时间:2022-09-11 14:51:56
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇勾股定理证明方法范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

一、逻辑推理与实际应用是数学学习动机
数学发展的历史包括两种典型的数学文化:一种是重视逻辑推理的希腊数学文化,一种是重视实际应用的中国数学文化.
数学史家将古希腊数学按时间分期:第一期从公元前600年到前323年;第二期从公元前323年到前30年,也称亚历山大前期;第三期从公元前30年到公元600年,也称亚历山大后期[3].前两个时期,希腊数学文化认为,数学命题只有通过几何形式的逻辑推理论证才能说明其正确性,论证数学成为数学研究的主流,几何形式的逻辑推理证明成为数学成果正确与否的衡量标准.这个标准逐渐发展成为对数学研究的期望或理想,即期望数学成果能够通过几何形式的逻辑推理来论证.在“亚历山大后期”,古希腊数学突破了之前以几何为中心的传统,算术、数论和代数逐渐脱离了几何的束缚.这一时期受罗马实用思想的影响,论证数学不再盛行,如海伦的《量度》中有不少命题没有证明.但论证数学中的逻辑推理在数学研究中仍占有重要位置,如丢番图《算术》书中采用纯分析的途径处理数论与代数问题[4].逻辑推理从几何论证中脱离出来,逻辑推理解决问题的思想发展成为数学研究的新理想,即希望数学问题可以通过纯逻辑推理的方法解决.纵观整个希腊数学文化,数学研究成为满足上述两种理想而付出的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.究其本质,逻辑推理思想是几何论证与分析法解决问题的根本,是上述两种理想中最本质的思想,并且满足动机的定义.因此它是古希腊数学研究的一个动机,也是人类进行数学研究的一个动机.
中国古代数学在整体发展上表现为算法的建构和改进[5].所谓“算法”不只是单纯的计算,而是为了解决一整类实际或科学问题而概括出来的、带有一般性的计算方法[4].算学的目的在于解决实际问题,而实际问题是层出不穷的,因此中国古代数学不仅经受住了统治者废除“明算”科的考验,甚至还有所发展,如元末明初珠算的普及.随着中国数学文化的形成,用数学知识解决实际问题成为算学的理想,即期望数学成果能够被实际应用.中国古代数学研究成为受这个理想而支配的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.实际应用满足动机的定义,因此它是中国古代数学发展的一个动机,也是人类进行数学研究的一个动机.
所以逻辑推理与实际应用是人类进行数学研究的两个动机,按动机的分类它们属于驱力,是从生理需要出发的内在动机.数学学习可以认为是有方向性的对已有数学成果的再次研究过程,可以看作是数学研究的特例形式.依据历史发生原理综合分析得出:人类进行数学研究的内在动机一定会在数学学习中表现出来,即激励人类研究数学的内在动机与激励学生学习的内在动机是一致的.
从实际情况出发,逻辑推理可以作为生活中一种娱乐形式,如逻辑推理游戏、逻辑推理小说、逻辑推理电影等都深受公众喜欢;而实际应用也是大家十分感兴趣的,如通过应用基本的空气动力学知识制作航模.
综上所述,逻辑推理与实际应用是数学学习动机,且这两个数学学习动机是学生共有的、内在的,也是在实际教学中易于对学生进行培养的数学学习动机.
古希腊数学中的公理化思想是希腊数学文化的重要特点之一.公理化思想出现的标志是欧几里得的《几何原本》.在数学中引入逻辑因素,对命题加以证明,一般认为是从伊奥尼亚学派开始的,但毕达哥拉斯学派在这一方面作了重大的推进,他们的工作可以说是欧几里得公理化体系的前驱[3].因此公理化思想的提出要晚于逻辑推理思想,公理化思想是逻辑推理思想的发展.
算法程序化思想是中国数学文化的另一个重要特点.算法程序化思想出现的标志是成书于公元前后的《九章算术》.实际应用思想虽没有明确的出现标志,但在《九章算术》成书前的《周髀算经》、《算数书》等书中涉及的数学知识都蕴含着明确的实际应用思想.算法的提出是为了解决一类实际问题,算法程序化为了使算法严谨、简明、更富一般性.因此算法程序化思想的提出要晚于实际应用思想,且算法程序化思想是实际应用思想的发展.
随着数学发展,公理化思想与算法程序化思想已应用到现代数学中,成为现代数学的特点.但它们不是贯穿整个古希腊数学与中国古代数学研究的内在因素,而是逻辑推理与实际应用数学思想发展的衍生物.公理化思想与算法程序化思想也可作为数学学习的动机,但适宜群体明显要少得多.数学发展至今,数学本身的文化区域性特点淡薄了,希腊数学文化与中国数学文化背后的驱力——逻辑推理与实际应用思想,早已相互融合.近代微积分的应用及理论的严密化过程就是一例.
二、比较古今数学教材以研究初中教材两个学习动机的培养
教材是教学中最重要的用书之一,是教师教学、学生学习的主要依据.《几何原本》、《九章算术》作为西方与中国的数学教科书都有千年之久.两本着作都反映了当时的数学文化背景.重视逻辑推理与重视实际应用分别成为教学思想包含在这两本书中.
因为《九章算术》作为教材多将刘徽注释加入其中,所以将现行数学教材与《几何原本》、《九章算术及刘徽注》进行比较研究.为增加3者的可比性,选择它们共有的内容,且知识体系完备,预备知识基本一致,学生认知水平大抵相同的勾股定理部分作为比较对象.这种比较虽不能以点代面,但仍有较强的代表性与启发性.现行数学教材采用经全国中小学教材审定委员会2004年初审通过的义务教育课程标准实验教科书八年级数学下册[6],以第18章第1节勾股定理内容为标准,选择《几何原本》、《九章算术及刘徽注》部分内容进行比较.因《几何原本》的成书结构是公理化体系,利用已知命题证明未知命题,且命题后没有辅助理解该命题的习题,所以选择其中与勾股定理有关或利用勾股定理证明的命题作为比较对象.由于初中教材在讲解勾股定理时,预备知识中未包含圆、无理量及立体几何内容,故选择《几何原本》[7]第Ⅰ卷命题47、48,第Ⅱ卷命题9、10、11、12、13作为比较对象.《九章算术及刘徽注》的勾股章是利用直角三角形性质求高深广远,因初中教材勾股定理的预备知识中没有相似三角形及勾股数组的内容,所以选择《九章算术及刘徽注》[8]勾股章[一]至[一四]题及[一六]题作为比较对象.
1.各种教材中勾股定理的内容
(1)编写目的
《全日制义务教育数学课程标准(修改稿)》(下简称为《标准》)中勾股定理的教学要求是:探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题[9].《几何原本》与《九章算术及刘徽注》虽没有类似的编写标准,但可以从它们的内容及成书体系分析得出.《几何原本》利用勾股定理转换面积间关系证明几何问题,即在直角三角形中,两直角边上正方形面积和与斜边上正方形面积可以相互转换.如第Ⅱ卷命题9、10、11、12、13都是利用这种思想.《九章算术及刘徽注》利用勾股定理数量关系求得高深广远,解决实际生活的问题.
(2)知识框架
初中教材通过生活发现与几何直观探索,建立从实际到理论再到实际的知识体系,并运用定理解决简单问题.《几何原本》通过已知命题推导勾股定理,建立从理论到理论纯几何形式的知识体系,重在证明未知命题.《九章算术及刘徽注》通过给出3个简单几何问题“术”,建立从理论到实际的应用知识体系,旨在解决实际问题.3者建构的知识框架各不相同.
(3)定理引入
初中教材的导入分为两部分,分析毕达哥拉斯发现的定理特例与探究定理的一般形式.《几何原本》受公理化体系的影响,它的导入可以认为是定义、公理、公设及已知命题.《九章算术及刘徽注》的导入是3个已知两边求第三边的简单几何问题.
(4)定理表述
初中教材用特例猜想定理的一般形式给出勾股定理[6]:如果直角三角形的两直角边长分别为a、b,斜边为c,那么《几何原本》的勾股定理以命题形式给出:在直角三角形中,直角所对边上的正方形等于夹直角两边上的正方形[10].《九章算术及刘徽注》中的勾股定理以3个简单几何问题术的形式给出:勾股各自乘,并,而开方除之,即弦[8].3者对比,初中教材体现数形结合的勾股定理且形体现在边长上;《几何原本》中体现形的勾股定理且形体现在面积上;而《九章算术及刘徽注》体现数的勾股定理.各自的表述为其内容服务,它们之间存在一定差异.
(5)定理证明
初中教材利用我国古代赵爽的弦图(如图1、图2、图3),通过图形旋转证明定理猜想.这种证明方法是近年来学者们倾向于“古证复原”思想提出的.初中教材对定理证明如下[6]:
赵爽注释的《周髀算经》对勾股定理的证明如下:案弦图又可以勾、股相乘为朱实二,倍之为朱实四.以勾股之差自相乘为中黄实.加差实一亦成弦实[8].
两种解释代表两种证明思想,赵爽弦图及其证明方法未成最终定论.初中教材选择历史上的数学作为定理证明既应符合历史,又应符合学生认知习惯.图形旋转是否是赵爽的弦图思想,是否符合学生对一般几何问题证明的思维形式,仍需再斟酌.
[关键词] 数学史;勾股定理;教育价值
数学史对于数学教育的价值已不仅仅停留在理论层面的讨论. 翻阅近两年的数学教育类杂志可以发现,越来越多的中小学数学教师也在撰文阐述自己在教学中使用数学史的一些体会和教学案例. 在课程改革不断深入的当下,数学史融入数学教学对于践行课改的理念,培养全面发展有理想、有道德的高素质数学人才等方面确实有着积极的推进作用. 本文将给出一个基于数学史的勾股定理教学设计思路,旨在抛砖引玉,期待一线教师在不断加强自身数学史修养的同时,开发出更多基于数学史的优秀教学案例.
提出问题
勾股定理:直角三角形两直角边的平方和等于斜边的平方. 此定理在西方叫做毕达哥拉斯定理,相传,这是由古希腊数学家毕达哥拉斯及其徒众发现的,后人更渲染其事,说毕达哥拉斯诸人十分重视这项发现,特地宰了一百头牛向天神奉献答谢,所以中世纪时这条定理被称作“百牛定理”. 在历史上,这条定理的名称特别多,在不同时代、不同地区都有不同的名称,包括“木匠定理”“新娘之椅”等. 古希腊数学家欧几里得在公元前300年左右编写了著名的经典之作《几何原本》,其中一个定理就是毕达哥拉斯定理:
“在直角三角形中,直角所对的边上的正方形等于夹直角两边上正方形的和.”
接下来的这个定理是毕达哥拉斯定理的逆定理:
“如果在一个三角形中,一边上的正方形等于这个三角形另外两边上正方形的和,则夹在后两边之间的角是直角.”
这两个定理合起来说明了直角三角形a,b,c三边的平方和关系:a2+b2=c2,界定了直角三角形.
我国是最早发现勾股定理的国家,据《周髀算经》记载,我国数学家早在公元前1120年就对勾股定理有了明确认识. 勾股定理从发现到现在已有五千年的历史,在西方,它被称为毕达哥拉斯定理,但它的发现时间却比中国人晚了几百年. 勾股定理是把直角三角形与三边长的数量关系联系在一起,体现了数形结合思想.
定理的证明
在新课程人教版教材(八年级下册)中,先是引用毕达哥拉斯的故事引出勾股定理,然后利用中国古代数学家赵爽的“弦图”证明了勾股定理. “弦图”是以弦为边长的正方形,在“弦图”内作四个相等的勾股形,各以正方形的边长为弦. “弦图证法”是依据“出入相补原理”,根据“以直角三角形斜边为边长的正方形的面积与四个三角形的面积之和等于外正方形的面积”来证明勾股定理的. 赵爽的“弦图证法”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲,正因如此,这个图案被选为2002年北京召开的国际数学家大会会徽.
[图1]
引导学生探索其他解法
上述是我国古代数学家赵爽的“弦图”证法,即利用“以直角三角形斜边为边长的正方形的面积与四个三角形的面积之和等于外正方形的面积”来证明勾股定理. 这一方法给我们一定的启示,即围绕面积相等这一条,把原图形拆成几部分,然后根据面积相等实现定理的证明. 教师可以提示学生围绕这一观点,探索其他证明方法,学生提供的证法有可能和历史上大数学家的证法一致.
历史上的经典证明方法展示
发现勾股定理迄今已有五千年,五千多年来,世界上几个文明古国都相继发现和研究过这个定理,几千年来,人们给出了勾股定理的许多证法,有人统计,现在世界上已找到四百多种证法,下面列举其中具有数学思想的一些代表性证明方法. 如(1)欧几里得《几何原本》的证法;(2)比例证法;(3)另一种弦图证法;(4)总统证法;(5)帕斯卡拉二世的证明;(6)毕达哥拉斯的证法;(7)旋转证法. 限于篇幅,这些证明方法的证明过程在本文中省略不写.
基于上述分析,不难发现,历史上的勾股定理证明方法很多,据统计,有400多种,向学生展示不同的证明方法有很多益处,具体表现在:首先,给出勾股定理的多种证法,并非是比较证法之优劣,而是为了丰富教与学的内容知识,这也是数学史融入数学教学重要的功能之一. 其次,通过比较、分析各种证法的特色,可以让教师和学生在教与学上有所比较,以达到取长补短. 通过分析各种证法之不同,可以发现他们各自对于图形的依赖程度也不相同. 当我们试图理解某个版本的证法时,就好比与这位数学家进行对话,从而产生自我“历史诠释”. 再次,历史上的勾股定理证法还使我们认识到该如何呈现定理及其证明,以便可以兼顾到各个面向. 在教学中,若以历史文本为师,适时引入古人的原始想法,撷取前人的智慧,乃至前人所犯的错误,相信对于数学思想的发展与学生的学习过程能有更贴近的牟合,也能让学生对数学有更全面的观照. 最后,基于数学史数学教学所追求的目标之一,正是让学生在通过历史文本解决问题的过程中获得学习的乐趣,因此,数学历史文本中的任何地方可能都有意想不到的金矿等待挖掘,唯有辛勤发掘才可能使我们满载而归.
问题的推广
下面我们换个角度看勾股定理,定理会变成什么样呢?
推广一:勾股定理的不同表述方式
(1)直角三角形斜边长度的平方等于两个直角边长度的平方之和.
(2)直角三角形斜边上的正方形等于直角边上的两个正方形.
(3)直角三角形直角边上两个正方形的面积之和等于斜边上正方形的面积.
推广二:“出入相补”原理的应用
所谓“出入相补”原理,是指一个几何图形(平面的或立体的)被分割成若干部分后,面积或体积的总和保持不变. 综观历史上有关勾股定理的证明方法,许多证法都是利用这一原理进行的,只是图形的分合移补略有不同而已. “出入相补”原理是我国古代数学家发明的一个证明几何图形面积和体积的非常重要的方法,下面,我们通过比较两个证明来说明某些问题.
赵爽和达・芬奇的证明方法(如图2所示):
[图2:勾股定理的两种几何证明]
问题:这两种方法的联系是什么?
解答:如图3所示.
[图3:两种证明的联系]
可以看出,赵爽和达・芬奇对勾股定理的证明都使用了“出入相补”原理. 这两种来自不同时期、不同地域的方法背后有着更本质的联系,正因为这种本质联系,让我们找到了更多类似的证明方法. 它也展示了数学内部的一种联系. 正如韦尔斯在《数学与联想》一书中所说的:“这就是为什么数学强有力的一个理由. 数学家发现,两个表面不同的问题实际上是相同的,因此他只要解决一个也就解决了另一个. 认识到一百万个问题‘实质上’都是相同的,因此,你只要解决一个就解决了一百万个. 事实上,这就是力量!”我们的数学读本,应该多多向学生介绍这方面的内容,让学生感受这种力量,去认识事物之间的联系.
推广三:把直角三角形三边上的正方形改为一般的直线形
若把以直角三角形为边长的正方形改为一般的直线形,勾股定理就推广为:直角三角形斜边上的直线形(任何形状)的面积,等于两条直角边上与它相对应的两个相似的直线形的面积之和(如图4所示).
[图4]
推广四:把直角三角形三边上的直线形改为曲边形
若把直角三角形三边上的相似直线形改为三个半圆,勾股定理就推广为:以斜边为直径的半圆,其面积等于分别以两条直角边为直径所作半圆的面积和. 新课程(人教版八年级下册)在习题中体现了这一推广:(习题18.1“拓展探索”问题11):如图5所示,直角三角形三条边上的三个半圆之间有什么关系?
[图5][2][1]
若把上述斜边上的半圆沿斜边翻一个身,此时显然有“1和2的面积之和等于直角三角形的面积”. 其实这个结论早在公元前479年就已经由古希腊数学家希波克拉底得到,因1和2部分状如弦月,故称“希波克拉底月形”. 新课程(人教版八年级下册)在习题中体现了这一推广(习题18.1“拓展探索”问题12):如图5所示,直角三角形的面积是20,求图中1和2的面积之和.
推广五:勾股定理与费马大定理
勾股定理是直角三角形两直角边的平方和等于斜边的平方,写出公式就是a2+b2=c2. 丢番图的名作《算术》(第2卷问题8)中有一个与勾股定理类似的问题:将一个已知的平方数分为两个平方数. 丢番图在《算术》中以实例形式给出了这一问题的解答. 之所以在此独独提到丢番图的这一问题,是因为,大约16个世纪以后,正是在这一问题的启发下,费马在其旁白处写下了一段边注,从而诞生了一个让整个数学界为之苦思冥想了三百多年的问题. 费马在阅读巴歇校订的丢番图《算术》时,做了如下批注:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,一般地,不可能将一个高于2次的幂写成两个同样次幂的和. 我已找到了一个奇妙的证明,但书边太窄,写不下. ”1670年,费马之子萨谬尔连同其父的批注一起出版了巴歇校订的书的第二版,遂使费马这一猜想公之于世. 费马究竟有没有找到证明已成为数学史上的千古之谜. 从那时起,为了“补出”这条定理的证明,数学家们花费了三个多世纪的心血,直到1994年才由维尔斯给出证明.
推广六:勾股数
不言而喻,所谓勾股数,是指能够构成直角三角形三条边的三个正整数(a,b,c),它们满足a2+b2=c2. 那么如何寻找更多的勾股数呢,方法如下.
1. 任取两个正整数m,n(m>n),那么,a=m2-n2,b=2mn,c=m2+n2构成一组勾股数.
2. 若勾股数组中的某一个数已经确定,可用如下方法确定另两个数:首先观察已知数是奇数还是偶数.
(1)若已知数是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数.
(2)若已知数是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1和加1所得的两个整数与这个偶数构成一组勾股数.
练习题:限于篇幅,仅列一题.
练习题 今有立木,系索其末委地三尺,引索却行去本八尺而索尽,问索长几何?(该题出自南宋杨辉《详解九章算法》,公元1261年)
现代文翻译:有一根直立的木头,一条绳索系在它的顶端. 已知这条绳索比木头长3尺,现在向后紧拉绳索,使它的另一端着地,这时绳索与木的距离为8尺,问这条绳索的长为多少?
原书“术”曰:“以去本自乘,另如委数儿一,所得加委地数而半之,即索长.”
关键词:勾股定理故事自学引导巩固
时钟随着指针的移动嘀嗒在响:“秒”是雄赳赳气昂昂列队行进的兵士,“分”是士官,“小时”是带队冲锋陷阵的骁勇的军官。所以当你百无聊赖、胡思乱想的时候,请记住你掌上有千军万马;你是他们的统帅。检阅他们时,你不妨问问自己——他们是否在战斗中发挥了最大的作用?
——菲·蔡·约翰逊
数学教学实质上是数学思维活动的教学,在数学教学中要充分调动学生的主体作用,注重教学过程,改变被动接受知识的局面,实现课堂教学素质化,才能真正提高课堂教学质量和效率。下面说说我在教学中的做法,通过这个例子来具体地说明数学课上如何提高课堂效率。
课例:《勾股定理的证明》
教学目标:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的。它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一;它揭示了一个直角三角形三条边之间的数量关系;它可以解决直角三角形中关于边的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以便正确地进行运用。
例如,勾股定理证明教学过程中,教师可这样实施:
一、故事引入,激发兴趣
为了激发学生学习勾股定理的兴趣,可以由下列故事引入:三千多年前有个叫商高的人对周公说:把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。
这样引起学生的学习兴趣,激发学生的求知欲。
教师紧接着问:是不是所有的直角三角形都有这个性质呢?
教师要善于激疑,使学生进入乐学状态。这样做将学生的注意力吸引到课堂上来,学生全神贯注地听课,课堂效率得到提高。
二、自学教材,主动探究
教师将教材知识整合,制作成幻灯片,以此指导学生自学教材。通过自学感悟、理解新知,体现了学生的自主学习意识,锻炼了学生主动探究知识的能力,养成了学生良好的自学习惯。
1.通过自主学习,教师设疑或学生提疑。如:怎样证明勾股定理?通过自学,中等以上的学生基本都能掌握,这时能激发学生的表现欲。
2.通过合作探究,引导学生摆脱网格的限制,研究任意直角三角形三边的数量关系。渗透由特殊到一般的思想方法。
3.教师引导学生按照要求进行拼图,观察并分析;(学生每人准备四个大小一样的直角三角形)(1)这两个图形有什么特点?(2)你能写出这两个图形桔黄色部分的面积吗?(3)你得到什么结论?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先由某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
三、巩固练习,强化提高
1.出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生思维疲劳。
例1.某楼房三楼失火,消防员赶来救火,了解到每层楼高3米,消防员取来6.5米长的梯子,梯子的底部离墙基2.5米,请问消防员能否进入三楼灭火?
2.出示例1:学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次进行巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
四、归纳总结,练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
五、课后作业
1.课本第81页1、2、3题。
2.通过报刊、资料或上网查阅中外名人对勾股定理的证明方法以及勾股定理的发展史。
教学反思:本节课教学目标明确,重点突出,注重对知识形成过程的教学。但是在准备这节课时还是不够充分,比如引例比较简单,可以适当增加。在本节课后,我又搜集了一些关于勾股定理的典故,充实本节课的内容。
勾股定理的典故:
1.5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角,之后才渐渐推广。
2.金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来用,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。
3.到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13,他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是都是直角三角形?他搜集了许多例子,结果都对这两个问题作了肯定的回答。他非常高兴,杀了一百头牛来祝贺。以后,西方人就将这个定理称为“毕达哥拉斯定理”。
另外,合作探究和拼图部分给学生留的时间太少,应该给学生足够的时间进行思考,让学生发现问题并解决问题。
证明三:重心定理――三角形顶点到重心的距离等于该顶点对边上中线长的[SX(]2[]3[SX)],要用到的物理知识:根据力矩平衡求合重心.
证法如图2所示,假设在ABC的三个顶点处分别放置一个质量为m的小球,B、C两球的合重心在BC中点的D处,再与A球求合重心,在DA上距A的长度为AD的[SX(]2[]3[SX)]处,结论得证.
2 两点商榷
(1)原文“证明一”所利用的物理知识“力矩平衡”来自于电磁学中的一个结论“闭合的载流线圈在匀强磁场中受的磁场力的力矩为零.”
其中M为线圈受的磁场力矩,S为线圈面积,I为线圈中的电流,B为磁场的磁感应强度,θ为线圈法线与磁感应强度方向的夹角.
(1)式是通过矢量积分得到的,其推导过程(略)中,对磁感应强度B进行正交分解以及所涉及到的三角函数值的计算,都是以勾股定理为前提的数学知识和方法,而原文“证明一”利用(1)式在θ=0时M=0情形来证明勾股定理,说到底走的是“以勾股定理为前提”证明“勾股定理”的循环论证之路,这是推理论证的大忌,当然也是平时教学和研究中应当注意避免的问题之一.
(2)原题“证明三”实际证明的结论是:三角形的一个顶点到分别放置于三角形三个顶点的三个相同质量的小球的合重心的距离等于该顶点所对边上中线长的.而三角形的重心是指三角形三条中线的交点,显然,上述“三个小球的合重心”与“三角形的重心”是两个概念,要证的是后者与顶点的位置关系,而原文“证明三”所证的是前者与顶点的位置关系,实属答非所问.[HJ1.55mm]
三角形三条中线的交点为什么叫三角形的重心?因为它是一个具有数理双重身份的点.从数学上讲,它是三条中线的交点,从物理上讲,它是质量均匀分布的薄板三角形各部分所受重力的合力的作用点,自然又可称为“重心”.
下面从物理的角度应当(也只能从物理角度)证明如上所述的三角形的重心位于三角形三条中线的交点(在此基础上应用数学知识可以证明某一顶点到重心的距离等于对应边上中线长的.
证明如图3所示,将ABC看成由大量紧挨着的平行于BC边的小条(例如图中的小条GH――因条宽极小,小条可看作一线段)组成的.由于三角形薄板质量均匀分布,每一个小条(例如GH)的重心都位于该小条的中点(例如图中的I),根据相似三角形的知识易知(推导过程略),这些点都位于中线AD上,因此,整个三角形的重心也必位于中线AD上.
同理可以证明,ABC的重心必位于中线BE和CF上,由于重心的唯一性,重心只能位于三条中线的交点上.所以,将三角形三条中线的交点称为三角形的重心,当之无愧.
3 一点冷思考
关键词:数学史;学习兴趣;学生课堂
美国数学家魏尔德(R.L.Wilder)认为:数学课堂上只强调数学的技术是不够的,要使学生被数学所吸引,一定要运用数学历史知识。
在课堂教学中适当地引进数学史,能提高数学课堂教学的有效性。主要表现在以下几个方面:
一、激发学生的学习兴趣
夸美纽斯说:“兴趣是创造一个欢乐和文明的教育环境的主要途径之一。”
教师在课堂上介绍数学家的趣闻轶事、数学概念的起源、古今数学方法的简单对比等等,都能起到激发兴趣的作用。即使在课堂上简略提及一个问题的研究者、研究的原因、最早的解法、最后的解法、最大的或最好的解法等等,都能激发学生的兴趣,因为学生对于人物、原因和最佳结果等有着天生的好奇心。
如,在学习命题逻辑的时候,我们可以向学生介绍《唐・吉诃德》中的悖论。像这样的小故事能立刻吸引学生的注意,在后面的学习过程中也会表现出很高的积极性。
这样既拓宽了学生的思路,又有利于帮助学生记忆公式。
二、启发学生的人格成长
古希腊大数学家阿基米德的故事:公元前212年,阿基米德的家乡叙拉古被罗马人攻陷。当时,阿基米德仍在专心致志地研究一个几何问题,丝毫不知死神的临近。当一个罗马士兵走近他时,阿基米德让他走开,不要踩坏了他的图形,罗马小卒残忍地用刺刀杀害了他。
这曾是一个举世震惊的奇迹:一位屈居于6平方米小屋的数学家,借一盏昏暗的煤油灯,伏在床板上,用一支笔耗去了几麻袋的草稿纸,攻克了世界著名数学难题“哥德巴赫猜想”中的“1+2”,创造了摘取这颗数论皇冠上的明珠“1+1”只是一步之遥的辉煌。创造这个奇迹的正是我国著名数学家陈景润。
我们不会相信一个数学故事或一本数学家传记一定会造就一名数学家,但数学家的奋斗经历对学生人格成长的正面启发作用是不可否认的。
三、改变学生的数学观,树立学生的自信心
美国学者Bidwell曾对传统的数学课堂作出了这样的比喻:“在课堂里,我们常常这样看待数学,好像我们是在一个孤岛上学习似的。我们每天一次去岛上学习数学,埋头钻进一个纯粹的、洁净的、逻辑上可靠的、只有清晰线条而没有肮脏角落的书房。学生觉得数学是封闭的、呆板的、冰冷无情的、一切都已发现好了的。”他认为,在教学中融入数学史,可以将学生从数学的孤岛上挽救出来,并将他们安置于一个生机勃勃的新大陆上,这个新大陆包含了开放的、生动活泼的、充满人情味的并且总是饶有趣味的数学。
为什么说数学史可以改变学生的数学观?传统的教学注重的不过是技术而已,学生心目中的数学是枯燥的、是少数人的专好,有些人有数学头脑而另一些人则没有数学头脑。数学远离社会,远离现实生活,学习数学不过是为了考试而已。数学史上的故事足以说明:数学其实是人类的一种文化活动,人人可学,人人可做。
数学家花了几千年的时间才理解了无理数,花了三百年才理解了复数,花了一千年才理解了负数。从伽利略到狄利克雷,数学家一直绞尽脑汁地去理解函数的概念;而牛顿和莱布尼兹尽管是声名显赫的先辈,但他们自己也没有透彻理解微积分的许多概念,数学家们大约经过二百年的努力,方把这些概念弄清楚。那么学生开始时不能很好地理解这些概念,也就不致感到迷惘;相反,将会更加信心百倍地继续学下去。
法布尔可以精通代数学,林肯可以精通几何学,拿破仑和加菲尔德可以做数学,这些历史名人的数学轶事告诉我们:数学其实是人类的一种文化活动,它不是少数人的专好,而是人人可学、人人可做,尽管并非人人都有数学家的才能。这就像篮球一样,人人可打,却并非人人都有运动员的天赋。另一方面,司汤达的学习经历告诉我们:人们在学习数学的过程中难免会遇到这样那样的困难和挫折,没有必要为此而灰心丧气。面对学生,可试试用类似的名人轶事来改变一下学生错误的数学观,增强他们学习数学的积极性和自信心。
四、拓宽学生的视野
不同时空的数学家往往会做出同样的数学发现,一个概念、定义、定理、公式当然不会仅仅局限于课本中的某一种思想方法。拥有数学教材中有关概念、定理、思想方法产生和发展的历史知识,无疑会大大拓宽我们的视野,进而丰富和提升我们的课堂教学。
等比数列求和的例子:
约在公元前3000年,巴比伦人就已经总结出等比数列1,2,22…,29的求和公式。意大利有钉子问题,古埃及有贮藏室问题,我国的《孙子算经》里也有类似的题目。根据前人计算的一些方法总结,我们可以得到等比数列求和公式的一些证明方法:
历史上许许多多精彩的思想方法被排斥于我们的教材之外。了解历史之后,我们当然不能说教材上的“错位相减法”是唯一适合于课堂教学的方法,但在历史方法的对比中,学生开阔了视野,在不知不觉中还学会了欣赏数学。实际上,类似的例子比比皆是。如被开普勒誉为几何学两大法宝之一的勾股定理,古代中国、希腊、印度、阿拉伯以及近现代欧洲都有证明,毕达哥拉斯、欧几里得、赵爽、刘徽等人的证明都完全可以引入课堂教学。用数学问题的历史上的解法与课堂上学生自己的解法进行比较,会产生很好的效果。
五、了解多元文化的数学
数学从来不是某一个国家、民族或个人的专利,每一种文化都有其自己的数学。数学历史让学生了解到不同文化背景下的数学思想,从而理解数学的多元文化意义。
多元文化视野中的勾股定理证明方法:
古巴比伦时期(公元前1900―1600年),数学泥版文献中的一些几何或代数问题表明:勾股定理早在公元前两千年就已在两河流域文明中得到了广泛应用。在西方文献中,勾股定理一直以古希腊哲学家毕达哥拉斯的名字来命名,但迄今并没有毕达哥拉斯发现和证明勾股定理的直接证据。在希腊数学中,关于勾股定理的明确证明见于欧几里得的《几何原本》。
由于《几何原本》的广泛流传,欧几里得的证明是勾股定理所有证明中最为著名的,希腊人称之为“已婚妇女的定理”;法国人称之为“驴桥问题”;阿拉伯人称之为“新娘图”“新娘的坐椅”;在欧洲,又有人称之为“孔雀的尾巴”或“大风车”。
在中国古代,勾股定理的特例以及一般情形的叙述见于公元前2世纪成书的天文数学著作《周髀算经》。公元3世纪,赵爽和刘徽分别对勾股定理作出证明,他们运用的都是出入相补原理。
勾股定理的证明层出不穷,至今已多达近四百种。历史告诉我们:数学是全人类共同的遗产,不同文化背景下的数学思想、数学创造都是根深叶茂的世界数学之树不可分割的一枝。
当我们把多元文化引入数学课堂时,我们会发现“谁比谁早多少年”已经不是最重要的,最重要的是:这会让我们的学生消除民族中心主义的偏见,以更宽阔的视野去认识古代文明的数学成就,并学会欣赏丰富多彩的数学文化。
参考文献:
[1]林克涌.让数学文化走进课堂[J].数学通报,2007(12).
[2]朱哲.“等比数列前n项和”教学设计及其分析[J].中学教研,2003(7).
为使学生学好当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识。
二、教材内容分析
本学期数学内容包括第一章《勾股定理》、第二章《实数》,第三章《图形的平移与旋转》,第四章《四边形性质探索》,第五章《位置的确定》,第六章《一次函数》,第七章《二元一次方程组》,第八章《数据的代表》。
第一章《勾股定理》的主要内容是勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。
第二章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。
第三章《图形的平移与旋转》主要内容是生活中一些简单几何图形的平移和旋转。简单几何图形的平移是本章教学的重点,简单图案的设计是本章的难点。
第四章《四边形性质探索》的主要内容是四边形的有关概念、几种特殊的四边形(平行四边形、矩形、菱形、正方形、梯形)的性质和判定以及三角形、梯形的中位线,其中几种特殊四边形的性质和判定是本章教学的重点,推理证明是本章的难点。
第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。
第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。
第八章《数据的代表》主要讲述平均数和中位数、众数的概念,会求平均数和能找出中位数及众数。
三、学生情况分析:
初二(1)班共有学生44人,从上学期期未统计成绩分析,及格人数分别为5人,优秀人数分别为0人,与其他几个平行班比较,优秀生及格生都少,另外这两个班的学生中成绩特别差的比较多,成绩提高的难度较大。在这样一个以少数民族为主的学生群体中,学生的数学基础和空间思维能力普遍较差,大部分学生的解题能力十分弱,特别是几何题目,很大一部分学生做起来都很吃力。从上学期期末统测成绩来看,成绩最好是78分,差的只有几分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到70多分每个分数段的人数都差不多,这就给教学带来不利因素。
四、教学目标
1、正确理解二次根式的概念,掌握二次根式的基本运算,并能熟练地进行二次根式的化简。
2、掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。掌握二次根式
3、理解四边形及有关概念,掌握几种特殊四边形的性质定理及判定。
4、理解相似一次函数的概念,掌握一次函数的图像和表达式,学会用一次函数解决一些实际问题。
五、教学措施及方法
1、成立学习小组,实行组内帮辅和小组间竞争,增强学生学习的信心及自学能力。
2、注重双基和学法指导。
3、积极应用尝试教学法及其他新的教学方法和先进的教学手段。
4、多听听课,向其它老师借签学习一些优秀的教学方法和教学技巧。
六、本学期教学进度计划
第一周:第一章《勾股定理》
第二周:第二章《实数》
第三周:第二章《实数》的复习和第三章《图形的平移与旋转》
第四、五周:第四章《四边形性质探索》。
第六周:第五章《位置的确定》。
第七周:第六章《一次函数》,介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。
第九周:第八章《数据的代表》和总复习。
第十周:综合复习和训练。
一、现实生活问题人为构造痕迹很重
数学与生活的联系是十分紧密的,不管如何改革,数学教学中包含生活问题是不可避免的,也是很有必要的。而正是因为这样,现实生活中的问题被老师们当做家常便饭了,每一节数学课都要用,用当然无可厚非,但问题是小学、初中的数学知识在生活中有显性体现的毕竟是少数,比如初等数论中的许多知识,平面几何中的许多定理,等等。所以,时间久了,老师们也想不出还有什么新的生活问题情境了。这种情况下,人为构造开始了。
例如,在“全等三角形的判定”中,有很多老师用过这样的问题情境:有一块三角形的玻璃被打破成如图1所示的两块,如果要到玻璃店去照原样配一块,要不要把两块都带去?
教师的设计意图很明显,通过这个问题,引导学生们学习或者是应用角边角定理(ASA)。那么,很明显,带(B)块碎玻璃去即可(如图2)。这看起来似乎是很完美的问题,教师自我感觉肯定很好。
其实不然。如果我们到大街小巷去逛一圈就会发现问题。哪里有三角形的玻璃?反过头来一想,也是,三角形的玻璃三个角很容易让人受伤,为了安全起见,当然得少用。另外,有过打破玻璃经历的人都知道,生活中,如果谁家的窗户玻璃坏了,有哪个会带着其中的碎玻璃去玻璃店呢?那多麻烦!一般都是请木工师傅或者专门的维修人员处理。他们带来卷尺测量一下,然后到玻璃店直接划一块,再帮你装好所以,仔细一想就知道,上述问题情境很有可能是杜撰的。孩子们又怎么会相信呢?
实际上,全等三角形的判定,应该是数学自身逻辑发展的产物,而不会是生活需要的结果。人们绝对不会由于生活中要判定两个三角形是否全等而一一发现SSS、AAS、ASA等,而应该是为了追求数学的简洁,少用一点元素(按照全等三角形定义,要把6个对应元素都做对比)就能解决数学问题。这一点从教材中也可以看出。人教版八上在用定义判定两个三角形全等后,用这样一句转折的话引出判定定理:“如果ABC和A′B′C′满足上述六个条件中的一部分,那么能否保证ABC和A′B′C′全等呢?”这正是数学简洁性的体现。
所以,教学这类由数学自身的需要而发展起来的数学知识,在没有很好的生活问题的情况下,教师完全可以从数学的自身发展需要角度向学生提出问题。学生也愿意解答。谁不想把事情变得简洁明了一点呢?这就是数学的性质与人的天性统一的地方。
二、数学史问题关注太少
正是由于老师们都去关注生活问题情境,以致丰富的数学历史资源无人问津。实际上,教师适当介绍数学史,可以让学生正确、全面地了解知识的产生过程,了解一些国内外著名数学家探索数学问题的艰辛历程和所取得的辉煌成就,能对学生进行数学理性精神的熏陶,激发学生的学习兴趣。
比如,教学勾股定理的时候,我们可向学生讲解古希腊毕达哥拉斯学派的故事,以及“万物皆数”的信条。而正是勾股定理的发现,直接导致了数学史上的第一次危机。同时,勾股定理发展到今天,据说已经有几百种证明方法,这是一笔多么宝贵的财富!因此,教师还可向学生展示历史上勾股定理的经典证法,并告诉学生我国古代数学家(如杨辉)在勾股定理证明方面作出的巨大贡献。学生的民族自豪感自然会得到加强。
此外,历史上的数学名题层出不穷,而且它们的提出都非常真实自然。相比之下,课本上提供的问题或多或少显得枯燥、刻板,有明显的人为痕迹。课堂上利用数学名题进行教学,会使学生感到自然、亲切,有利于激起学生学习数学的积极性,加深对数学知识的理解。
比如《算法统宗》中的“三女归宁”:张家有3个女儿,长女3日回家一次,次女5日回家一次,三女7日回家一次,她们同一天离家,问几日后又同时到家相会?
“群羊逐草”:甲赶羊群逐草茂,乙携肥羊一只随其后,戏问甲及一百否?甲云所说无差谬。若得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁参透?