期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 通信的可靠性

通信的可靠性精品(七篇)

时间:2023-06-12 16:00:08

通信的可靠性

通信的可靠性篇(1)

本文作者:刘科许洪华工作单位:苏州市职业大学电子信息工程系

工业无线通信调度工业无线通信中一般采用时分多址(TimeDivisionMul-tipleAccess,TDMA)调度方式,通信调度周期分为多个时隙(TimeSlot,TS),通信节点依次进行数据交互。基于TDMA的多跳通信中,实时性要求更具有挑战。传统的有线通信和点对点通信中需要1个时隙情况,n跳端到端通信至少需要n个时隙,相应地,重传也需要更多时隙。在端到端时隙数约束下,时隙分配成为工业多跳无线通信重要的资源调度方法。工业无线通信中一般采用跳-跳重传方式。网络调度器为每个节点分配固定次数的重传时隙,以超帧形式下载到各个通信节点。如前所述,现有的工业无线系统一般是根据实时性约束等,为每跳平均分配重传时隙。2.2重传提高可靠性原理考虑基于TDMA调度中子链路Li上通信情况。设每个时隙中Li只传输数据报和相应的确认信息。由于确认信息数据帧较短,在数据报传输后立即接收,一般不考虑数据报传输成功而确认信息传输失败情况。此时,子链路Li上通信可以用图1所示的二维马尔可夫链描述[5]。图1子链路通信二维马尔可夫链图1中,Gi表示通信成功状态,qGi和pGi分别表示上一个时隙通信成功时,本次通信成功和失败的概率,Bi表示通信失败状态,qBi和pBi分别表示上一个时隙通信失败时情况。在考虑外界随机干扰的情况下,有qGi=qBi=qi,pGi=pBi=pi=(1-qi),此时,Li上通信情况符合贝努力概型,用di表示分配给Li子链路的时隙数目(包括重传时隙数目),记Ri为其通信成功概率,有:Ri(qi,di)=1-∏dij=1(1-qi)(1)显然,1-qi<1,随着di增加,通信可靠性Ri增大。2.3冗余路由提高可靠性原理为进一步提高链路可靠性,工业无线通信中可以利用邻居节点协作重传,构成冗余路由。图3为典型冗余路由形式。r1为冗余中继,当n0到通信失败时(如无视距路径、n1处持续强干扰、n1故障等),启用n0r1n2路由,以提高端到端可靠性。图2中,L11、L12为主链路中子链路,设其通信成功概率为q1和q2;L11、L12为冗余路由中子链路,设其通信成功概率为q11和q12;设R(n0|n2)表示节点n0到节点n2的通信成功概率,则R(n0|n2)=q1q2+(1-q1)q11q12(2)显然,R(n0|n2)>q1q2,有冗余路由情况提高了链路可靠性。考虑重传时隙时,可由(1)式计算各个子链路通信成功概率,代入(2)式,可计算端到端可靠性。

工业无线通信链路可靠性建模不失一般性,考虑N+1个节点组成的N跳链路,用N=n0,n1….n{}N表示链路节点,其中,n0表示源节点,nN表示目的节点,Li表示节点ni-1和ni之间的子链路,i∈{1,2,…}N。多跳无线通信链路如图3所示。如2.2节所述,由式(1)可以计算多跳链路中每个子链路通信成功概率Ri。对于N跳链路,用D={d0,d1….dN}表示链路时隙分配,用Q={q0,q1….qN}表示各子链路可靠性情况,则整条链路的可靠性表示为:R(Q,D)=∏Ni=1Ri(qi,di)(3)通过工业认知无线电技术可以实时感知通信信道信噪比等,从而获得各子链路通信可靠性情况[6][7]。由于工业现场实时通信周期短,可认为感知的链路可靠性Q在通信周期内不变,此时有:R(D)=∏Ni=1Ri(di)(4)工业无线通信链路可靠性优化工业无线通信链路可靠性优化即是最大化(4)式。考虑工业通信实时性约束,设从源节点n0到目的节点nN允许的最大时延为D个时隙,则最大化通信可靠性表示为:MAXDRs.t.∑Ni=1di{=D(5)式(5)优化问题可以采用非线性整数规划问题求解方法,从而为每个子链路分配时隙,在D个时隙时间内实现链路端到端可靠性最大化,但一般计算量大,难以应用于现场仪表实时通信中。以下通过转化,寻求易于应用的求解方法。定义3.1:定义子链路增益函数Ki(di)=Ri(di+1)/Ri(di),其含义表示当前子链路Li上分配的时隙数量为di,若再多分配1个时隙,子链路的可靠性增益。引理3.1:Ki(di)是di的减函数。证明:Ki(di)=Ri+(1-Ri)RiRi=2-Ri,同理Ki(di+1)=2-Ri+(1-Ri[)R]i=2-2Ri+R2iKi(di+1)-Ki(di)=Ri(Ri-1)<0命题得证。定理3.1:重传时隙分配过程中,每个时隙分配给Ki(di)最大的子链路,则链路可靠性最大。证明:对于N+1个节点的N跳路由,假设允许的最大时延为D个时隙,那么就有m=D-N个可再分配的重传时隙。考虑Q在通信周期内不变,由式(2)和定义3.1,链路可靠性可表示为:R(D)=∏Ni=1Ri(1)∏Ni=1∏di-1j=1Ri(1)Ki(j)(4)即R(D)=f(Ki(j))链路中各子链路增益函数可有mN个可能的取值,m个重传时隙分配对应m个Ki(j)。重传时隙实际分配中,每个子链路j从1到di递增,而Ki(di)是di的减函数,所以分配中Ki(j)满足递减。分配重传时隙时,取i=argmaxi=1,2…NKi(j),m个重传时隙分配过程对应着依次选取子链路增益函数mN个可能值中前m个最大值的过程,故R(D)=f(Ki(j))最大,命题得证。基于定理3.1,原资源分配问题可以转化为如下方法进行求解:1)为每一个子链路分配1个时隙作为初始值,既取D(0)=[1,1…1];2)取1个重传时隙进行分配,遍历每个子链路,计算每个子链路的增益函数值Ki(di);3)搜索增益函数值Ki(di)最大的子链路n*,该子链路时隙分配值加1;4)所有重传时隙分配完毕,则输出最终时隙分配结果D=[d1,d2…di];否则转2)步。利用该结果和信道感知情况,应用式(1)可以进一步计算每个子链路的可靠性,根据式(2)可以计算整个链路的可靠性。在工业无线系统中,由网络调度器以超帧形式,下传该结果到链路,从而实现链路优化。3.3有冗余路由情况有冗余路由的多跳无线通信链路如图4所示。图4有冗余路由的多跳无线通信链路通信调度上,主链路仍然基于传统的TDMA,但重传时隙为(D-2N)。当ni节点重传时隙耗尽仍不能成功通信时,启用冗余路由niri+1ni+2,数据从ni传送到ni+2。主链路采用前述方法优化分配时隙,Li1和Li2子链路使用Li+1子链路的时隙向ni+1传送数据,视为2跳链路进行重传时隙优化方法分配。设R(ni|nj)表示节点i到节点j的通信成功概率,可按如下方法求取链路可靠性:R(nN-1|nN)=RLNR(nN-2|nN)=RLN-1R(nN-1|nN)+(1-RLN-1)RLN1RLN2R(nN-3|nN)=RLN-2R(nN-2|nN)+(1-RLN-2)RL(N-2)1RL(N-2)2R(nN-1|nN)……R(n0|nN)=RL1R(n1|nN)+(1-RL1)RL11RL12R(n2|nN)当然,利用无线信道的广播特性,可以在主链路上节点nm(m∈(0,1,…,N-1))发起通信时,nm+1和rm+1同步接收,nm+1接收失败时,由rm+1将数据传送给nm+2;也可以设计为nm+2同时接收nm+1和rm+1数据,采用最大比拟合,可以进一步提高链路可靠性。这些方案会增加冗余路由节点时隙和能耗开销,对现场节点时钟同步等要求较高,与传统的TD-MA方式兼容也存在困难,在此不作进一步讨论。4数值仿真研究工厂环境无线信道一般近似为瑞利衰落[7]。仿真条件中设链路信道衰落服从瑞利分布,取σ=0.2瑞利序列作为各子链路一次通信失败概率,依次取N=1~19,即选取子链路数目为1~19情况。在Matlab中对平均分配时隙和优化分配时隙情况进行数值仿真。图5为D=3N时1000次数值仿真统计情况。图中可见,优化分配方法较平均分配时隙明显提高链路可靠性。在子链路L5、L10、L15施加干扰(失败概率增加30%)时,优化分配方法仍然有较好的可靠性。图6为N=19时,D=57时(对应平均分配时隙中每子链路3个时隙的典型情况),时隙分配情况统计,可见,优化算法能够将有限的时隙分配给信道质量较差的子链路,具有较好的链路自适应能力,避免形成通信瓶颈;图7中研究算法随重传时隙增加时可靠性情况,在图6基础上增加时隙,优化算法取D=19~95,平均分配取D=19、38、57、72、95(对应0、1、2、3、4次重传),分别进行1000次仿真统计平均。可见,优化分配方案在D=19~72时,即无重传到3次重传都可比较明显提高链路可靠性,覆盖了典型通信情况。在图5仿真条件下,对有冗余路由情况进行数值仿真。图8为1000次数值仿真统计情况,与图5比较,一方面,可图7多跳链路时隙分配统计见有冗余路由的多跳无线通信链路较明显改善了可靠性;另一方面,平均分配时隙、优化分配时隙及对应的有无干扰情况,与图5有类似结论,可见优化方法对有冗余路由情况也可以进一步提高链路可靠性。图8有冗余路由的1~19跳链路可靠性仿真

本文在传统的工业无线通信调度模式下,通过优化重传,提高了工业多跳无线通信链路可靠性。应用中,将优化的时隙分配结果以超帧形式下载到各个节点即可,具有应用价值。对无冗余路由情况链路重传优化,实际是对链路进行了时域上优化;对于有冗余路由的多跳链路重传优化,实际是对链路时域和空域资源调度优化。随着工业认知无线电理论和技术发展,以及现场仪表通信能力和数据处理能力提高,诸如频域、码域、功率域等多域资源均可以在通信中得到协同优化,从而可以进一步提高链路通信可靠性,为工业无线技术应用推广提供基础和空间。

通信的可靠性篇(2)

【关键词】航空;设备;可靠性;技术

1引言

随着我国整体科学技术的不断发展,以及近年来在航天事业上的巨大发展,在航天产业中具备极大影响的电子通信设备其可靠性越发的受到人们的重视。目前众多的电子通信生产企业在其生产理念上,已经逐渐建立起了以切实检验手段来进行产品质量保障的体系,可靠性、质量已经成为设备使用者的最重要的关注点。在此背景下,论文围绕航空电子通信设备的可靠性,分三部分展开了细致的分析探讨,旨在提供一些该方面的理论参考,以下是具体内容。

2航空电子通信设备可靠性设计的重要意义

2.1是通信电子设备使用寿命的直接影响因素

首先基于航空事业其本身的特点,往往使用的周期很长,这也就要求航空电子设备具备很长的使用周期。而电子通信设备的可靠性设计便是电子通信设备使用寿命的最直接影响因素。从整体上观察,电子通信设备的设计、安装以及使用和后期的维修过程,可靠性都参与其中,因此也可以说目前在通信电子设备设计上可靠性已经成为一个设计的重点所在。

2.2是信息时代人们对电子通信设备的基本需求

随着我国科学技术的整体抬头,目前市场上的电子通信设备也越发的多元化和多样化。而随着通信电子设备数量的增多,在航空事业方面对通信电子设备的选择要求也就相应提升,除了要求通信电子设备满足基本的通信功能之外,在使用感受以及可靠性等方面,也提出了更多的要求,因此航空通信电子设备的可靠性设计是时代背景下的一个客观要求。

3航空电子通信设备可靠性的主要影响因素

3.1制造技术及制造条件的影响

在航空电子通信设备可靠性方面的影响因素,首先便是生产航空电子通信设备的制造技术以及制造的条件。就目前的航空电子通信设备发展趋势进行观察,便捷化、智能化以及多功能化是未来的发展趋势,而要实现这一趋势就必须在航空电子通信设备的生产环节,保障一个良好完整的生产体系。目前存在着一部分生产厂家,在生产中并不具备完备的生产的条件,进而难以保障航空电子通信设备的生产质量,在可靠性方面就会存在一定不确定性。

3.2恶劣天气的影响

因为航空电子通信设备的使用往往位于外界,而地球的环境十分多变,在太空更是会受到诸多的宇宙因素影响。雷电天气、雨雪天气等都会对航空电子通信设备产生一定干扰和破坏,影响设备的正常工作状态,而这些因素便会对航空电子通信设备的可靠性产生一定的影响。3.3外界电磁的影响航空电子通信设备在使用原理上,电磁波是其最为主要的一环,但是在航空电子通信设备使用时常常会受到一些外界电磁的影响。地球本身就是一个巨大的磁场,而这些电磁场中的电磁波所产生的辐射,便会对航空电子通信设备的正常工作产生一定的影响,进而对航空电子通信设备的可靠性造成了影响。

4保障航空电子通信设备的可靠性措施

4.1不断优化、简化电子线路

不断进行航空电子通信设备电子线路的优化和简化,便可以极大化的减少外界磁场对航空电子通信设备可靠性的影响。而在航空电子通信设备可靠性设计时,必须在满足基本的航空电子通信设备功能以及质量的基础上,通过不断地进行技术创新,实现制造流程的优化,从而达到航空电子通信设备电子线路的简化和优化,具体而言可以从以下几个方面入手:①在元器件的使用通道设计上,可以设计为几个元器件共同使用一个通道,进而实现线路通道的减少[1];②在元器件的使用数量上,可在保障基本功能之上,通过技术创新,尽可能减少对元器件的使用数量;③在设备组成上,尽可能使用软件对硬件进行代替;④对于设备中的一些模拟电路可使用数字电路进行代替。但在整体的线路简化、优化的过程中必须注意,不能为了最大化的简化路线,而导致元器件在使用过程中出现集成电路板被过载烧坏的现象,更不能将一些成熟性不足的技术和设计方案使用到航空电子通信设备电子线路的优化和简化中。

4.2深化低耗功率设计

目前在航空电子通信设备可靠性提升设计方面,低耗功率设计已经得到了一定的应用,但是从整体上进行观察,低耗功率设计还有很大的进一步深化空间,因此在提升航空电子通信设备可靠性方面,可以进一步对低耗功率设计进行深化。从航空电子通信设备性能上进行观察,航空电子通信设备正逐渐朝着高密度化以及微型化的方向发展,而这一趋势直接导致了航空电子通信设备中元器件数量的增多以及集成电路在能耗方面的提升,进而在航空电子通信设备的使用过程中持续发热的现象越发凸显,而这一问题就可能会导致,航空电子通信设备使用可靠性受到影响。因此在目前已有的低耗功率设计基础上,还需要进一步深化低耗功率设计,保护航空电子通信设备电路安全,也提升航空电子通信设备的可靠性[2]。

4.3依托维修性设计提升设备可靠性

除了设计制造环节提升航空电子通信设备可靠性之外,面对航空电子通信设备机械化工作环境和恶劣天气导致的航空电子通信设备损坏,还需要通过维修性设计,在航空电子通信设备的后期使用上提升其可靠性。具体而言,航空电子通信设备的制作人员必须保障航空电子通信设备在故障出现后的检查和拆卸十分方便;此外对于航空电子通信设备的一些元器件必须是可以在市场上买到的,不能大量使用一些不再生产和使用的元器件。

5结语

综上所述,随着我国航天事业的整体抬头,以及通信电子设备的不断多元化和多样化,人们逐渐对通信电子设备的可靠性提出了新的要求,而通信电子设备的可靠性设计本身,也直接对通信电子设备的使用寿命产生影响,也是时代背景下的一种必然要求。航空电子通信设备可靠性方面,制造技术及制造条件、机械化工作环境、恶劣天气、外界电磁都会对其产生影响,基于这些影响因素以及结合航空电子通信设备的特殊性,不断优化、简化电子线路、深化低耗功率设计、依托于维修性设计提升设备可靠性是切实有效保障航空电子通信设备可靠性的具体措施,值得相关企业充分合理地参考使用。

【参考文献】

【1】潘庆国.基于Labwindows/CVI的某型通信控制盒测试系统的设计与实现[D].成都:电子科技大学,2014.

通信的可靠性篇(3)

[关键词]卫星通信设备;可靠性分析

中图分类号:TM743 文献标识码:A 文章编号:1009-914X(2015)17-0321-01

随着通信设备越来越先进,集成度越来越高,其对温度、湿度等方面的要求也越来越严格,所以为确保通信设备的正常稳定运行,便需要了解影响卫星通信设备正常稳定运行的环境因素,并采取有效措施减少环境的影响,提高卫星通信设备的可靠性。

1 卫星通信设备的可靠性

卫星通信作为现在应用相对广泛的信号传输方式,它具有覆盖广、通信容量大、通信距离远、质量优、不受地理环境限制等优点。由于卫星通信突出的通信特性,其近些年在中国的各个领域得到广泛使用,成为我国现代远距离通信不可替代的一种通信方式。不少企事业单位和公共场所安装了卫星通信设备,一些个人用户也越来越多,这使得卫星通信设备越来越普遍。不同的环境对卫星通信设备的使用性能和寿命影响巨大。对卫星通信设备的主要维护在于系统中的地球站。地球站也叫上行站,是卫星通信的重要环节,其主要任务向卫星发送信号和接收卫星发回的信号。地球站的核心设备是大功率发射机,是卫星信号传输和发射设备,保障其运行稳定、安全可靠,是整个工作的中心。高功放就是一种高频、高压、高能量设备,自身散热大,需要对其进行严密的监控,并使其处于良好的运行环境,才能确保其运行稳定可靠,并延长设备的使用寿命。另外一些卫星通信设备,如电力互投柜、服务器、交换机和其它辅助设备,种类多,性能差异大,因而对机房环境要求格外严格,不仅要严格遵守卫星通信机房选址要求,还要对机房内部运行环境进行严格控制,以便保障设备运行可靠稳定。

2 卫星通信设备运行的影响因素

2.1 温度对卫星通信设备可靠性的影响

所有通信设备根据自身特性都有其适合的运行温度,温度也是我们最常用的一种衡量环境的参数。由于卫星通信设备的多样性,各个设备最佳运行温度不一样,取其都适合的温度,所以对机房温度要求比较高。设备运行环境温度较高时容易造成设备散热缓慢,部件老化加快,从而造成设备运行负荷变大,性能降低,影响电路的运行,造成元器件的不稳定或者损坏。

2.2 湿度对卫星通信设备可靠性的影响

湿度是设备运行的又一个基本指标,也是衡量卫星通信设备运行环境的重要参数。设备运行于高湿度环境,空气中水汽大,容易造成设备金属部件锈蚀,降低电路板和线缆的绝缘性,出现结露等现象时还会造成设备打火或电路短路等。设备运行于低湿度环境,空气中水汽小,容易产生尘土,从而形成静电浮尘,严重时会造成电路短路。

2.3 气压对卫星通信设备可靠性的影响

气压同样对卫星通信设备运行有很大影响。例如机房中的主要设备为高功率发射机(高功放),其设计本身自带风机冷却。但机房由于洁净度以及其他的要求,机房设计通常处于密封的状态下,同时自带新风系统为室内更换空气,保障室内有新鲜空气进入。经济成本设计,采用小功率空调又不能完全实现室内温度改善,所以高功放出口热风通过排风管道直接排到室外,这就形成了室内外的空气流动。新风系统的进风和高功放的出风要处于一个相对平衡状态,才能维持通信设备运行环境的稳定,保障高功放的可靠运行,这时气压的数据值便十分重要了。

3 维持卫星通信设备运行可靠性

3.1 对卫星通信设备的温度控制

卫星通信设备运行环境温度的高低与恒定,会影响卫星设备运行的稳定性和设备的使用寿命。就目前来说,安装空调是一种效果好且普遍的环境调节方法。而具体的温度值控制,是随着季节变更、昼夜交替而改变的。通常在监控卫星通信设备的温度时,使用温度传感器测量敏感元件表面的温度。影响温度变化最重要的因素是空调和新风系统,外部环境对室内温度影响不明显。卫星通信机房的应该加强空调和新风系统的监控和调节,保障室内温度正常稳定。另外,室内空调的温度设置很重要,一般设定一个适当值,并使处于自动模式,便于自动调节冷热, 保持良好环境,利于室内设备运行。

3.2 对卫星通信设备的湿度控制

保持机房适当的湿度非常重要,通常采用在机房内部增加加湿器或抽湿机的方法来实现卫星通信机房的相对湿度保持标准恒定。在保持卫星通信设备的湿度控制的同时,也要重视机房洁净度的维持,否则保持机房适当湿度的功效便会大打折扣。这是由于机房中的灰尘太多,容易在通信设备内部电路板上积蓄,电路板上积蓄灰尘容易降低电子元器件的绝缘性,严重时还会形成静电浮尘,造成器件击穿或电路短路。保持机房洁净度的常见做法便是密封机房,并安排工作人员定期维护。湿度受室外气候影响巨大,这是由于小室为半内循环模式,既有一部分空气通过外部新风系统提供,另一部分自我循环。机房内部需设置湿度调节装置,保持室内湿度恒定,减小室外影响,保障设备正常运行。另外,湿度作为卫星机房环境监测的重要参数,需要设置告警门限。这个需要根据机房地理位置调节,最好经过长时间观察记录和总结分析,得到本地机房运行环境的平均值,根据这个平均值和设备环境来设置告警门限,并且在恶劣天气时要加强温湿度监控,适当手动调节门限,协调告警。

3.3 对卫星通信设备的气压控制

气压在卫星通信设备运行环境中也有一定要求。气压的高低直接反应卫星通信设备运行环境的正负压状态。气压作用于设备风冷效率的高低,散热能力的大小,间接影响着设备运行的稳定性和使用寿命。在控制卫星通信设备的气压时,通常使用气压传感器测量气体的绝对压强。气压无时无刻不在变化,对于卫星通信设备来说,掌握每天的气压变化和全年的气压变化有利于调节室内逊风量和改善设备运行环境。不然,室内空气流量少、气压低或环境温度过高都会导致设备故障报警。这就要求保障环境温湿度的同时,空气的流通量也就是室内气压也要有一定要求。

4. 结语

卫星通信设备的可靠性分析主要是针对环境因素。本文主要分析温度、湿度和气压因素对卫星通信设备可靠性的影响以及增强设备可靠性的措施。但除了温度、湿度和气压的监测外,还可以扩展到对所有辅助设备的监测,这需要建立卫星通信设备运行环境的网络监控管理系统,来维持卫星通信设备的正常运行,提高可靠性。

参考文献

[1] 陈淑娟.基于D-S证据理论的多传感器数据融合危险预警系统.北京化工大学.2010.11-12

通信的可靠性篇(4)

【关键词】通信电源 运行 可靠性

1 概述

目前,安全稳定控制系统、调度自动化系统和电力专用通信系统已经成为现代电网不可缺少的三大支柱,其中,通信系统又是其中的基础和保证。通信系统对通信电源的基本要求是可靠、稳定、高效,目前,随着通信设备近几年的快速发展及通信理念的不断进步,在系统设计时设备采用冗余配置,通道部分采用双路或环路结构,发生故障往往是局部性的,可控的,但通信电源发生故障将会造成全局通信中断和瘫痪。所以必须加强通信电源设备的运行及维护。

2 通信电源直流供电系统的组成及供电方式

目前我国的通信直流供电系统中,广泛使用的一次电源采用整流器、交直流配电部分和控制器组成,同时和蓄电池、系统接地构成不间断直流电源供电系统。高频开关整流输出的直流电压通过直流配电部分,连接到蓄电池和通信网,构成整流器与蓄电池组并联向通信设备供电的全浮充供电系统。交流供电正常时,整流器输出的电压供给通信设备,并对蓄电池组进行浮充充电,保持蓄电池的容量。当交流供电中断时,整流器停止工作,由蓄电池向通信设备供电。交流供电恢复后,又由整流器向通信设备供电,同时对蓄电池进行补充充电,然后转为浮充状态。

3 蓄电池浮充电压的选择

通信电源中的蓄电池大多采用全浮充制供电方式,这样可以使电池经常处于充电状态,抑制和补充电池自放电所引起的容量损失,从而保证蓄电池有充足的容量储备。

浮充电压的确定,应以能抑制蓄电池的自放电,并及时补充自放电造成的容量损失为依据,依据我国通信行业标准YD/T799-2002《通信用阀控式密封铅酸蓄电池》中规定:“蓄电池浮充电单体电压为2.20∽2.27V(25℃)”“蓄电池均充电单体电压为2.30∽2.35(25℃)”。考虑到蓄电池个体差异及、负载及市电的波动,在规定温度下(一般10℃∽30℃,最好20℃±5℃)取2.23V×24节=53.5V,而在均充中,取2.35×24节=56.4V。根据我们的实践经验,单只电池的浮充电压为2.23 伏时,电池即可获得足够的补充充电电流,从而保证有足够的储备容量。

在实际应用中,往往根据产品设计参数选择合适的浮充/均充电压,过高的浮充电压将加剧正极板板栅的腐蚀,并可能使蓄电池排气频繁、失水、温度升高,从而缩短电池的使用寿命。

4 通信电源系统的运行方式

4.1 通信电源系统的构成

现在成熟的通信系统其一次电源均采用两套独立的架构构成,即独立的市电(或油机发电、太阳能等)、独立的充电屏、独立的负载屏,提供给通信设备1+1的电源保护,但二次电源的保护容易忽略,在发生通信电源故障的时候,单路电源进入通信设备迫使其中的1路二次电源模块满负荷运行,无法起到二次模块的热备用/或均流的效果,一般有两种解决办法。

(1)在通信设备的一次电源输入端加装均流模块,利用二极管的隔离作用,在一路一次电源失电时,另一路一次电源能够保障通信设备两路二次电源的运行。

(2)在两个独立的负载屏(或二路独立电源安装在一个负载屏)之间加装均流模块,可以起到同样的效果。

4.2 二次下电技术

二次下电,是指在极端情况下(电源故障或停电等),为保证重要通道(用户)的设备运行,依据事先设定的参数,在蓄电池组放电过程中,先期退出部分次要用户,延长主设备的运行时间,并在电池电压下降到保护电压时,停止蓄电池的放电,以保护蓄电池组。这种两级断开负载的动作和措施即为二次下电。

4.3 隔离变压器技术

现代通信为实现多样化,在光纤通信普及的今天,仍然保留部分微波通信、载波通信等传统方式,微波站地处高山,易遭雷击,采用三相四线制供电一方面造成微波站铁塔雷击通过地线(零线)传导到供电一方,另一方面供电方发生电源故障(比如单相短路或故障)其地位的变化也会对微波站的通信设备造成反击,由于微波站地处偏僻山上,地域狭小,受条件限制,往往采用零-地混用方式,地线电位的突变造成零线电位的突变,损坏通信电源设备,通过在微波站通信机房电源进线处加装隔离变压器,即保证了市电的输送,又使供电方及微波站的地网独立分开。

5 整流屏(充电屏、开关电源)的使用运行

整流屏输入市电(交流220V)原则上应具备两条彼此独立的(不同点的供电变压器)交流供电。只具备1路交流供电的通信站应配置发电机或其他备用发电装置。开关电源设备整流模块容量应能同时满足负载供电和蓄电池充电需求,并考虑一定的冗余,模块数量按N+1冗余配置。具备两套开关电源的通信站其每套电源必须保证符合5.2要求。开关电源交流输入端须具备自动/手动切换功能。首次市电接入时,应检测三相交流电的相序,以免造成设备异常。并在开关电源前端(交流输入侧)加装C级浪涌保护器件(SPD)

6 交直流配电屏使用及运行

通信站的负载屏一般列装交流分配和直流分配单元,其中交流分配单元直接取至交流输入切换开关后,由于切换过程的存在一定的延时和抖动,发生切换时会出现设备重启现象,对一些重要交流用户而言是不允许的,为此,我们在负载屏上加装了逆变单元,其输入分为两路,一路交流220V输入,一路直流-48V输入,正常时通过-48V逆变输出交流220V,当-48V异常时自动倒换到旁路220V交流输出,保证了重要用户的不间断供电。

参考文献

通信的可靠性篇(5)

关键词:计算机通信网络;可靠性;优化设计

一、计算机通信网络可靠性理论的概述

计算机通信网络的可靠性是信息网络系统安全的根本要求,反映着计算机网络系统在规定时间及范围内所能完成指定功能的概率和能力。在计算机通信网络系统运行过程中,计算机通信网络安全的可靠性直接关系到系统应用的有效性,是计算机通信网络正常运行的基础性前提。计算机通信网络可靠性的内容主要包括计算机网络的抗破坏性、生存性以及系统部件在多模式下工作的有效性,要求计算机通信网络部件和基础结点必须为各用户终端提供可靠的链路,从而确保计算机通信网络的正常工作。在实际应用中,计算机通信网络可靠性理论包含计算机通信网络的可靠性和可靠度两方面内容。可靠性是计算机通信网络保持连通并满足通信要求的能力,是计算机通信网络设计、规划和运行的重要依据和参数之一。而计算机通信网络可靠度是指计算机通信网络在规定条件下完成规定功能的概率,涉及到二终端可靠度λ 终端可靠度以及全终端可靠度三种类型。

二、影响计算机通信网络可靠性的因素

1.用户设备对网络可靠性的影响

用户终端设备是直接面向用户的设备,其可靠性至关重要,也是计算机通信网络可靠与否的关键所在。计算机通信网络运行过程中的日常维护,主要就是确保用户终端保持良好运行状态。用户终端的交互能力越高,网络的可靠性也越高。

2.传输交换设备对网络可靠性的影响

在计算机通信网络建设、运行的过程中,为了提高网络可靠性以及满足日后发展的需要,必需考虑有一定的冗余和容错能力。布线时最好布置为双线,以便网络线路出现故障时能及时切换。网络集线器将若干个用户终端集中起来接入网络,通过它可将所连设备的问题与通信网络其它部分隔开,构成保证网络可靠性的第一道防线。集线器是一种单点失效设备,若它发生故障,则与其相连接的用户就无法工作,可见集线器在提高网络可靠性方面所起到的重要作用。

3.网络管理对网络可靠性的影响

对于大型的计算机通信网络来说,计算机通信网络设计的复杂性一般来源于不同设备供应商的不同网络产品和设备的规模庞大和复杂度高。在计算机通信网络可靠性设计过程中,为确保信息传输的完整性,降低故障发生率、信息丢失率、差错率,实现计算机通信网络可靠性提高的目的,就必须采用先进的网络管理技术,实时采集网络运行参数并统计网络信息,监视网络运行状态,及时发现和排除故障。

4.网络拓扑结构对网络可靠性的影响

网络拓扑结构是计算机通信网络规划设计的重要内容,从根本上决定着计算机通信网络的可靠性。有自身特点的影响,网络拓扑结构在不同行业领域及规模层次中的应用也有所不同,对于维护计算机通信网络的可靠性有着关键作用。在计算机通信网络系统建设初期,计算机通信网络的有效性和容错性的评价标准通常由网络拓扑结构的直径和连通度来决定。

三、计算机通信网络可靠性设计的原则

计算机通信网络可靠性直接关系到计算机通信网络系统的运行安全,在计算机通信网络系统设计的优化是对计算机通信网络技术可靠性的提高,能够有效避免计算机通信网络安全问题的发生,从而减少计算机通信网络安全事故造成了严重损失。

(1)遵循国际和国家标准,采用开放式的计算机通信网络体系架构,从而能支持异构系统和异种设备的有效互联,具备较强的扩展与升级能力。先进性与实用性相结合,选择先进而成熟的网络技术,选择实用和通用的网络拓扑结构。

(2)计算机通信网络要具有较强的互联能力,能够支持多种通信协议。安全性和可靠性要高,具有较强的冗余和容错能力。应选择较好的网络链路介质,保证主干网络具有足够的带宽,使整个网络具有较快的响应速度。

(3)在制定必要的网络管理条例的同时,加强相关应用人员的定期培训,同时对运行中的网络进行自动检查和维护,养成良好的维护和应用的职业习惯。

四、计算机通信网络可靠性优化设计方法分析

计算机通信网络可靠性优化设计是计算机通信网络系统建设的重要内容,有利于确保计算机通信网络系统的安全运行,促进计算机通信网络技术的进步和发展。在具体实施过程中,需要对计算机通信网络所有设备、软件、硬件、网络协议以及各分层的可靠性进行全面系统化设计,计算机通信网络通常有以下三种可靠性优化设计方法。

(1)最优选择方法。该方法就是研究出各种满足网络可靠性要求的方案并进行比较,在几个方案中甄选出最优方案并对设计方案进行进一步的求精和优化。此外,在费用充足的条件下,还可以通过设计一定冗余的方式来增强计算机通信网络的可靠性,从而确保计算机通信网络系统扩容和升级的顺利进行,促进计算机通信网络可靠性设计最优化的实现。

(2)多级容错系统设计方法。当网络出现故障时,网络的容错系统可保证网络继续正常运行。多级容错技术使网络具有一定的自保和自愈能力,即便网络出现多种故障,容错技术使网络仍能正常工作,故障单元无需立即修复或更换,这样就大大减少了对网络管理技术人员的需求,降低了维护成本。

(3)分层处理方法。分层处理法的应用对于解决计算机通信网络所面临的此类问题有着重要的作用,通过对计算机通信网络进行分层的方式,分别定义系统层、服务层、物理层及逻辑层等不同层次上的差异化可靠性度量指标,从而制定针对性方案措施,以提高计算机通信网络系统的可靠性,实现计算机通信网络技术设计的最优化。

五、结语

在经济社会全球化发展的今天,计算机通信网络技术的进步和发展,对计算机通信网络的可靠性也提出了新的要求。这就需要在充分认识到造成计算机通信网络系统安全漏洞原因的基础上,高度重视计算机通信网络可靠性优化设计的实施,从根本上确保计算机通信网络的可靠性,以提高我国信息网络设计的水平。

通信的可靠性篇(6)

[关键词]安全可靠性评估;电力光纤通信网;定量评作

[DOI]1013939/jcnkizgsc201619062

随着经济进步,电力行业拓展了信息化覆盖的总规模,彼此强化了渗透。日常通信获得了可靠保障,也设定了更高水准的通信要求。防控突发的电网故障、妥善抵御各类网络冲击应设定可靠及安全性必备的评判指标。主动探寻潜在的网络弊病及漏洞,查找网内较为脆弱的各个部位。这样设定出来的改进手段才会拥有最优的针对性,满足常态的通信流程。

1构建评估指标

电力光纤配备的通信网尤其应注重提升根本的通信安全,符合拟定的安全规程。现存管理规程、运行记下来的各时段记录都含有多样的影响要素。考虑多层次之内的这些要素,辨析客观形态下的要素影响,才能确认宏观视角的光纤通信是否可靠。依循了设定的统计学机理,筛选而后量化了给出来的多指标。评估了安全性,创设完备的指标体系。[1]归纳了现存的珍贵经验,评估确保了适宜性。详细来看,构建指标体系依循了这些总体规则:

指标要适用且确保科学。设定的若干指标涵盖了多层内涵,明晰根本的目标,这种指标可普遍予以采纳。构建全面指标,评估指标应能折射出通信是否安全。与此同时,还要明晰并且简练,扼要反映了现有一切的网内隐患。可以独立予以操控,依照设定好的若干规则以此来统计数据。若要重设起初的统计,那么应能确保新增设的指标便于搜集信息。杜绝重叠及交叉的冗余指标,力求明了并且简洁。

2评估可靠性及安全性的价值

从电力行业看,最近几年提快了常态的信息化,信息及电力双重的网络也日趋渗透。针对于通信质量、通信的可靠性,都设定了更优的新式要求。各区域布设的光纤电力网络应能防控冲击,运行也应确保是平稳的。解析了有效性,精确查出了网内呈现的薄弱点,这样才会便于摸索更优的后续改进方式。光纤网要确保可靠,先要保障安全。从根本上着手提升了平常的服务质量,维持着稳定状态下的通信及运转。评估的侧重点为:构建完整的、实用的指标测度。借助创设的多指标以此来评估,全方位改进了通信。[2]

评估安全性时,现有调研已经涉及,但仍没能构建更完善的新式体系。作为传输平台,光纤通信网调控着各方传递过来的一切信息。构建智能电网,电力通信也应日渐深化,不断完善自身。通信的主导设定为光纤,电力通信凭借架设起来的光纤网络,承载着平日的各类业务。日常生产唯有辨析了这类网络显现的可靠性,才能依循宏观视角予以优化。提升服务质量,有序调配现存的电力资源。

3定性及定量的双重评估

在很多省区内,光纤通信网布设了局部区段较大的总密度,聚集了较多的业务通道。在这其中,光纤通信承载了经由的较多通道及配套的通信设备,遇有故障中断则会增添额外的隐患。核心环网可承载的负荷没能剩余,满载的日常传输没能符合业务的真实需要。这种状态主干的省市网络都亟待扩容。集中改进光纤网,要优化原本的网络框架,强调规划路由。提升了光缆覆盖的总面积,提供干线必备的路由。

1定性评估通信网

定性评估涵盖了若干指标,例如有效性、传输的误码率、传输之中的延时。在这其中,有效性应被看成必备的指标,它表征了网内一切业务是否维持着有效,是否常态运转。业务性能含有延时、网络的误码率。详细来看,定性评估含有如下的细化内涵:

现今通信多设定了端口至另一端口,这种流程很难真正摆脱延时。延时环节含有:传输媒介经由的路径、网络设定的节点设备、数字类的其他设备。此外,偶然突发的其余要素也可带来延时。[3]传输网络含有SDH特定型号,这种网络常常伴有多样的误码,例如色散要素、网络同步的偏差、衰减的要素等,它们都带来了误码。从理论视角看,很难辨析精准的误码率,唯有借助于实测才可真正去评价。现存网络设定了适宜的互联距离、光纤的类型等,要慎重调控通道在各时段内的误码率。

评判某一网络是否可靠,还不可缺失它表现出来的生存性。常规的运转中,网络不可回避突发的多样故障。遭受了故障后,网络仍应维持平常运转且能承载内在的传输类业务。运行态势下的网络要拥有最优的连通性能,这种量度侧重评估了随机状态下的网络损毁、拓扑结构显现的影响。有序保护环网,在最短时段内即可恢复已被毁损的网络。针对网络保护,常常预留设定好的业务总容量,增设备用范围内的传递通道。即便突发了故障,还可启用预备着的额外通道以便于顺畅传递业务。这样做,就省掉了额外的网管协助,业务也可快速予以恢复。保护子网彼此的连接,自定义将被保护的网内对象。这种保护独有的优势为:采纳了交叉连接,拥有连接中的更多灵活性。

2定量评估通信网

定量评估可分为如下指标:

第一类指标:恢复关键业务、保护网内的业务。网络制式设定为SDH,变电站依托于外在的线路构建。例如:某区段含有内在的四类环网,覆盖了区段内的一切变电站。这类指标关乎网络特有的敏感属性,可选09的系数。在城乡区域内,骨干网络荷载了常态的一切业务,但并没能拥有最佳的抗毁损属性。唯有变更总体规划,才能调整并且变更这样的弊病。[4]

第二类指标:承载业务的真实性能。核心环网现今可承载的总负荷已经没能剩余,满载状态下的日常传输没能符合拓展业务的真实需要。在这种状态下,主干范围内的省市网络都亟待予以扩容。针对于变化量、网络敏感系数,都可选取09这一比值。

第三类指标:光缆路由是否可靠、是否足够稳定。环网内含丰富的多样资源,环网设有单一光缆配备的路由,相比来看这种传输是较单薄的。传输介质要确保安全,但光缆路由之中的一部分仍没能符合预设的安全性。从各个环网看,它们都设有区段内的传输瓶颈有待突破。遇有敏感气候或者结冰等状态,也将降低光缆本体的安全性。对于此,敏感系数将降低为08。[5]

第四类指标:外在运行环境。受到气候干扰,光缆遇有恶劣态势下的环境干扰,由此也降低了冰冻抵抗的真实能力。遇有复合形态的通信故障,很易带来孤岛。经过测算可得:网络加权指数测定为中等,处于中等情形的安全水准。然而,电力光纤网也存有潜在的漏洞。为此,可选取08特定的敏感性系数、变化率等系数。

4结论

经过多年摸索,电力通信构建起来的新式体系采纳了安全管控,确保平稳运转。然而,光纤通信快速拓展了原本的覆盖面,可选取的技术也增添了复杂性。与之相对应,应增设相配的通信管理,随时评估通信网显现的安全隐患。风险管理涵盖了安全评价,它被归入风险的评估。调研得出结论:评估安全及可靠性,在最大范围内注重强化了电力稳定,改善了原本的电力调控环境。未来的应用中,还要结合实情设定更多层次内的评估指标,获得了精准的评估信息。

参考文献:

[1]雷雨田,张可人,徐志强安全可靠性评估及其在电力光纤通信网的应用[J].湖南电力,2011(3):29-34

[2]苑津莎,高会生,孙逸群,等电力光纤通信网的安全性评估指标体系[J].高电压技术,2012(4):960-964

通信的可靠性篇(7)

【关键词】新能源电厂;通信业务;安全可靠性

Analysis of the Measures of Improving the Reliability and Security of the Communication Service in New Energy Power Plant

ZHANG Liang HUA Rong-jin SUN Yin

(Information & Communication company of State Grid Ningxia Power Co., Yinchuan Ningxia 750001, China)

【Abstract】The security and reliability of the communication system is directly related to the effective transmission of the power communication business in the new energy power plant. Based on the analysis of the factors affecting the reliability and security of the communication system of new energy power plant, the paper puts forward the effective measures to improve the safety and reliability of the communication system of new energy power plant.

【Key words】New energy power plant; Communication service; The reliability and security

0 引言

近几年随着新能源电厂的快速发展,越来越多的新能源电厂并入地区电网运行,其安全可靠性日益受到人们的关注。新能源电厂通信系统作为电网系统中的基础环节,承担了远动、电量、调度电话等通信业务的传输,是通信系统运维工作中的重点。但是,由于受设计水平、投资限制、施工质量等因素的影响,导致部分新能源电厂通信业务安全可靠性较低,直接影响了其安全运行。因此,有必要对目前新能源电厂通信系统中存在的问题进行全面分析,从而得出提高通信业务安全稳定运行的有效措施。

1 现状分析

目前新能源电厂主要以光伏和风电为主,通常处于电网的末端,一般采用OPGW光缆接入电力骨干通信网,根据日常运维经验,影响通信业务安全可靠性的因素主要包括接入方式、通信设备、施工质量、设计缺陷等。

(1)接入方式:新能源电厂光缆系统主要包括站内导引光缆和站间线路光缆,导引光缆一般采用ADSS光缆,线路光缆一般采用OPGW光缆,主要以12芯和24芯G.652型为主。由于投资等因素限制,目前新能源电厂多以单光缆方式就近接入骨干电力通信网且一般无迂回路由,不满足N-1的安全运行要求。因此,若该光缆中断,将会造成新能源通信业务全部中断。

(2)通信设备:新能源电厂通信设备主要包括光端机、PCM、通信电源等,其中光端机负责传输调度数据网、OMS等小颗粒通信业务,PCM主要借助2M通道传送行政小号、调度小号、远动、电量等模拟信号。由于新能源电厂至省调的通信业务种类较少,对通信带宽需求较低,因此核心设备SDH配置容量一般为155 Mbit/s,其制式、接口型式一般与电网侧保持一致。常见问题主要是光端机电源接入方式不满足“双电源”配置要求。

(3)施工质量:根据日常运维经验,新能源电厂通信系统故障易发点主要集中在导引光缆上,主要表现为由于构架处导引光缆封堵不严,导致管口在冬天进水而受冻导致光缆中断,同时由于导引光缆无标识、敷设深度不够等问题,将会导致站内野蛮施工而造成导引光缆中断,以上情况是目前比较常见的故障,将会直接导致新能源电厂通信业务中断。

除此之外,新能源电厂通信系统由于设计缺陷、验收不合格等因素,也会在日后运维中留下安全隐患,这将都会严重影响其通信业务的安全可靠性。为了进一步提高新能源电厂通信业务的安全可靠性,应进一步规范管理流程,对存在问题进行及时优化调整,才能有效消除安全隐患。

2 解决措施

2.1 优化通信接入方式

为了提高新能源电厂通信业务安全可靠性,首先要对其接入方式进行优化,目的在于解决“单支线”接入方式存在的问题,使其满足N-1原则。通常采取“双路由”策略对其接入方式进行优化。如下图所示,新能源电厂原来仅通过光缆1与变电站A连接,可以通过新建光缆2的方式,来提高其通信业务的安全可靠性。为了进一步提高新能源电厂通信业务的安全可靠性,还可以根据该站点通信接入方式,考虑就近其它站点进行新建光缆,以此来丰富通信光缆路由。新能源电厂原来仅通过光缆1与变电站A连接,变电站B距新能源电厂距离较近,因此为了优化其安全可靠性,可以通过新建光缆2的方式实现新能源电厂与变电站B的连接,这样可以避免因变电站单台SDH宕机而造成新能源电厂业务中断的事件发生,此种方式更加合理,安全可靠性更高。

图1 优化新能源电厂接入方式示意图

2.2 优化通信设备配置方式

通常新能源电厂仅配置一台光端机负责通信业务的传输,当该台光端机故障时则会导致承载的业务全部中断。因此,可以通过优化光端机配置方式来提高通信业务的安全可靠性,具体主要有以下几种方式:

(1)可以通过配置双设备方式提高整体安全可靠性,即通过两台不同的光端机的不同光路实现信号的传输。

(2)当投资有限时可以考虑在同一台设备采用MSP方式配置两个光方向,以提高业务的安全可靠性,即当当条光路中断时,业务自动切换至备用光路运行。

(3)当新能源电厂通过不同变电站接入骨干电力通信网时,可以通过构建SNCP保护路由来提高业务的安全可靠性,即当工作路由中断时,业务自动切换至保护路由运行。

2.3 提高施工质量

根据实际运维经验,新能源电厂通信系统故障易发点主要集中在导引光缆部分,其中以光缆封堵不严、无标识、敷设深度不够、缺乏保护措施等问题尤为突出。

(1)优化光缆封堵方式

针对构架处OPGW光缆引下线套管管口封堵不严的问题,可以利用基于“五步封堵法”的标准化封堵方式[1],采用泡沫胶、防火泥、防水胶布等材料对其管口进行防水封堵,经实践证明,该方法可有效防止新能源电厂光缆因管口进水而受冻导致光缆中断的事件发生。

(2)加强通信光缆标准化施工的措施

针对导引光缆无标识和敷设深度不够的问题,可以制定保护光缆的保护措施要求和埋深要求,如规定导引光缆敷设深度,要求地埋部分要加套镀锌钢管和PVC保护套管,以提高导引光缆的防外力破坏性。为了防止光缆遭野蛮施工导致中断事件的发生,可以在导引光缆敷设线路增设光缆标识桩,同时可以在地面部分用醒目颜色标识,以达到保护光缆的目的,该方法可有效解决光缆受外力破坏的现象,从而提高了通信业务的安全可靠性。

3 小结

新能源电厂通信系统的安全稳定运行直接关系到其承载业务是否能可靠传输,因此有必要通过有效措施提升其安全可靠性。在日常运维和管理工作中,应加强对新能源电厂通信并网的管理,完善和健全通信并网管理制度,加大对设计方案的审查力度,科学安排接入方式,及时对通信设备和通信光缆存在的安全隐患进行整改,才能有效提高新能源电厂通信业务的安全可靠性,从而为电网的稳定运行奠定良好基础。

友情链接