期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 测量技术论文

测量技术论文精品(七篇)

时间:2022-07-24 04:58:02

测量技术论文

测量技术论文篇(1)

关键词:网络性能测量技术性能指标分析与研究

1.引言

随着Internet技术和网络业务的飞速发展,用户对网络资源的需求空前增长,网络也变得越来越复杂。不断增加的网络用户和应用,导致网络负担沉重,网络设备超负荷运转,从而引起网络性能下降。这就需要对网络的性能指标进行提取与分析,对网络性能进行改善和提高。因此网络性能测量便应运而生。发现网络瓶颈,优化网络配置,并进一步发现网络中可能存在的潜在危险,更加有效地进行网络性能管理,提供网络服务质量的验证和控制,对服务提供商的服务质量指标进行量化、比较和验证,是网络性能测量的主要目的。

2.网络性能测量的概念

2.1网络性能的概念

网络性能可以采用以下方式定义[1]:网络性能是对一系列对于运营商有意义的,并可用于系统设计、配置、操作和维护的参数进行测量所得到的结果。可见,网络性能是与终端性能以及用户的操作无关的,是网络本身特性的体现,可以由一系列的性能参数来测量和描述。

2.2网络性能参数的概念

对网络性能进行度量和描述的工具就是网络性能参数。IETF和ITU-T都各自定义了一套性能参数,并且还在不断的补充和修订之中。

2.2.1性能参数的制定原则

网络性能参数的制定必须遵循如下几个原则:

1)性能参数必须是具体的和有明确定义的;

2)性能参数的测量方法对于同一参数必须具有可重复性,即在相同条件下多次使用该方法所获得的测量结果应该相同;

3)性能参数必须具有公平性,即对同种网络的测量结果不应有差异而对不同网络的测量结果则应出现差异;

4)性能参数必须有助于用户和运营商了解他们所使用或提供的IP网络性能;

5)性能参数必须排除人为因素;

2.2.2ITU-T定义的IP网络性能参数

ITU-T对IP网络性能参数的定义[2]包括:

1)IP包传输延迟(PacketTransferDelay,IPTD)

2)IP包时延变化(IPPacketDelayVariation,IPDV)

3)IP包误差率(IPPacketErrorRateIPER)

4)IP包丢失率(IPPacketLassRate,IPLR)

5)虚假IP包率(SpuriousIPPacketRate)

6)流量参数(Flowrelatedparameters)

7)业务可用性(IPServiceAvailability)

2.2.3IETF定义的IP网络性能参数

IETF将性能参数[3]称为“度量(Metric)。由IPPM(IPPerformanceMetrics)工作组来负责网络性能方面的研究及性能参数的制定。IETF对IP网络性能参数的定义包括:

1)IP连接性

2)IP包传送时延

3)IP包丢失率

4)IP包时延变化

5)流量参数

2.3网络性能结构模型

从空间的角度来看,网络整体性能可以分为两种结构:立体结构模型和水平结构模型。

2.3.1立体结构模型

IP网络就其协议栈来说是一个层次化的网络,因此,对IP网络性能的研究也可以按照一种自上而下的方法进行。可以以IP层的性能为基础,来研究IP层不同性能与上层不同应用性能之间的映射关系。

2.3.2水平结构模型

对于网络的性能,用户主要关心的是端到端的性能,因此从用户的角度来看,可以利用水平结构模型来对IP网络的端到端性能进行分析。

3.网络性能测量的方法

网络性能测量涉及到许多内容,如采用主动方式还是被动方式进行测量;发送测量包的类型;发送与截取测量包的采样方式;所采用的测量体系结构是集中式还是分布式等等。

3.1测量包

网络性能测量中,影响测量结果的一个重要因素就是测量数据包的类型。

3.1.1P类型包

类型P是对IP包类型的一种通用的声明。只要一个性能参数的值取决于对测量中采用的包的类型,那么参数的名称一定要包含一个具体的类型声明。

3.1.2标准形式的测量包

在定义一个网络性能参数时,应默认测量中使用的是标准类型的包。比如可以定义一个IP连通性度量为:“IP某字段为0的标准形式的P类型IP连通性”。在实际测量中,很多情况下包长会影响绝大多数性能参数的测量结果,包长的变化对于不同目的的测量来说影响也会不一样。3.2主动测量与被动测量方式

最常见的IP网络性能测量方法有两类:主动测量和被动测量。这两种方法的作用和特点不同,可以相互作为补充。

3.2.1主动测量

主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量,注入网络,并根据测量数据流的传送情况来分析网络的性能。主动测量的优点是对测量过程的可控性比较高,灵活、机动,易于进行端到端的性能测量;缺点是注入的测量流量会改变网络本身的运行情况,使得测量的结果与实际情况存在一定的偏差,而且测量流量还会增加网络负担。主动测量在性能参数的测量中应用十分广泛,目前大多数测量系统都涉及到主动测量。

要对一个网络进行主动测量,需要一个测量系统,这种主动测量系统一般包括以下四个部分:测量节点(探针)、中心服务器、中心数据库和分析服务器。有中心服务器对测量节点进行控制,由测量节点执行测量任务,测量数据由中心数据库保存,数据分析则由分析服务器完成。

3.2.2被动测量

被动测量是指在链路或设备(如路由器,交换机等)上利用测量设备对网络进行监测,而不需要产生多余流量的测量方法。被动测量的优点在于理论上它不产生多余流量,不会增加网络负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,另外还存在用户数据泄漏等安全性和隐私问题。

被动测量非常适合用来进行流量测量。

3.2.3主动测量与被动测量的结合

主动测量与被动测量各有其优、缺点,而且对于不同的性能参数来说,主动测量和被动测量也都有其各自的用途。因此,将主动测量与被动测量相结合将会给网络性能测量带来新的发展。

3.3测量中的抽样

3.3.1抽样概念

抽样,也叫采样,抽样的特性是由抽样过程所服从的分布函数所决定的。研究抽样,主要就是研究其分布函数。对于主动测量,其抽样是指发送测量数据包的过程;对于被动测量来说,抽样则是指从业务流量中采集测量数据的过程。

3.3.2抽样方法

依据抽样时间间隔所服从的分布,抽样方法可分为很多种,目前比较常用的抽样方法是周期抽样、随机附加抽样和泊松抽样[4]。周期抽样是一种最简单的抽样方式,每隔固定时间产生一次抽样。因为简单,所以应用的很多。但它存在以下一些缺点:测量容易具有周期性、具有很强的可预测性、会使被测网络陷入一种同步状态。随机附加抽样的抽样间隔的产生是相互独立的,并服从某种分布函数,这种抽样方法的优劣取决于分布函数:当时间间隔以概率1取某个常数,那么该抽样就退化为周期抽样。随机附加抽样的主要优点在于其抽样间隔是随机产生的,因此可以避免对网络产生同步效应,它的主要缺点是由于抽样不是以固定间隔进行,从而导致频域分析复杂化。

在RFC2330中,推荐泊松抽样,它的时间间隔符合泊松分布,它的优点是:能够实现对测量结果的无偏估计、测量结果不可预测、不会产生同步现象。但是,由于指数函数是无界的,因此泊松抽样有可能产生很长的抽样间隔,因此,实际应用中可以限定一个最大间隔值,以加速抽样过程的收敛。

4.性能指标的测量与分析

4.1连接性

连接性[5]也称可用性、连通性或者可达性,严格说应该是网络的基本能力或属性,不能称为性能,但ITU-T建议可以用一些方法进行定量的测量。目前还提出了连通率的概念,根据连通率的分布状况建立拟合模型。

4.2延迟

延迟的定义是[6]:IP包穿越一个或多个网段所经历的时间。延迟由固定延迟和可变延迟两部分组成[7][8]。固定延迟基本不变,由传播延迟和传输延迟构成;可变延迟由中间路由器处理延迟和排队等待延迟两部分构成。对于单向延迟测量要求时钟严格同步,这在实际的测量中很难做到,许多测量方案都采用往返延迟,以避开时钟同步问题。

往返延迟的测量方法是:入口路由器将测量包打上时戳后,发送到出口路由器。出口路由器一接收到测量包便打上时戳,随后立即使该数据包原路返回。入口路由器接收到返回的数据包之后就可以评估路径的端到端时延。4.3丢包率

丢包率的定义是[9]:丢失的IP包与所有的IP包的比值。许多因素会导致数据包在网络上传输时被丢弃,例如数据包的大小以及数据发送时链路的拥塞状况等。

为了评估网络的丢包率,一般采用直接发送测量包来进行测量。对丢包率进行准确的评估与预测则需要一定的数学模型。目前评估网络丢包率的模型主要有贝努利模型、马尔可夫模型和隐马尔可夫模型等等[10]。贝努利模型是基于独立同分布的,即假定每个数据包在网络上传输时被丢弃的概率是不相关的,因此它比较简单但预测的准确度以及可靠性都不太理想。但是,由于先进先出的排队方式的采用,使得包丢失之间有很强的相关性,即在传输过程中,包被丢失受上一个包丢失的影响相当大。假定用随机变量Xi代表包的丢失事件,Xi=0表示包丢失,而Xi=1表

示包未丢失。则第i个包丢失的概率为P[Xi|Xi-1,Xi-2,…Xi-n],Xi-1,Xi-2,...Xi-n取所有的组合情况。当N=2时,该Markov链退化为著名的Gilbert模型。隐马尔可夫模型是对马尔可夫模型的改进。

MayaYajnik等人所作的172小时的测量试验[11]结果表明,在不同的数据采样间隔下(20ms,40ms,80ms,160ms)采用三种不同的丢包率分析模型进行分析得到的结果完全不同,在不同的估计精确度的要求下实验结果也各有不同。因此,目前需要能够精确描述丢包率的数学模型。

4.4带宽

带宽一般分为瓶颈带宽和可用带宽。瓶颈带宽是指当一条路径(通路)中没有其它背景流量时,网络能够提供的最大的吞吐量。对瓶颈带宽的测量一般采用包对(packetpair)技术,但是由于交叉流量的存在会出现“时间压缩”或“时间延伸”现象,从而会引起瓶颈带宽的高估或低估。另外,还有包列等其它测量技术。

可用带宽是指在网络路径(通路)存在背景流量的情况下,能够提供给某个业务的最大吞吐量。因为背景流量的出现与否及其占用的带宽都是随机的,所以可用带宽的测量比较困难。一般采用根据单向延迟变化情况可用带宽进行逼近。其基本思想是:当以大于可用带宽的速率发送测量包时,单向延迟会呈现增大趋势,而以小于可用带宽的速率发送测量包时,单向延迟不会变化。所以,发送端可以根据上一次发送测量包时单向延迟的变化情况动态调整此次发送测量包的速率,直到单向延迟不再发生增大趋势为止,然后用最近两次发送测量包速率的平均值来估计可用带宽

瓶颈带宽反映了路径的静态特征,而可用带宽真正反映了在某一段时间内链路的实际通信能力,所以可用带宽的测量具有更重要的意义。

4.5流量参数

ITU-T提出两种流量参数作为参考:一种是以一段时间间隔内在测量点上观测到的所有传输成功的IP包数量除以时间间隔,即包吞吐量;另一种是基于字节吞吐量:用传输成功的IP包中总字节数除以时间间隔。

Internet业务量的高突发性以及网络的异构性,使得网络呈现复杂的非线性,建立流量模型越发变得重要。早期的网络流量模型,是经典流量模型,也即借鉴PSTN的流量模型,用poisson模型描述数据网络的流量,以及后来的分组火车模型,Markov模型等等。随着网络流量子相似性的发现,基于自相似模型的流量建模研究也取得了不少进展和得到了广泛的应用,譬如分形布朗运动模型和分形高斯噪声模型以及小波理论分析等等。高速网络技术的发展使得对巨大的网络流量进行直接测量几乎不可能,同时,大量的流量日志也使流量分析变得相当困难。为了解决这一问题,近几年,流量抽样测量研究已成为高速网络流量测量的研究重点。

5.网络性能测量的展望

网络性能测量中还有许多关键技术值得研究。例如:单向测量中的时钟同步问题;主动测量与被动测量的抽样算法研究;多种测量工具之间的协同工作;网络测量体系结构的搭建;性能指标的量化问题;性能指标的模型化分析[12]~[16];对网络未来状况进行趋势预测;对海量测量数据进行数据挖掘或者利用已有的模型(Petri网、自相似性、排队论)研究其自相似性特征[17]~[19];测量与分析结果的可视化,以及由测量所引起的安全性问题等等都是目前和今后所要研究的重要内容。随着网络性能相关理论、测量方法、分析模型研究的逐渐深入、各种测量工具的不断出现以及大型测量项目的不断开展,人们对网络的认识会越来越深刻,从而不断地推动网络技术向前发展。6.结束语:

本文对目前网络性能测量技术的主要方面进行了介绍和分析并对未来网络性能测量的研究重点进行了展望。

参考文献

[1]ITU-T建议1.350

[2]ITU-T,建议Y1540

[3]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents6

[4]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents11

[5]IETF,RFC2678,"IPPMMetricsMeasuringConnectivity"

[5]IETF,RFC2679,"AOne-wayDelayMetricforIPPM"

[6]IETF,RFC2681,"ARound-tripDelayMetricforIPPM"

[7]IETF.RFC3393,"IPPacketDelayVariationMetricforIPPM"

PDF文件使用"pdfFactoryPro"试用版本创建

[8]IETF,RFC2680,"AOne-wayPacketLossMetricforIPPM"

[9]H.SanneckandG.CarleGMDFokus,Kaiserin-Augusta-Allee31,D-10589Berlin,Germany,"AFramework

ModelforPacketLossMetricsBasedonLossRunlengths"

[10]MayaYajnik,SueMoon,JimKuroseandDonTowsley,"MeasurementandModellingoftheTemporal

DependenceinPacketLoss",DepartmentofComputerScienceUniversityofMassachusettsAmherst,MA01003

USA

[11]JacobsonV,"PathcharATooltoInferCharacteristicsofInternetPaths."

[12]LOPRESTIF,DUFFIELDNG,HOROWITZJ,etal.“Multicast-basedInferenceofNetworkInternet-Delay

Distributions”.UniversityofMassachusetts,Amherst,ComputerScience,TechnicalReportUM-CS-1999-055,

1999.

[13]DUFFIELDNG,LOPRESTIF.“Multicastinferenceofpacketdelayvarianceatinteriornetworklinks”.

IEEEINFOCOM2000[C].TelAvivIsrael,2000.

[14]HUANGL,SEZAKIK.“End-to-endInternetDelayDynamics”.IEICETechnicalReportofCQWG,May

2000.

[15]OHSAKIH,MURATAM,MIYAHARAH,“Modelingend-to-endpacketdelaydynamicsoftheInternet”

usingsystemidentification[A].InternationalTeletrafficCongress17[C].SalvadordaBahia,Brazil,2001.

[16]SueB.Moon,"MeasurementandAnalysisofEnd-to-EndDelayandLossinTheInternet"

[17]J.-C.Bolot.“End-to-endpacketdelayandlossbehaviorintheInternet”.InProceedingsofACMSIGCOMM,

SanFrancisco,August1993.

[18]V.Paxson,“MeasurementsandAnalysisofEnd-to-EndInternetDynamics”,Ph.D.dissertation,1997.

测量技术论文篇(2)

切削力测量系统一般由三部分构成:由测力仪、数据采集系统和PC机三部分组成,如图1所示。测力仪(测力传感器)通常安装在刀架(车削)或机床工作台上(铣削),负责拾取切削力信号,将力信号转换为弱电信号;数据采集系统对此弱电信号进行调理和采集,使其变为可用的数字信号;PC机通过一定的软件平台,将切削力信号显示出来,并对其进行数据处理和分析。

1.1切削测力仪

1.1.1应变式测力仪

应变式测力仪由弹性元件、电阻应变片及相应的测量转换电路组成,其工作原理如图2所示。把电阻应变片贴在弹性元件表面,并连接成某种形式的电桥电路,当弹性元件受到力的作用而产生变形时,电阻应变片便随之产生变形,从而引起其电阻阻值的变化ΔR,即

应变片电阻值的变化ΔR造成电桥不平衡,使电桥输出发生变化ΔU,通过标定建立输出电压与力之间的关系。使用时根据输出电压反算切削力的大小。

应变式测力具有灵活性大、适应性广、性能稳定等优点,而且配套仪表(如静态应变仪、动态应变仪等已标准化,因而得到广泛应用。但是其测量原理决定了测量精度和动态特性主要取决于弹性元件的结构,如何有效解决灵敏度和刚度之间的矛盾,是提高应变式测力仪测量精度和动态特性的关键。

1.1.2压电式测力仪

压电式测力仪是以压电晶体为力传感元件的切削测力仪,当石英晶体在外力作用下发生变形时,在它的某些表面上出现异号极化电荷。这种没有电场的作用、只是由于应变或应力在晶体内产生电极化的现象称为压电效应。通过测量产生电荷量即可以达到测量切削力的目的。

从动态测力的观点出发,压电式测力仪是一种比较理想的测力传感器,具有灵敏度高、受力变形小等优点。然而压电式测力传感器仍然存在一系列缺点:如由于电荷泄漏而不能测试静态力、固有频率的提高受装配接触刚度的限制、维护极不方便、价格昂贵,因此在使用上受到很大的限制。

1.1.3电流式测力仪

直接使用测力仪测量切削力有其局限性:①安装测力仪时,工艺系统结构遭到破坏从而导致其刚度发生变化,采集不到精确的切削力力信号;②测力仪的安装、调试技术复杂;③测试设备花费较高;④测力仪测试系统可靠性较低。

文献[4]提供了一种间接测量切削力的方法,即电流式测力仪,其测量原理是:切削力的变化会引起主轴电机电流的变化,通过测量主轴电机电流来估计切削力的大小。因机床主轴电机电流的测量比较容易和简单,所以这是一种经济而又简便的方法。

电流式测力仪的局限性体现在两个方面:①把主传动系统的运动学模型看作是一个线性模型,所以加工过程中的非线性因素会在一定程度上降低测量精度;②当切削力发生变化时,相应的主轴电流信号有一定的滞后现象,无法满足对切削力进行实时监测的较高要求。

1.2数据采集系统

如图3所示,数据采集系统通过一定的电子线路,对测力仪的输出信号进行放大、滤波等处理后,将其进行A/D转换,变为计算机的可用信号,再通过接口电路与PC机进行数据传输。

目前大多数切削力数据采集系统由放大器、滤波器、数据采集卡等分立元器件组成,体积较大,系统稳定性不高,测量精度和实时性也渐渐满足不了现代测力系统的要求。

1.3数据显示和分析处理

早期的数据显示和分析处理单元由指示仪表、示波器和记录仪等组成,其数据显示和分析处理功能都是很有限的。随着计算机技术的快速发展,目前数据显示和分析处理单元基本上被计算机终端所代替,显示功能更加丰富和强大,但软件的功能仅局限于数据拟合、图表显示和输出等,对测力仪各向力之间的耦合没有进行有效的处理,从一定程度上影响了测力精度。

2切削力测量技术的发展趋势

现代切削加工正在向高速强力切削、精密超精密加工方向发展,机床的振动频率也会远远高于系统的固有频率,这对切削力测量系统提出了新的要求:①测量范围大、高精度和高分辨率;②实时性好,能够在线实时测量;③数据处理和分析能力强,能够对复杂多变的切削力信号进行各种处理和分析。

针对这些方面的要求,切削力测量技术将朝着以下几方面发展:

(1)开发新型弹性元件,优化弹性元件结构及应变片布片方案,提高应变式测力仪固有频率,有效解决应变式测力仪刚度和灵敏度之间的矛盾问题,降低各向力之间的耦合程度;

(2)应用集成电路和微电子技术,使数据采集系统集成化,提高数据采集的速度与精度;

(3)完善数据处理分析软件的功能,例如通过解耦运算进一步减小测力仪各向力之间的耦合程度,以提高测量精度;将虚拟仪器技术引入切削力测试系统,以便对测量数据进行多种操作和数据库管理;建立专家系统,通过对测试数据的分析处理,对刀具磨损、切削颤振等情况做出预报并提出相应的治理措施。

参考文献

[1]罗学科.动态多维力传感器的理论研究与实践[D].北京航空航天大学博士论文,1995.1.

[2]姜术君.采用虚拟仪器技术构建测力系统的研究[D].北京航空航天大学硕士学位论文,2004.3.

[3]杨兆建,王勤贤.测力传感器研究发展综述[J].山西机械,2003,(1).

[4]周林,殷侠.数据采集与分析技术[M].西安:西安电子科技大学出版社,2005.

[5]张小牛,侯国平,赵伟.虚拟仪器技术回顾与展望[J].测控技术,2000,(9).

[6]苏建修.高速切削关键技术[J].机电国际市场,2001,(11).

测量技术论文篇(3)

关键词:网络性能测量技术性能指标分析与研究

1.引言

随着Internet技术和网络业务的飞速发展,用户对网络资源的需求空前增长,网络也变得越来越复杂。不断增加的网络用户和应用,导致网络负担沉重,网络设备超负荷运转,从而引起网络性能下降。这就需要对网络的性能指标进行提取与分析,对网络性能进行改善和提高。因此网络性能测量便应运而生。发现网络瓶颈,优化网络配置,并进一步发现网络中可能存在的潜在危险,更加有效地进行网络性能管理,提供网络服务质量的验证和控制,对服务提供商的服务质量指标进行量化、比较和验证,是网络性能测量的主要目的。

2.网络性能测量的概念

2.1网络性能的概念

网络性能可以采用以下方式定义[1]:网络性能是对一系列对于运营商有意义的,并可用于系统设计、配置、操作和维护的参数进行测量所得到的结果。可见,网络性能是与终端性能以及用户的操作无关的,是网络本身特性的体现,可以由一系列的性能参数来测量和描述。

2.2网络性能参数的概念

对网络性能进行度量和描述的工具就是网络性能参数。IETF和ITU-T都各自定义了一套性能参数,并且还在不断的补充和修订之中。

2.2.1性能参数的制定原则

网络性能参数的制定必须遵循如下几个原则:

1)性能参数必须是具体的和有明确定义的;

2)性能参数的测量方法对于同一参数必须具有可重复性,即在相同条件下多次使用该方法所获得的测量结果应该相同;

3)性能参数必须具有公平性,即对同种网络的测量结果不应有差异而对不同网络的测量结果则应出现差异;

4)性能参数必须有助于用户和运营商了解他们所使用或提供的IP网络性能;

5)性能参数必须排除人为因素;

2.2.2ITU-T定义的IP网络性能参数

ITU-T对IP网络性能参数的定义[2]包括:

1)IP包传输延迟(PacketTransferDelay,IPTD)

2)IP包时延变化(IPPacketDelayVariation,IPDV)

3)IP包误差率(IPPacketErrorRateIPER)

4)IP包丢失率(IPPacketLassRate,IPLR)

5)虚假IP包率(SpuriousIPPacketRate)

6)流量参数(Flowrelatedparameters)

7)业务可用性(IPServiceAvailability)

2.2.3IETF定义的IP网络性能参数

IETF将性能参数[3]称为“度量(Metric)。由IPPM(IPPerformanceMetrics)工作组来负责网络性能方面的研究及性能参数的制定。IETF对IP网络性能参数的定义包括:

1)IP连接性

2)IP包传送时延

3)IP包丢失率

4)IP包时延变化

5)流量参数

2.3网络性能结构模型

从空间的角度来看,网络整体性能可以分为两种结构:立体结构模型和水平结构模型。

2.3.1立体结构模型

IP网络就其协议栈来说是一个层次化的网络,因此,对IP网络性能的研究也可以按照一种自上而下的方法进行。可以以IP层的性能为基础,来研究IP层不同性能与上层不同应用性能之间的映射关系。

2.3.2水平结构模型

对于网络的性能,用户主要关心的是端到端的性能,因此从用户的角度来看,可以利用水平结构模型来对IP网络的端到端性能进行分析。

3.网络性能测量的方法

网络性能测量涉及到许多内容,如采用主动方式还是被动方式进行测量;发送测量包的类型;发送与截取测量包的采样方式;所采用的测量体系结构是集中式还是分布式等等。

3.1测量包

网络性能测量中,影响测量结果的一个重要因素就是测量数据包的类型。

3.1.1P类型包

类型P是对IP包类型的一种通用的声明。只要一个性能参数的值取决于对测量中采用的包的类型,那么参数的名称一定要包含一个具体的类型声明。

3.1.2标准形式的测量包

在定义一个网络性能参数时,应默认测量中使用的是标准类型的包。比如可以定义一个IP连通性度量为:“IP某字段为0的标准形式的P类型IP连通性”。在实际测量中,很多情况下包长会影响绝大多数性能参数的测量结果,包长的变化对于不同目的的测量来说影响也会不一样。3.2主动测量与被动测量方式

最常见的IP网络性能测量方法有两类:主动测量和被动测量。这两种方法的作用和特点不同,可以相互作为补充。

3.2.1主动测量

主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量,注入网络,并根据测量数据流的传送情况来分析网络的性能。主动测量的优点是对测量过程的可控性比较高,灵活、机动,易于进行端到端的性能测量;缺点是注入的测量流量会改变网络本身的运行情况,使得测量的结果与实际情况存在一定的偏差,而且测量流量还会增加网络负担。主动测量在性能参数的测量中应用十分广泛,目前大多数测量系统都涉及到主动测量。

要对一个网络进行主动测量,需要一个测量系统,这种主动测量系统一般包括以下四个部分:测量节点(探针)、中心服务器、中心数据库和分析服务器。有中心服务器对测量节点进行控制,由测量节点执行测量任务,测量数据由中心数据库保存,数据分析则由分析服务器完成。

3.2.2被动测量

被动测量是指在链路或设备(如路由器,交换机等)上利用测量设备对网络进行监测,而不需要产生多余流量的测量方法。被动测量的优点在于理论上它不产生多余流量,不会增加网络负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,另外还存在用户数据泄漏等安全性和隐私问题。

被动测量非常适合用来进行流量测量。

3.2.3主动测量与被动测量的结合

主动测量与被动测量各有其优、缺点,而且对于不同的性能参数来说,主动测量和被动测量也都有其各自的用途。因此,将主动测量与被动测量相结合将会给网络性能测量带来新的发展。

3.3测量中的抽样

3.3.1抽样概念

抽样,也叫采样,抽样的特性是由抽样过程所服从的分布函数所决定的。研究抽样,主要就是研究其分布函数。对于主动测量,其抽样是指发送测量数据包的过程;对于被动测量来说,抽样则是指从业务流量中采集测量数据的过程。

3.3.2抽样方法

依据抽样时间间隔所服从的分布,抽样方法可分为很多种,目前比较常用的抽样方法是周期抽样、随机附加抽样和泊松抽样[4]。周期抽样是一种最简单的抽样方式,每隔固定时间产生一次抽样。因为简单,所以应用的很多。但它存在以下一些缺点:测量容易具有周期性、具有很强的可预测性、会使被测网络陷入一种同步状态。随机附加抽样的抽样间隔的产生是相互独立的,并服从某种分布函数,这种抽样方法的优劣取决于分布函数:当时间间隔以概率1取某个常数,那么该抽样就退化为周期抽样。随机附加抽样的主要优点在于其抽样间隔是随机产生的,因此可以避免对网络产生同步效应,它的主要缺点是由于抽样不是以固定间隔进行,从而导致频域分析复杂化。

在RFC2330中,推荐泊松抽样,它的时间间隔符合泊松分布,它的优点是:能够实现对测量结果的无偏估计、测量结果不可预测、不会产生同步现象。但是,由于指数函数是无界的,因此泊松抽样有可能产生很长的抽样间隔,因此,实际应用中可以限定一个最大间隔值,以加速抽样过程的收敛。

4.性能指标的测量与分析

4.1连接性

连接性[5]也称可用性、连通性或者可达性,严格说应该是网络的基本能力或属性,不能称为性能,但ITU-T建议可以用一些方法进行定量的测量。目前还提出了连通率的概念,根据连通率的分布状况建立拟合模型。

4.2延迟

延迟的定义是[6]:IP包穿越一个或多个网段所经历的时间。延迟由固定延迟和可变延迟两部分组成[7][8]。固定延迟基本不变,由传播延迟和传输延迟构成;可变延迟由中间路由器处理延迟和排队等待延迟两部分构成。对于单向延迟测量要求时钟严格同步,这在实际的测量中很难做到,许多测量方案都采用往返延迟,以避开时钟同步问题。

往返延迟的测量方法是:入口路由器将测量包打上时戳后,发送到出口路由器。出口路由器一接收到测量包便打上时戳,随后立即使该数据包原路返回。入口路由器接收到返回的数据包之后就可以评估路径的端到端时延。4.3丢包率

丢包率的定义是[9]:丢失的IP包与所有的IP包的比值。许多因素会导致数据包在网络上传输时被丢弃,例如数据包的大小以及数据发送时链路的拥塞状况等。

为了评估网络的丢包率,一般采用直接发送测量包来进行测量。对丢包率进行准确的评估与预测则需要一定的数学模型。目前评估网络丢包率的模型主要有贝努利模型、马尔可夫模型和隐马尔可夫模型等等[10]。贝努利模型是基于独立同分布的,即假定每个数据包在网络上传输时被丢弃的概率是不相关的,因此它比较简单但预测的准确度以及可靠性都不太理想。但是,由于先进先出的排队方式的采用,使得包丢失之间有很强的相关性,即在传输过程中,包被丢失受上一个包丢失的影响相当大。假定用随机变量Xi代表包的丢失事件,Xi=0表示包丢失,而Xi=1表

示包未丢失。则第i个包丢失的概率为P[Xi|Xi-1,Xi-2,…Xi-n],Xi-1,Xi-2,...Xi-n取所有的组合情况。当N=2时,该Markov链退化为著名的Gilbert模型。隐马尔可夫模型是对马尔可夫模型的改进。

MayaYajnik等人所作的172小时的测量试验[11]结果表明,在不同的数据采样间隔下(20ms,40ms,80ms,160ms)采用三种不同的丢包率分析模型进行分析得到的结果完全不同,在不同的估计精确度的要求下实验结果也各有不同。因此,目前需要能够精确描述丢包率的数学模型。

4.4带宽

带宽一般分为瓶颈带宽和可用带宽。瓶颈带宽是指当一条路径(通路)中没有其它背景流量时,网络能够提供的最大的吞吐量。对瓶颈带宽的测量一般采用包对(packetpair)技术,但是由于交叉流量的存在会出现“时间压缩”或“时间延伸”现象,从而会引起瓶颈带宽的高估或低估。另外,还有包列等其它测量技术。

可用带宽是指在网络路径(通路)存在背景流量的情况下,能够提供给某个业务的最大吞吐量。因为背景流量的出现与否及其占用的带宽都是随机的,所以可用带宽的测量比较困难。一般采用根据单向延迟变化情况可用带宽进行逼近。其基本思想是:当以大于可用带宽的速率发送测量包时,单向延迟会呈现增大趋势,而以小于可用带宽的速率发送测量包时,单向延迟不会变化。所以,发送端可以根据上一次发送测量包时单向延迟的变化情况动态调整此次发送测量包的速率,直到单向延迟不再发生增大趋势为止,然后用最近两次发送测量包速率的平均值来估计可用带宽

瓶颈带宽反映了路径的静态特征,而可用带宽真正反映了在某一段时间内链路的实际通信能力,所以可用带宽的测量具有更重要的意义。

4.5流量参数

ITU-T提出两种流量参数作为参考:一种是以一段时间间隔内在测量点上观测到的所有传输成功的IP包数量除以时间间隔,即包吞吐量;另一种是基于字节吞吐量:用传输成功的IP包中总字节数除以时间间隔。

Internet业务量的高突发性以及网络的异构性,使得网络呈现复杂的非线性,建立流量模型越发变得重要。早期的网络流量模型,是经典流量模型,也即借鉴PSTN的流量模型,用poisson模型描述数据网络的流量,以及后来的分组火车模型,Markov模型等等。随着网络流量子相似性的发现,基于自相似模型的流量建模研究也取得了不少进展和得到了广泛的应用,譬如分形布朗运动模型和分形高斯噪声模型以及小波理论分析等等。高速网络技术的发展使得对巨大的网络流量进行直接测量几乎不可能,同时,大量的流量日志也使流量分析变得相当困难。为了解决这一问题,近几年,流量抽样测量研究已成为高速网络流量测量的研究重点。

5.网络性能测量的展望

网络性能测量中还有许多关键技术值得研究。例如:单向测量中的时钟同步问题;主动测量与被动测量的抽样算法研究;多种测量工具之间的协同工作;网络测量体系结构的搭建;性能指标的量化问题;性能指标的模型化分析[12]~[16];对网络未来状况进行趋势预测;对海量测量数据进行数据挖掘或者利用已有的模型(Petri网、自相似性、排队论)研究其自相似性特征[17]~[19];测量与分析结果的可视化,以及由测量所引起的安全性问题等等都是目前和今后所要研究的重要内容。随着网络性能相关理论、测量方法、分析模型研究的逐渐深入、各种测量工具的不断出现以及大型测量项目的不断开展,人们对网络的认识会越来越深刻,从而不断地推动网络技术向前发展。6.结束语:

本文对目前网络性能测量技术的主要方面进行了介绍和分析并对未来网络性能测量的研究重点进行了展望。

参考文献

[1]ITU-T建议1.350

[2]ITU-T,建议Y1540

[3]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents6

[4]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents11

[5]IETF,RFC2678,"IPPMMetricsMeasuringConnectivity"

[5]IETF,RFC2679,"AOne-wayDelayMetricforIPPM"

[6]IETF,RFC2681,"ARound-tripDelayMetricforIPPM"

[7]IETF.RFC3393,"IPPacketDelayVariationMetricforIPPM"

PDF文件使用"pdfFactoryPro"试用版本创建

[8]IETF,RFC2680,"AOne-wayPacketLossMetricforIPPM"

[9]H.SanneckandG.CarleGMDFokus,Kaiserin-Augusta-Allee31,D-10589Berlin,Germany,"AFramework

ModelforPacketLossMetricsBasedonLossRunlengths"

[10]MayaYajnik,SueMoon,JimKuroseandDonTowsley,"MeasurementandModellingoftheTemporal

DependenceinPacketLoss",DepartmentofComputerScienceUniversityofMassachusettsAmherst,MA01003

USA

[11]JacobsonV,"PathcharATooltoInferCharacteristicsofInternetPaths."

[12]LOPRESTIF,DUFFIELDNG,HOROWITZJ,etal.“Multicast-basedInferenceofNetworkInternet-Delay

Distributions”.UniversityofMassachusetts,Amherst,ComputerScience,TechnicalReportUM-CS-1999-055,

1999.

[13]DUFFIELDNG,LOPRESTIF.“Multicastinferenceofpacketdelayvarianceatinteriornetworklinks”.

IEEEINFOCOM2000[C].TelAvivIsrael,2000.

[14]HUANGL,SEZAKIK.“End-to-endInternetDelayDynamics”.IEICETechnicalReportofCQWG,May

2000.

[15]OHSAKIH,MURATAM,MIYAHARAH,“Modelingend-to-endpacketdelaydynamicsoftheInternet”

usingsystemidentification[A].InternationalTeletrafficCongress17[C].SalvadordaBahia,Brazil,2001.

[16]SueB.Moon,"MeasurementandAnalysisofEnd-to-EndDelayandLossinTheInternet"

[17]J.-C.Bolot.“End-to-endpacketdelayandlossbehaviorintheInternet”.InProceedingsofACMSIGCOMM,

SanFrancisco,August1993.

[18]V.Paxson,“MeasurementsandAnalysisofEnd-to-EndInternetDynamics”,Ph.D.dissertation,1997.

测量技术论文篇(4)

杭州远方光电信息有限公司(everfine@everfine.cn) 摘 要:总光通量是评价LED产品极为重要的指标,然而,LED的特殊性质给其总光通量精确测量带来了挑战。本文针对LED的特性,分析了现有的LED总光通量精确测量方法和设备的优点与不足,介绍了几个国际著名实验室在总光通量测量领域的新进展,同时详述了我国实现LED总光通量基准测量的方法和先进设备。我国拥有多项核心技术专利的GO-R3000 2M2D双镜分布光度计,由于性能卓越,受到了国际测光专家的好评,产品自面世以来,迅速得到了国际高端客户的青睐,成为了多个LED高端实验室的标准测量设备。 论文关键词:光效 总光通量 分布光度计 积分球 一. LED的特点和总光通量测量的挑战 众所周知,LED具有以下独特的发光性能: LED产品对温度十分敏感;LED产品光束一般较窄,且通常采用光源和灯具一体化的设计,传统的相对测量不再适用,而绝对光通量和光强分布测量对方法和设备要求更高;LED产品的发光存在明显的空间颜色不均匀性等。 由于LED产品特殊的发光性能,其总光通量的精确测量极具挑战性,LED产品光效测量横向可比性还很不理想。LED产品总光通量测量已成为各国相关标准研究和制定中的重点关注问题。 二.测量LED总光通量的方法和设备 2.1 利用积分球系统精确测量LED光通量的挑战 积分球系统测量总光通量已被人们所熟知。但积分球系统中,LED产品的光谱分布和空间光强分布与常用标准灯间存在较大差异,会带来较大的测量误差。采用同类LED产品定标积分球系统能大幅提高测量精度,但需要更高精度的总光通量测量方法和设备作为LED产品的量值传递基准。 2.2 分布光度计测量LED的总光通量 分布光度计通过测量LED产品在空间的光强或照度分布,并对全空间积分得到总光通量,根据测量光路安排不同,分为光强积分法和照度积分法。分布光度计系统对LED产品的外形、尺寸和光束角没有特别限制,但保持LED产品自身温度稳定是十分关键的。 2.2.1 光强积分法:中心旋转反射镜式分布光度计 中心旋转反射镜式分布光度计已有几十年历史,如图1,被测LED产品必须在相当大的空间范围内绕反射镜反向同步旋转。除了同步误差不可避免外,该分布光度计中的被测LED产品的温度存在较大的不稳定性:暗室中往往存在上部温度高而下部温度低的现象,温度差一般在2~5℃,被测LED产品实际工作在交变的环境温度之中,且运转空间越大,温差也越大; 被测LED产品在运动中产生气流,导致表面温度大幅变化,热惯性则会进一步加剧这种变化。由这些不稳定因素带来的测量误差因LED产品的设计不同而不同,严重时可达5%以上,加之中心反射镜所无法避免的原理性误差,对于总光通量测量则可达到10%以上的误差。 2.2.2光强积分法:灯具旋转式分布光度计 灯具旋转式分布光度计是另一种常用分布光度计,它结构简单,如图2所示,被测LED产品绕其自身水平轴和垂直轴旋转,而光度探测器保持静止。 在该

测量技术论文篇(5)

推动着各公司和机构提高了对影像测量技术的重视,影像测量仪的品种和规模也不断扩大[2-4]。国外影像测量仪技术的由于起步早,技术发展比较成熟,因此市场占有比例高,产品知名度和普及度也较高。美国OGP公司设计的VidicomQualifier863,是首个使用固态CID相机和灰度图像处理技术的现代影像检测系统。该公司在影像测量技术领域拥有着多项核心技术和专利。德国蔡司(ZEISS)公司旗下的高端三坐标测量机处于行业先进水平,代表性产品为光学三坐标测量机O-INSPECT系列。其他生产影像测量仪公司如日本MITUTOYO、NIKON,瑞典HEXAGON等也有着雄厚的技术力量。国内的影像测量技术由于起步晚,技术力量薄弱,但随着国家的重视和科研经费投入的加大,相关技术水平持续提高,研究成果也不断涌现。智泰集团(3DFAMILY)代表性的VMC250S型影像仪使用XYZ全闭环伺服控制系统;采用了自主研发的OVMPro全自动光学测量系统,并具有SPC报表分析功能,提高了批量检测的效率,但难以测量高度尺寸。天准公司于2007年自主开发了一款二维自动影像测量仪,打破了国外厂家的技术垄断。其他新兴企业如冶信、新天等生产的影像测量仪器和设备也逐渐在国内市场上崭露头角,占据着一席之地。

2影像测量仪的结构分类与特点

影像测量仪主要由机械主体、标尺系统、影像探测系统、驱动控制系统以及测量软件等组成。影像测量仪的结构型式主要有柱式、固定桥式和移动桥式。柱式一般用于小量程的机器,桥式一般用于中大量程的机器。

2.1柱式影像测量仪

柱式结构底部为基座,二维工作台分别沿X和Y向移动,影像探测系统可在固定立柱上沿Z向运动,结构牢固、精度高,不过工件的重量对工作台运动有影响,不能承载过重工件,适合于中小行程影像测量仪。

2.2固定桥式影像测量仪

固定桥式测量仪的X、Y、Z轴相互正交并沿着各自导轨运动,其中Z轴上安装有影像探头并可以相对Y轴做垂直运动,而Y轴则安装在基座上。Z轴部分和Y轴部分的总成牢固装在机座两侧的桥架上端。每轴都由电机来驱动,可确保位置精度,但不适合手动操作,该结构稳定、整机刚性好。

2.3移动桥式影像测量仪

移动桥式结构是目前大量程影像测量仪中应用最广泛的一种结构形式。其中,工作台固定,其中一个桥框由导轨带动在工作台上沿X轴移动,同时由另一个导轨带动滑板在桥框上沿Y轴移动,主轴则沿Z轴移动。被测工件安放在工作台上,影像探测部件安装在主轴上。这种形式的影像测量仪结构简单、紧凑,刚度好,具有较开阔的空间。

3展望

测量技术论文篇(6)

地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。

1.1选定基准站

基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。

1.2基于GPS-RTK的测绘作业

GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。

1.3内业处理

测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。

2GPS-RTK在地籍测量中的质量控制

GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。

2.1构建控制网约束测量数据

控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。

2.2排除干扰控制测量误差

虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。

3结束语

测量技术论文篇(7)

关键词:建筑;施工场地;控制测量;技术

在建筑施工前一个准备的工作就是对工程进行放线测量,但是在测量中要保证建筑一直与地面是垂直的状态,而且建筑的形状是几何形状。在测量建筑的截面尺寸时,要注意尺寸在施工的要求内。建筑的施工放样要有一定的依据,测量控制网就能够保证测量的结果在一个标准的精度下。而测量控制网需要使用施工单位的控制红线,同时还要以其提供的建筑具体坐标为基准点。这个测量网中要包括工程的垂直度以及建筑的轴线等。

1建筑施工测量的特点

施工平面控制网既可以单独建立,也可用原有地面测图控制网替代。但由于测图网的密度和精度有时不能满足施工测量要求,需要增补控制点,并重新对网进行高精度测量,然后再以平面控制网数据测设出主轴线。

2测量坐标系统及坐标换算

2.1施工坐标系统。在设计和施工部门,为了工作上的方便,常采用一种独立坐标系统,称为施工坐标系或建筑坐标系。施工坐标系的纵轴通常用A表示,横轴用B表示。施工坐标系的A轴和B轴,应与厂区丰要建筑物或者主要道路、管线方向平行。坐标原点设在总平面图的西南角,使所有建筑物和构筑物的设计坐标均为正值。2.2测量坐标系统。目前工程建设中,测量坐标系有两种情况,一种是采用全国统一的高斯平面直角坐标系统;另一种是采用测区独立直角坐标系统如城市独立坐标系。测量坐标系纵横轴指向正北用X表示,横轴用Y表示。2.3坐标换算。建筑坐标系与测量坐标系往往不一致,在建施工控制网时,常需要进行建筑坐标系统与测量系统的换算。

3施工场地平面控制

在平面控制施工场地上有几种形式,一种是导线;一种是建筑基线;另外一种是建筑方格网,下面仔细的探讨一下这几种形式。3.1导线。因为我国所有的施工场地都普及的全站仪,因此场地的平面控制一般都成导线网的形式。而且导线的等级以及精度都要在标准的规定中,(1)如果建筑场地在1km2以上或者是场地是一个重要的工业区,那么场地建立的控制网一般都是属于一级导线网。(2)如果建筑的场地在1km2以下或者场地属于普通的建筑区,那么在场地建立的控制网属于二级或者是三级导线网。(3)如果场地使用的导线网是原来的控制网,那么要对控制网进行检测而且是反复的检测,保证控制网的准确性。3.2建筑基线。如果建筑的场地面积不大,而且布置的也不是很复杂,同时建筑场地又是属于平坦还比较狭长的,那么控制的方式采用建筑基线的形式。(1)设计建筑基线。设计人员设计建筑基线的时候,可以采用几种形式,一种是三点成“一”形;三点呈“L”形;或这是四点成“L”形,还有一种是五点成“十”形。以上几种形式是在设计基线中比较普遍的形式。a.建筑的基线应该与建筑物的轴线处于两种状态,一种是平行状态;另外一种是垂直的状态。b.建筑基线中的主要基点要保持在一个可以相互通视的状态,基线的边长在100mm至4mm之间。c.基线的主点如果不被施工所干扰,其位置就应该在主要的建筑物附近,并且要靠近建筑物。d.一个建筑基线的基线点应该在三个以上,这样可以保证检测人员可以随时查看基点的变化情况。(2)建筑基线的测设。在测设建筑的基线上,一般测量人员都会使用平面点位放样。首先在实际的场地标出基线点的具置,然后检查基线的精度以及密度,检查的方法有两种,一种是角度检查;另外一种是距离检查。如果基点在同一个直线上,那么在中间的位置上安装一个经纬仪没有经纬仪也可以安装全站仪,这样可以保证测量人员能够测量到基点的角度。当测量的角度与180度的差比24要大,那么就要适当的调整角度。如果测量的三个基点是垂直的状态,那么垂直的交点上,测量与另外一个的夹角,当角度值与90度的差比24要大,同样的也需要调整角度。在各个基点上检查轴线长度主要是检查轴线之间的距离,如果检查出的结果与设计有差别,且误差在万分之一,那么就要调整轴线之间的距离。3.3建筑方格网。对于地形较平坦的大、中型建筑场区,主要建筑物、道路及管线常按互相平行或垂直关系进行布置。为简化计算或方便施测,施工平面控制网多由正方形或矩形格网组成,称为建筑方格网。利用建筑方格网进行建筑物定位放线时,可按直角坐标进行,不仅容易求得测设数据,且具有较高的测设精度。(1)建筑方格网设计。设计建筑方格网时,首先选定方格网的纵、横主轴线,它是方格网扩展的基础,选定是否合理,会影响控制网的精度和使用,因此应遵循以下原则:主轴线应尽量选在整个场地的中部,方向与主要建筑物的基本轴线平行,一条主轴线不能少于三个主点,其中一个必是纵横主轴线交点,主点间距离宜过小,一般300~500m:纵横主轴线要严格正交成90;主轴线的长度以能控制整个建筑场地为宜,以保证主轴线的定向精度。主轴线拟定后,可进行方格网线的布设。方格网线要与相应的主轴线成正交,网格的大小视建筑物平面尺寸和分布而定,正方形格网边长多取100~200m,矩形格网边长尽可能取50m或其倍数。(2)建筑方格网的测设。在测设建筑方格网时,先要测设主轴线MON,其方法与建筑基线测设方法相同,主轴线测设好后,分别在主轴线端点安置经纬仪或全站仪,均以0点为起始方向,分别向左、向右精密测设90°。为了进行检核,还要在方格网点上安置经纬仪或站仪,测量其角是否为90°,并检查各相邻点间的距离,看其是否与设计边长相等,误差均应在允许范围之内。此后再以基本方格网点为基础,加密方格网中其余各点。

4施工场地高程控制

建筑场地的高程控制测景就是在整个场区建立可靠的水准点,形成与国家或城市高程控制系统相联系的水准网。水准点的密度应尽可能满足安置一次仪器即可测设出所需的高程点。施工场地高程控制一般布设成两级,分别称为首级水准网和加密水准网。首级水准网作为整个场地的高程基本控制,一般情况下采用四等水准测量方法,并埋设永久性标志,若因设备安装或下水管道铺设等测量精度要求较高时,可在局部范围采用三等水准测量方法。加密水准网以首级水准网为基础,可按图根水准的要求进行布设,一般情况下,建筑方格网点及建筑基线点亦可兼作加密水准网点。

综上所述,建筑中的测量工作实质上就是测绘工作,但是其工作的性质与建筑的质量有关,而且对于一个过程来说。建筑施工的全过程都要涉及到测量工作,因此在施工的场地要建立测量体系,并且保证测量的结果。

作者:韩先甲 单位:大庆市勘测设计院

参考文献

[1]毛淑杰.浅谈工程测量新技术的应用[J].中国新技术新产品,2009(4).

友情链接