跳变规律称为跳频图案。跳频图案是时间和频率的函数,故又称为时间-频率矩阵,简称时频矩阵。时频矩阵可直观描述出频率跳变规律,如图1所示。

跳频图案的设计是跳频通信系统的一个关键问题,直接影响到跳频系统的保密、抗干扰、多址等性能。一般要求跳频图案的周期要长,这就要求控制跳频图案的伪随机码周期要长,即移位寄存器的级数要大。

1基于FPGA和DDS技术的跳频信号源设计

跳频信号源即为载波频率按照一定跳频图案跳变的信号发生器。设计一个性能优异的跳频信号源,困难在于其优良的频谱性能。笔者提出了一种基于FPGA12和DDS技术的跳频图案的设计方案。指标如下:600跳/秒跳速;20个跳频点;3.4MHz跳频基带;68MHz跳频带宽;106.78MHz~172.14MHz跳频频率中20个频点。DDS采用AD公司的最新频率合成器件AD9852,写频率控制字采用ALTARA公司的可编程逻辑器件APEX20K系列中的EP20K100,其逻辑资源为10万门,两者通过40针总线接口相连3。其中,FPGA完成存储频率控制字、定时写入频率控制字的功能,AD9852则实现频率合成输出。频率合成器DDS是跳频信号源中的一个关键部件,其原理如图2所示。这种频率合成器工作频率高,可达GHz数量级;分辨率高,可达1Hz以下,稳定度高;体积小,重量轻,集成度高,这些都是其他频率合成器件难以比拟的。AD9852是近年推出的高速芯片,具有小型的80管脚表贴封装形式,其时钟频率为300MHz,并带有两个12位高速正交D/A转换器、两个48位可编程频率寄存器、两个14位可编程相位移位寄存器、12位幅度调制器和可编程的波形开关键功能,并有单路FSK和BPSK数据接口,易产生单路线性或非线性调频信号。当采用标准时钟源时,AD9852可产生高稳定的频率、相位、幅度可编程的正、余弦输出,可用作捷变频本地振荡器和各种波形产生器。AD9852提供了48位的频率分辨率,相位量化到14位,保证了极高频率分辨率和相位分辩率,极好的动态性能。其频率转换速度可达每秒100×106个频率点。在高速时钟产生器应用中,可采用外接300MHz时钟或外接低频时钟倍频两种方式,给电路板带来了极大的方便,同时也避免了采用高频时钟带来的问题。在AD9852芯片内部时钟输入端有4~20倍可编程参考时钟锁相倍频电路,外部只需输入一低频参考时钟60MHz,通过AD9852芯片内部的倍频即可获得300MHz内部时钟。300MHz的外部时钟也可以采用单端或差分输入方式直接作为时钟源。AD9852采用+3.3V供电,降低了器件的功耗。工作温度范围在-40°C~+85°C。

本文采用AD9852所设计的频率合成器结构如图3所示。DDS模块分成二路输出:(1)第一路输出

100MHz~150MHz信号;(2)第二路输出150MHz~200MHz信号。其中DDS输出12.5MHz~25MHz的信号,经SWCON开关分成两路输出,一路输出12.5MHz~18.75MHz信号,经放大倍频、滤波,输出100MHz~150MHz信号;另一路输出18.75MHz~25MHz的信号经放大倍频、滤波输出150MHz~200MHz信号。

2FPGA与DDS接口设计

FPGA主要完成从外部向DDS写入频率控制字功能,其中频率控制字存储在FPGA内部RAM单元中。双方通过40针总线连接,其中信号线为:8位数据线、6位地址线、复位信号、updateclk(频率跳变信号)、swcon(开关:高频段和低频段转换信号,当swcon为低时输出高频段,当swcon为高时,输出低频段)、wr(写信号)。

AD9852用于频率合成时工作在单频模式(singletonemode)其工作时序关系如图4所示。

信号通信论文篇(2)

1光纤模型

对于一些较为复杂的矢量信息的调制,光通信系统当中则一般都是用IQ调制器进行;光纤模型是为了将通信相干系统内处理数字信号进行提高,因此必须要具体研究整个系统内信号进行光纤传输的现象,而该现象则需要从物理以及数学的模型当中入手,对对应的补偿或均衡技术进行研究过程中将数字信号处理技术的作用发挥出来,使得光信号变换成为电磁波的形式,具体的解是在麦克斯韦方程组导出的波动方程中进行的,表达式是:其中X是信号偏振方向的单位向量,是初始振幅的傅立叶表示,是常数,最终将光信号基态模式分布成F(x,y)看成是近似高斯函数。另外在研究接收端过程中,一般都是将光相干接收机作为主要组成进行研究,其能够对接收机进行直接测探,让所检测的信号强度信息得以增强,同时还能够将强度调制信号进行光电转换前对其进行除匹配滤波之外的处理。

2信号处理

研究相干光通信系统内处理数字信号的技术主要是:光纤信道是信号进行传输的通道,而其中所出现的不同形式的失真或者损伤就会在结合过程中出现线性或者非线性的失真。而线性失真的补偿是不存在因果关系,即无需顾虑其顺序问题,不过需要在具体算法当中遵循以下原则:分离所需估计的线性失真为单独形式的变量,并补偿态应该优先估计,对于算法较为简单的变量,然后再补偿随机变量,最后才是对所有变量进行完整补偿。算法流程:每个方框所代表的都是相干接收机内的数字信号处理系统的子系统,且子系统之间所可能出现的反馈线路的具体图表也要进行表示,在预处理算法的研究中,它是指在进行实质的信道均衡、载波恢复之前,对采样后的信号进行一定程度的预先处理,为形成数字信号处理算法做出充分的准备。

3信号补偿

使用数字信号处理算法之后,相干光通信系统对信号补偿是在接收端,具体使用过程当中则会根据情况的不同来使用不同形式的数字信号处理子系统。去偏移系统可以针对偏振之间的采样时刻偏移进行补偿。正交化系统可以补偿因调制器和混频器缺陷造成的欠正交状况。归一化系统能够将信号具备单位的能力和幅度,进而使得信号发生色度色散后可利用静态信道的均衡系统对其进行补偿。即使出现不当采样而导致误差出现时,也能够使用采样时钟来对系统进行相关补偿。即自适应的信道均衡系统能够对于偏振所出现的相关损伤进行补偿,载波相位回复系统是估计载波相位的噪声,进而对所出现的失真进行补偿。载波频率恢复系统则是对发送端和接收端之间载波所出现的频率偏移进行补偿和估计。对于光线非线性造成的信号损伤可以借助非线性补偿系统进行补偿。

4相关耦合

在应用数字信号处理算法过程当中,先在接收端破和所输入的光信号和本振光,进而根据上述的数字信号处理技术子系统来对所耦合的光信号进行模数转化、去偏移以及正交化恢复等处理,然后根据实际的应用环境来选择具体形式的反馈和补偿。即相干光通信系统中有了数字信号处理算法的应用将会对其色散、偏振等造成的信号失真有了非常有效的补偿,进而更好的促进了相干光通信系统的发展。

二、小结

信号通信论文篇(3)

一、征文议题

本届年会将以“互联网+时代的管理会计信息化”为主题,同时兼顾其他热点内容,将重点研讨如下议题:

1.企业管理会计信息化研究与应用

2.政府会计信息化研究与应用

3.内部控制与IT风险管理研究及应用

4.审计信息化研究与应用

5.XBRL企业内部运用案例研究

6.“互联网+大会计”时代的会计信息化新发展

7.财政部会计信息化新法规实施与应用

8. 会计信息化技能认证及人才培养与教学改革研究

以上仅为参考性议题,在会计信息化理论研究和应用范畴内,作者可根据研究成果自行拟题,欢迎会计信息化理论和实务工作者提交相关论文。中国会计学会会计信息化专业委员会将组织评选年会优秀论文。

二、征文事项

1.征文截止日期

2016年6月10日(以论文发出日期为限)。组委会遴选后在2016年7月10日前发出正式的会议论文录用通知和参会邀请函。参会回执请务必于2016年7月20日前发至会务组。

2.征文注意事项

(1)应征论文应当是未公开发表的论文。

(2)应征论文被会议录用后将在中国会计学会网站、中国会计视野论坛――中国会计学会会计信息化专业委员会学术讨论版 网站上登载,同时将被中国学术期刊(光盘版)电子杂志社的“中国重要会议论文全文数据库”收录,并向《会计研究》《中国管理信息化》《财务与会计》《会计之友》等杂志推荐发表。

3.提交论文的内容与格式要求

(1)页面设置A4纸;(2)文章标题(居中,三号黑体,上下各空1行);(3)文章作者(小四号宋体,居中,作者之间用空格);(4)单位、邮政编码(小五号宋体,居中,后面空1行);(5)“摘要”(五号黑体,顶格),摘要内容(小五号宋体);(6)“关键词”(五号黑体,顶格),关键词(小五号宋体,下空1行);(7)以上项目的英文内容,使用Times New Roman字体,字号与中文部分相同,文题、“Abstract”、“Key Words”加粗;(8)正文(五号宋体,单倍行距),标题(黑体),图表分别按顺序编号;(9)“参考文献”(五号黑体);(10)作者个人信息单独一页(作者姓名、性别、职称、工作单位、通信方式(联系地址、邮编、电话、传真、E-mail地址))。

4.论文提交要求

通过电子邮件提交word格式论文。电子信箱:。邮件主题为“中国会计学会第十五届全国会计信息化年会征文”。

5.联系人:陈丹妮老师:0577-86596211;15067851757

应里孟老师:0577-86595931;15158550788

孙玉甫老师:0577-86599345;15258683890

6. 通信地址:浙江省温州市茶山高教园区温州大学城市学院会计分院

邮编:325035。

中国会计学会会计信息化专业委员会

信号通信论文篇(4)

关键词:数字信号处理 微信平台 智慧课堂

中图分类号:G4 文献标识码:A 文章编号:1674-098X(2016)07(a)-0153-02

目前,几乎所有的工程技术领域都会涉及到信号处理问题,而数字信号处理由于具有精度高、可靠性强以及便于大规模集成等特点,已成为发展最快、应用最广泛的学科之一[1]。《数字信号处理》作为通信、电子类专业的一门重要专业课程,目前已广泛应用于语音、图像、雷达、通信、控制、声纳、航空航天、故障检测、遥感遥测、生物医学、地质勘探、自动化仪表等领域[2]。但是,《数字信号处理》课程目前的教学模式仍侧重于理论讲授,不能充分体现工程应用性,不利于应用型人才的培养。因此,《数字信号处理》课程的改革与实践势在必行。

《数字信号处理》课程以《高等数学》《线性代数》《信号与系统》等课程为基础,同时又作为《随机信号处理》《图像处理》《自适应信号处理》等后续课程的基础,具有承上启下的作用[3]。该课程具有较强的理论性,涉及到的公式推导繁多,对学生的数学基础有一定要求[4]。因此,应结合应用型地方本科院校的特点和需求,对《数字信号处理》课程进行教学改革与实践。

1 数字信号处理课程传统教学存在的问题

1.1 传统课堂缺乏师生间的有效互动,不利于学生自主学习

传统课堂以教师讲、学生听为主,这种满堂灌的教学过程缺乏师生间的有效交流和沟通,无法持续激发学生的自主学习动机,亦不能将学生学习过程中存在的问题及时反馈给教师,从而导致教师无法掌握学生对授课知识的理解和应用程度,学生的学习积极性也不高,缺乏自主学习的动力。

1.2 授课偏重理论,缺乏应用性

《数字信号处理》课程的理论性较强,公式推导多,需要具备一定的数学基础和《信号与系统》课程基础。目前的教学体系偏重理论知识的讲解,而忽视了理论结果的物理意义以及在工程实践中的应用,导致学生感到抽象和枯燥。部分同学由于前期基础课程学得不够好,缺乏自信心,对《数字信号处理》课程产生畏难情绪,从而缺乏学习热情和学习动力,学习积极性不高。

1.3 目前的教学模式多为自底向上,学生对课程的整体把握不足

当前的教学模式主要采用自底向上的方法授课,即将整门课程的知识点分解细化,分块讲述各部分知识点,此教学模式容易使学生只见树木、不见森林,即只掌握单独的知识点,却不能从整体上把握课程的核心思想。

1.4 授课方式单一,学生理解困难

目前的授课方式要不采用传统的黑板板书的形式,要不完全采用多媒体课件讲授,板书授课方式容易使学生陷入仅重视理论推导而不重视应用的误区,完全采用多媒体课件授课的方式则忽略了重要结论的理论推导,不利于基础知识的掌握[5]。

2 基于微信公众平台的数字信号处理智慧课堂建设

针对传统课堂师生间缺乏有效互动的问题,通过开发微信公众号,以微信公众平台为载体,微信用户可以利用微社区进行互动,并设定固定时间进行教师在线答疑。针对学生反馈的共性问题和重点难点知识点录制微课视频,并将录制好的微课视频上传至腾讯视频,在微信公众平台制作关键词回复,通过回复关键词就可以观看相应的微课视频,从而使学生随时随地打开微信公众号,即可实现在线答疑解惑。一方面可以增加学生的参与性,从而激发学生的学习热情,提高学生的学习积极性和自主学习的能力;另一方面教师可以通过后台数据,掌握学生反馈的问题和学习情况,从而以问题为导向开展课堂教学,实现智慧课堂平台建设。

针对《数字信号处理》课程理论性较强、不易理解的问题,通过开发MATLAB图形用户界面,将典型的数字信号处理算法和实际案例通过MATLAB图形用户界面演示给学生,使学生通过工程案例加深对数学概念和物理概念的理解和掌握;并将开发好的MATLAB图形用户界面加载到微信平台,使学生亲自参与到数字信号处理算法的验证和实际工程案例的应用中,从而将理论与工程应用联系起来,真正做到物理概念、数学概念和工程概念的有机统一。

针对自底向上的教学模式导致学生对课程整体把握不足的问题,在课堂上,结合学科发展的最前沿,以具体工程实例导入,引出所涉及的理论知识,让学生从整体上把握理论知识。在课后,布置结合前沿科技的思考题,让学生了解最新研究成果,追踪学科前沿动态,并对整体内容进行归纳总结,帮助学生对所学知识进行整体把握。在制作配套教材的多媒体课件时,采用自顶向下的设计思路,从实际应用问题出发梳理课程的整体构架和知识体系,将涉及到的知识点以“知识链”或“知识树”的形式进行层层分解演示,将知识点串接起来,使学生对课程有一个整体把握,并将制作好的多媒体课件,加载到微信公众平台,供学生参考学习,从而使学生对课程整体构架和知识体系有更好把握。

单一的授课方式要么过于重视理论知识的讲解,要么缺乏对重要结论的理论推导,容易陷入极端,不利于学生综合素质的提高。因此,有必要研究能提升教学效果的多元化授课方式。对于重要公式的推导,采用板书,板书能够帮助学生跟随教师的思路领悟具体的推导过程,从而加深对公式的理解和掌握。对于不易理解的内容和具体案例的讲解,采用多媒体,通过图像、动画的演示,将抽象的概念形象化、具体化,以加深对理论的理解,并启发学生的思维。同时,将MATLAB软件应用于教学,淡化理论教学与工程实践的界限,通过编写程序可以简化繁琐的计算过程,并直观观察各种参数对结果的影响,进一步理解工程算法的应用,达到事半功倍的教学效果。

通过搭建微信公众平台,将在线辅导答疑、MATLAB图形用户界面演示、微课视频、多媒体课件整合起来,实现数字信号处理移动智慧课堂的建设。基于微信公众平台可以实现师生间的实时反馈,不仅有利于教师及时修正完善教学方式和教学内容,而且增加了学生的参与性,提高了学习的积极性,实现了师生教与学的双赢。

3 结语

通过将现代教育资源整合到微信公众平台,实现《数字信号处理》课程的智慧课堂建设,是“互联网+教育”的一个重要应用。该文的研究成果扩展性强,可以根据教学需要,灵活添加教学资源,使传统的封闭课堂走向开放,利用开放的互联网平台,可以将该文的研究成果更便捷推广到其他专业的教学中。

参考文献

[1] 高西全,丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,2008.

[2] 王恩亮,张丽华.应用型高校“数字信号处理”课程教学改革与实践[J].科技经济市场,2012(12):98-99.

[3] 曹林.通信工程专业数字信号处理课程改革与思考[J].科技创新导报,2014(10):133-134.

信号通信论文篇(5)

关键词:FSK,调制,解调,VHDL

 

频移键控(FSK)是用不同频率的载波来传送数字信号,并用数字基带信号控制载波信号的频率。具有抗噪声性能好、传输距离远、误码率低等优点[1]。在中低速数据传输中,特别是在衰落信道中传输数据时,有着广泛的应用。但传统的用硬件实现FSK的方法,特别是相干解调需要提取载波,设备相对比较复杂,成本比较高。本文基于 FPGA 芯片,采用 VHDL语言提出了一种 FSK调制解调器的实现方法。

1 . FSK调制

FSK调制的核心部分包括分频器、二选一选通开关等。图1[2]中的两个分频器分别产生两路数字载波信号;二选一选通开关的作用是:以基带信号作为控制信号,当基带信号为“0”,选通载波f1;当基带信号为“1”时,选通载波f2。从选通开关输出的信号就是数字FSK信号,调制信号为数字信号。

图1 FSK调制方框图

FSK调制VHDL程序仿真图如图2所示,载波f1和f2分别是通过对clk的12分频和2分频得到的。

图2 FSK调制VHDL程序仿真图

2.FSK解调

在解调器的设计中,已调信号是连续的波形,有两个不同的频率,在 FPGA实验平台上,已调信号可以通过矩形脉冲来代替,在一定的时间内,通过检测时钟上升沿来确定输入信号的频率,从而判断出基带信号。在本设计中,先设计一个同步信号,即当同步信号start为高电平时开始解调。论文格式。

图3 FSK解调方框图

图4是依照图3[2]编写VHDL语言解调程序得到的时序仿真图,在仿真图中,clk是输入的时钟信号,start信号为高电平,编辑输入调制信号x,通过时序仿真得出结果。论文格式。从图中可以看出,输出信号 y有延迟。计数器q计数时钟信号clk的上升沿,m计数输入调制信号的上升沿,计数器q计数到11时清零,若计数器q为10时,m计数小于等于3则判基带信号为“0”,否则判为“1”。论文格式。

图4 FSK解调VHDL程序仿真图

3.结论

整个设计使用VHDL语言编写,以EP1K30144-3为下载的目标芯片,在MAX+PLUSⅡ软件平台上进行布局布线后进行波形仿真,得到了正确的波形。结果正确无误,经验证满足预期的设计指标要求,且其整个工作过程可通过软件波形仿真,或是实际硬件电路通过示波器来直观、清晰观察。传统的FSK调制解调方式都是采用硬件电路实现,电路复杂、调试不便,采用VHDL语言用FPGA来实现的调制解调方式,设计灵活、修改方便,有效地缩小了系统的体积,增加了可靠性,具有良好的可移植性及产品升级的系统性。

参考文献

[1] 陈华鸿.频移键控(FSK)及其最新应用[J ].现代计算机,2000(9) :36-39.

[2] 段吉海,黄智伟. 基于CPLD/FPGA的数字通信系统建模与设计[M]. 北京:电子工业出版社,2004.

信号通信论文篇(6)

关键词:光声信号,组织声速,测量

 

1 引言

声速的测量方法很多,在工程技术中用的比较多的是传播时间法、脉冲回鸣法和脉冲迭加法,这三种方法都是测量声速的有效方法[1]。科技论文。本文采用的是利用短脉冲激光激发宽频带的光声信号,采用一针状PVDF膜的宽带水听器接收光声信号,在水听器前面放上各种规则的组织,通过测量组织厚度和延时,可以很方便的测出各种组织的声速;通过采集测量信号的峰峰值,还可以得出光声信号对各种组织的反射与衰减情况。

2 理论分析

当用脉冲光源照射某种吸收体时,其局部的温度将发生瞬时的改变,导致体积膨胀而产生超声波,这种超声波称为光声信号 [2]。在空间某一位置接收到的光声压p(r,t)和光吸收系数的分布A(r)的关系可以表达为[3]

(1)

其中为等压膨胀系数,c0为光声信号在吸收体中的声速,cp为比热,I0为光强,r表示光声压的场点位置,表示光声源的位置,表示场点到源点的距离。

当纯水为某一温度时,超声在纯水中的声速为(比如水温为22℃,超声在纯水中的声速为1492.0m/s),在水听器的前面放上任一规则的组织,让激发的光声信号穿过,设组织的厚度为x,信号在组织中的声速为,通过测量光声信号在水中与组织中的传播时间差,可得出信号在组织中的传播速度,即可表示为:

即 (2)

3 实验结果与讨论

图1为吸收体和超声换能器都置于纯水中的实验装置图。科技论文。将脉冲激光(波长为1064nm,脉宽为8ns,脉冲重复频率为20Hz)均匀照射在样品上,产生光致超声。在水槽中通过移动、测量水听器(PrecisionAcoustics LTD,灵敏度为950nv/pa,接收面积直径为1mm)的位置,由示波器(TDS3032, Tektronix,最高采样率2.5G ,带宽 300MHz)、GPIB采集卡和计算机采集光声信号,记下光声信号的传播时间(实验中脉冲激光和示波器由同一触发源同时触发, 探测器接收到的光声信号相对触发信号的延迟时间就是光声信号从光声激发位置到探测器的传播时间),可以计算出光声信号在水中的传播速度,由实验测量得,当水温为22℃时,声速为1492m/s,再将水温降低或升高,可以得到水的声速随温度的变化关系[4,5]。科技论文。实验中示波器的采样率为250MHz。

图1 声速测量实验装置图

在水听器的前面放上一些规则的组织,让激发的光声信号穿过,通过测量光声信号在水中与组织中的传播时间差,如图2所示,可得出信号在组织中的传播速度,比如超声在鱼肉中的声速为1541.7m/s,具体各种组织声速如表1所示。

由图2可以看出,超声在纯水(13℃)中传播的延时最长,即传播的速度最慢,在瘦肉中传播的延时最短,即传播的速度最快;而且信号在纯水中的峰峰值最大,为310mv,在瘦肉中的峰峰值最小,为84mv,说明信号在组织之间声速不匹配时,有很强的反射,当然另一方面信号在组织中传播时也有衰减[6,7]。

图2 光声信号在各种组织中的延时

 

生物样品 厚度(cm) 信号峰峰值(mv) 信号延时之差(µs) 声速(m/s) 纯水(13℃)  

信号通信论文篇(7)

关键词:小波变换,非整数次谐波,谐波检测

 

1 引言

近年来,随着电力电子技术的迅速发展,各种变频器、变流器、开关电源和电抗器等非线性设备的应用日益增多,产生了大量的高次谐波,造成电力系统电压、电流严重畸变,引发了一系列问题。

传统的快速傅氏变换以求和替代积分,以降低精度为代价来提取实时性,可以得出各次谐波的幅值相位。

瞬时无功功率理论自20世纪80年代提出后,突破了传统的平均值为基础的功率定义,具有较好的实时性,抗干扰能力强。

神经网络方法其特点是算法基于误差曲面上的梯度下降,权调数量与输入量一致,并保持与误差的负梯度方向一致,因此能保证网络的收敛性。

小波变换理论适合于对局部频域进行精确分析,它提供了一个自适应的可调采样窗口,具有更强的实时性。而且小波变换理论分析时频问题的良好特性使得它在检测非整数次谐波方面优于其他理论。本文采用连续小波变换分析系统中的整数次与非整数次谐波,并通过Matlab仿真得到了较好的分析结果,表明了小波变换具有检测电力系统中各种谐波的良好功能。

2 谐波检测原理

小波变换公式:。论文格式。

其中,为小波基函数,a为伸缩因子,为平移因子,x(t)为待分析信号。

由上式可知,小波变换实质上是信号x(t)与小波母函数的卷积,是对信号满足一定附加条件的滤波。而滤波的范围则是由参数α, 来决定,反映在小波母函数和小波因子的选择上。可见,小波变换是按频带而不是按频点的方式处理频域,因此信号频率的微小波动不会对处理产生很大影响,且不要求对信号进行整周期采样;其次,由小波变换的时间局部性可知,在信号局部发生波动时,它不会像傅立叶变换那样把影响扩散到整个频谱,而只改变当时一小段时间的频谱分布,这使其可以跟踪时变信号和暂态信号。

由于小波变换具有良好的时频局部化特征,使得小波变换应用于电力系统的谐波检测有着很好的理论基础,可以根据不同尺度的小波变换系数的幅值来测量谐波的频率。由连续小波变换公式可见,信号的连续小波变换相当于信号通过有限长的带通滤波器不同的尺度因子α决定带通滤波器的带通特性。如果能够使不同频率的谐波位于不同的频带中,就能够把包括整数次非整数次的不同频率的谐波分离出来。因此,利用小波变换可以实现整数次和非整数次的谐波含量的测量。

本文中采用Daubechies小波对函数进行小波变换。论文格式。一般将其简写为dbN,N是小波的阶数。dbN没有明确的表达式(除了N=1外),但转换函数h的平方模是很明确的。

令,其中为二项式的系数,则有:

式中,。

3 仿真结果分析

对本文提出的检测方法进行数字仿真,其中3.1是对于含有基波、2、3.4次谐波检测信号的仿真,3.2是对含噪的的谐波信号检测的仿真。论文格式。

3.1 含有基波、2、3.4次谐波检测信号的仿真

由于非线性元件和电力电子器件的广泛应用,使电力系统中存在着大量的整数次与非整数次谐波。采样一个周期,而系统中分别有基波、2、3.4次谐波时,采用db3小波对信号进行5层分解。

图1 线形组合后的信号

图2 小波分解后各层的逼近信号

图3 小波分解后各层的细节信号

当信号中含有基波、2次、3.4次谐波时,其线形组合后的信号如图1所示,对组合信号进行5层db3分解后的逼近信号如图2所示,细节信号如图3所示。从图2可以看出,逼近信号a1显示了3.4次谐波,逼近信号a2显示了基波,二次谐波则出现在细节信号d2中。由此可知,对于常规傅立叶变换不能检测非整数次谐波的问题,可以利用小波变换分析系统中存在的非整次谐波。通过分析小波变换对谐波检测的特点,选用了db3小波变换并分析了含有非整次谐波的系统,证明了小波变换对于解决含有非整次谐波的检测和分析具有良好的特性。

3.2对含噪的谐波信号的仿真

在电网电压中,由于各种现代电力电子设备的干扰,不但存在谐波信号,而且有着广泛的噪声信号。采样一个周期,而系统中分别含有3.7次谐波和噪声信号时,采用db3小波对信号进行5层分解。

图4 含噪声信号线形组合后的信号

图5 含噪声信号小波分解后各层的逼近信号

图6 含噪声信号小波分解后各层的细节信号

当信号中含有3.7次谐波和噪声信号时,其线形组合后的信号如图4所示,对组合信号进行5层db3分解后的逼近信号如图5所示,细节信号如图6所示。从图6可以看出,3.7次谐波体现在逼近信号部分,而白噪声体现在细节信号部分。由此可知,小波变换不但具有良好的非整次谐波的检测能力还具有良好的噪声分辨能力。

4 结论

小波变换是针对快速傅立叶变换在分析非稳态信号方面的局限性形成和发展起来的一种十分有效的时频分析工具,它克服了快速傅立叶变换的缺点,采用不同尺度的分析方法,能在信号的不同部位得到最佳的时域分辨率和频域分辨率,为非稳态信号的分析提供了一条新的途径,通过本文的仿真可知,它对于含有整数次、非整数次谐波和含噪谐波的检测有着很大的优越性。

参考文献

1 石国萍、田立军. 基于小波变换的统一电能质量控制器检测方法研究. 2004,16(1):34-37

2 林易群等. 基于小波多孔算法的暂态电能质量检测方法. 中国电力,2002,35(10):54-57

3 张庆超. 基于小波神经网络的输电线路故障检测. 天津大学学报,2003,36(6):710-713

4 薛蕙、杨仁刚. 利用Morlet连续小波实现非整次谐波检测. 电网技术,2002,26(12):41-44

5 欧阳森. 基于小波原理的电能质量检测数据实时压缩方法. 电网技术,2003,27(2):37-39