期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 处理高浓度有机废水的方法

处理高浓度有机废水的方法精品(七篇)

时间:2023-12-05 09:56:19

处理高浓度有机废水的方法

处理高浓度有机废水的方法篇(1)

关键词:高浓度有机废水;物化处理;生物氧化

中图分类号:X8 文献标识码:A 文章编号:1003-2851(2012)01-0184-01

一、引言

当前,据统计全球2009年全球工业用水量为2.07万亿立方米,而这一现象世界各地状况极不相同,需求量与有限的可以用水资源极不适应,并且全世界每年排向自然水体的工业和生活废水为4200亿立方米,造成35%以上的淡水资源受到污染,因而治理水体污染将尤为重要。

二、高浓度有机废水来源及特点

高浓度有机废水一般是指由造纸、皮革及食品等行业排出的COD在2000mg/L以上的废水。这些废水中含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物,如果直接排放,会造成严重污染。高浓度有机废水按其性质来源可分为三大类:

(1)易于生物降解的高浓度有机废水;

(2)有机物可以降解,但含有害物质的废水;

(3)难生物降解的和有害的高浓度有机废水。

高浓度有机废水主要具有以下特点:

(1)有机物浓度高。COD一般在2000mg/L以上,有的甚至高达几万乃至几十万mg/L,相对而言,BOD较低,很多废水BOD 与COD的比值小于0.3。

(2)成分复杂。含有毒性物质废水中有机物以芳香族化合物和杂环化合物居多,还多含有硫化物、氮化物、重金属和有毒有机物。

(3)色度高,有异味。有些废水散发出刺鼻恶臭,给周围环境造成不良影响。

(4)具有强酸强碱性。工业产生的超高浓度有机废水中,酸、碱类众多,往往具有强酸或强碱性。

(5)不易生物降解有机废水中所含的有机污染物结构复杂,如蔡环是由10个碳原子组成的离域共扼键,结构相当稳定,难以降解。这类废水中大多数的BODSC/OD极低,生化性差,且对微生物有毒性,难以用一般的生化方法处理。

三、高浓度有机废水的处理措施

高浓度有机废水处理技术粗略分为三类:物化处理技术、化学处理技术以及生物处理技术。

(一)物理处理技术。目前普遍使用的物理方法主要有萃取法、吸附法、浓缩法、超声波降解法等。

1.萃取法。萃取法是高浓度有机废水前期处理的最常用的一种方法,其优点主要表现在效率高、操作简单、投资较少等特点。特别是基于可逆络合反应的萃取分离方法,可以高效率、高选择性的对极性有机稀溶液进行分离,在难降解有机废水的处理方面具有广阔的应用前景。

2.浓缩法。浓缩法是根据某些污染物溶解度较小的特点,将大部分水蒸发使污染物浓缩并分离析出的方法。浓缩法也是目前应用比较多的一种物理处理法,他的主要优点是操作简单,工艺成熟,并能实现有用物质的部分回收,适合于处理高浓度含盐有机废水。该方法的最大缺点在于能耗较更好,需要的初期投资较大。但是如果能将处理过程中的废热进行充分利用,是物理处理的能耗降下来,则该法是可行的。

3吸附法。吸附法及时通过活性炭、大孔树脂、活性白土、硅藻土等多孔性物质将有机废水中的有害物质进行吸附,从而达到净化水质的效果。目前,高浓度有机废水的物理吸附方法主要是利用活性炭和大孔径的有机树脂等。活性炭的吸附效果较好,但是难以再生,所以使用起来的费用也比较大。

(二)化学处理技术。目前,推广应用较多的化学处理技术主要有焚烧法、Fenton氧化法、臭氧氧化法、电化学氧化法等,下面分别加以简单介绍:

1.焚烧法。焚烧法主要是通过将有机废水与燃油、煤等燃料混合,或者加有其他废物进行混合燃烧,将有害废水中的有机物转化为二氧化碳和水无害物质的方法。焚烧法的优点在于采用的炉型多,燃烧方式多样,速度快、效率高。其不足之处在于设备投资大,处理成本高,通常应用在医院废水处理等特殊场合。

2.Fenton氧化法。目前所用的Fenton试剂已经经过了改进,加大了离子的浓度值,同时辅助以紫外线和可见光,在低浓度亚铁离子、理论双氧水加入量、紫外线和可见光的汞灯的照射下,反应0.5h,溶解性有机碳去除率高达90%。

3.臭氧氧化法。臭氧处理法是通过氧化法,使有害的有机废弃物环状分子的部分环或长链分子部分断裂,从而使大分子物质变成小分子物质,生成易于生化降解的物质,提高废水的可生化性另外,通过相关研究发现,臭氧氧化法在脱色方面也有较好的效果,对多数染料能取得很好的脱色效果,但对硫化、还原、涂料等不溶于水的染料脱色效果较差。

4.电化学氧化法。电化学氧化法处理有机废水的原理是是在电极表面的电氧化作用下或由电场作用而产生的自由基作用下使有机物氧化,因此又被称为电氧化法。电化学氧化根据其氧化性的特点可分为直接电化学氧化和间接电化学氧化。直接电化学氧化是使难降解有机物在电极表面发生氧化还原反应。

(三)生物处理技术。生物处理是废水净化的主要工艺,主要用于处理农药、印染、制药等行业的有机废水。生物处理法是利用微生物的代谢作用来分解、转化水体中的有毒有害化学物质和其它各种超标组分的生物技术,降解作用的场所主要是含微生物的活性污泥、生物膜及其相应的反应器,由此诞生了各类生物处理方法和技术。微生物法不仅经济、安全,而且处理的污染物阈值低、残留少、无二次污染,有较好的应用前景。

参考文献

处理高浓度有机废水的方法篇(2)

关键词:废水处理;高浓度有机废水;淀粉乙醇废水;纤维乙醇废水

中图分类号:X703;KT63 文献标识码:A 文章编号:0439-8114(2013)09-1988-04

能源危机是全球需要面对的重大课题之一,根据英国石油公司的世界能源统计资料,石油资源将在40多年内面临枯竭[1]。燃料乙醇作为一种重要的工业原料和车用燃料是燃烧清洁的高辛烷值燃料,被广泛认为是最有希望全部或部分替代石油的可再生能源[2-4]。目前燃料乙醇的生产主要来自于糖类和淀粉的生物发酵,面对世界人口的急剧膨胀和粮食短缺问题,以粮食为原料生产燃料乙醇的发展受到了极大的限制。随着全球性能源危机、粮食危机和环境危机的到来,对燃料乙醇需求的快速增长使得以纤维质生物原料进行燃料乙醇的制备引起了高度的重视,美国能源部预计以廉价纤维素原料生产乙醇的技术会在2015年之前走向工业化[5]。

纤维乙醇是以秸秆、农作物壳皮茎秆、树枝、落叶、林业边脚余料和城乡有机垃圾等纤维为原料经预处理、酶解、发酵生产的燃料乙醇,作为燃料燃烧时排放的温室气体不仅比汽油减少90%,而且远低于粮食乙醇燃料[6]。

随着世界燃料乙醇需求的快速增长和以秸秆等廉价木质纤维素为原料生产乙醇的关键技术取得突破,纤维乙醇的生产将逐渐走向工业化,其产生废水的处理以及资源化问题会越来越突出,因此探讨适宜的废水处理技术及资源化模式具有非常重要的意义,也是行业和企业发展的迫切需求。

1 纤维乙醇废水的特性

从图1中可以看出,在纤维乙醇生产过程中,废水的来源主要有:预处理过程产生的废水、发酵醪液经蒸馏提取乙醇后的糟液、发酵冲洗水和其他车间冲洗水等,统称为纤维乙醇废水。

在纤维乙醇的生产过程中会产生大量的废水,该废水与淀粉乙醇废水(以淀粉质原料生产燃料乙醇的废水)有很大的不同,其色度、化学需氧量(COD)、生化需氧量(BOD)、盐度均较高并呈酸性(pH在3.5左右),是一种较难处理的高浓度有机废水;废水中含有大量挥发性有机酸、呋喃衍生物、酚类化合物、偶氮类化合物以及无机物,其中含有多种苯系、环系有毒有害物质,增加了废水处理的难度[7]。

2 高浓度有机废水处理技术

高浓度有机废水具有有机物浓度高、成分复杂、色度高、有异味等特点,从纤维乙醇废水的特性可知,纤维乙醇废水属于高浓度有机废水的范畴。

2.1 物理化学处理法

物理化学处理法是利用物理过程或化学过程的单项处理方法,或是由物理方法和化学方法一起组成的废水处理系统,利用物理和化学的综合作用净化废水的方法,以下就物理化学处理方法中的一些新技术作简要评述。

2.1.1 臭氧氧化法(O3/H2O2法) O3/H2O2的作用机理是H2O2加速臭氧分解产生高活性的羟基自由基,使有机物氧化成新的羟基自由基,成为引发剂诱发后面的链反应,从而去除废水中的有机物。臭氧氧化技术在难以进行生物降解的有机废水生物处理中常用作氧化预处理,使其转化成容易降解的有机物。Tizaoui等[8]利用臭氧氧化法处理垃圾渗滤液,使COD的去除率达到48.0%,可生化性由0.1提高到0.7,色度去除率为94.0%。

2.1.2 湿式氧化法 湿式氧化法(又称湿式燃烧法)是在高温(125~320 ℃)高压(0.5~20 MPa)下向废水中通入空气,使废水中的有机物被氧化转变为无机分子或小分子有机物,有机质的去除率可高达99.9%。该法主要用于不适宜燃烧法和生物法处理的有机工业废水或具有较大毒性的有机工业废水[9,10]。

2.1.3 光催化氧化法 光催化氧化法是利用光辐射和氧化剂的协同作用产生具有强氧化性的激发态物质和自由基氧化分解废水中有机物的方法,一类是以光敏化半导体为催化剂,另一类是以化学氧化剂为催化剂,近年来已广泛应用于各类难降解有机废水的试验研究中[11,12]。

光催化氧化法具有设备简单、反应条件温和、操作简单等特点,是一项具有广泛应用前景的新型水处理技术;光催化氧化法适用于废水的高级处理,特别是生物法和化学法难以氧化分解的有机废水的处理。

2.1.4 超声波技术 超声波通过液体介质向四周传播,使溶液中的微小气泡被激化,产生超声空化效应,空化过程中伴随着的高温高压可导致自由基(HO·、HO2·和O·等)、H2O2、超临界水的形成,通过自由基氧化、高温热解和超临界水氧化3种途径来氧化降解有机物。

超声波对难降解的有毒污染物具有操作简单、易于实现、不产生二次污染等优点,但降解速度较慢且能量消耗相对较大。与其他方法联合使用能使处理效率提高,如超声-臭氧氧化法联合能够大幅度提高降解速度,Song等[13]利用超声与臭氧联合降解对硝基甲苯进行处理,取得了较好的效果。

2.1.5 电化学法 电化学法的基本原理是使有机物在电极表面的电化学氧化作用下或由电场作用而产生的自由基作用下发生氧化还原转变[14]。王领等[15]研究了Ta/BDD电极电化学处理超高浓度有机废水,在pH为1、电流密度为0.4 A/cm2左右的条件下,经过6 h电解,废水的COD去除率达到90%以上。

电化学法处理污水可在常温常压下操作,一般具有无需很多化学药品、设备简单、操作方便、投资和运行费用低廉以及与环境兼容等优点。

2.2 生物处理法

自从生物处理法用于处理高浓度有机废水以来,其表现出来的优势就引起了人们的广泛关注[16]。生物处理法[17-19]具有消耗少、效率高、成本低、反应条件温和以及无二次污染等显著特点;另外,生物处理法处理废水的效果好,不仅能去除有机物、病原体和有毒物质,还能去除臭味,提高透明度,降低色度等,这些特点使生物处理法成为废水处理的首要选择。

生物处理法分为好氧处理和厌氧处理,好氧法因为供氧限制一般只适用于中、低浓度有机废水的处理,而厌氧法既适用于高浓度有机废水,又适用于中、低浓度有机废水的处理[20]。高浓度有机废水的COD浓度较高,仅采用单一的厌氧或好氧处理不能达标排放,故通常采用水解-好氧、厌氧-好氧、厌氧-藻类、厌氧-光合细菌等两级处理方法[21]。

2.2.1 厌氧生物处理法 厌氧产沼气是处理高浓度有机废水的常用方法,目前所用的厌氧反应器主要有:普通厌氧消化池、厌氧接触工艺、升流式厌氧污泥床(UASB)、升流式厌氧生物滤床(UAF)、厌氧生物滤池(AF)、厌氧颗粒污泥膨胀床(EGSB)、厌氧流化床反应器和厌氧复合反应器等。

2.2.2 好氧生物处理法 好氧生物处理法分为活性污泥法和生物膜两大类,常用的好氧生物处理法有氧化沟法、接触氧化法、间歇式活性污泥法(SBR)、循环式活性污泥法(CASS)、膜生物反应器(MBR)等。采用一般的废水处理方法处理高浓度有机废水难以满足净化处理的经济和技术要求,因此对其进行净化处理、回收和综合利用研究已逐渐成为国际上环境保护技术的热点研究课题之一[22,23]。

3 燃料乙醇废水处理技术

根据纤维乙醇废水的特征,可以看出废水在经过预处理固液分离后与燃料乙醇废水具有共同的性质[24]。

3.1 农田灌溉法

农田灌溉法[25]是根据燃料乙醇废水含有丰富的有机质以及氮、磷、钾等特点,将废水经过简单的物理方法处理后用来灌溉农田,是较好的肥料,且投资少、操作简单。巴西、澳大利亚、古巴、印度和中国等均采用这一方法处理燃料乙醇废水。但该法技术含量低,若处理不当,不仅会破坏农作物,还会污染地下水,对土壤质量和环境存在潜在的威胁。

3.2 浓缩处理法

浓缩处理法[25]是采用多效蒸发器将燃料乙醇废水蒸发浓缩到含水率为40%(W/W)的泥饼,然后投入到特定燃烧炉中进行燃烧,把生物能转变成热能用来浓缩燃料乙醇废水,浓缩液又用来燃烧产热,形成良性循环,从而实现废水零排放的目的。

浓缩处理法在一定程度上解决了废水排放的问题,治理较为彻底,是目前国内外比较推崇的治理方法,但该法设备投资大,还存在蒸发过程中设备腐蚀和积垢严重等问题,因此其应用的推广受到了较大的限制[26]。

3.3 氧化处理法

催化湿式氧化(CWAO)是利用催化剂在温和的反应条件下(100~300 ℃,1.4~9.0 MPa),以空气中氧气或纯氧气为氧化剂,把高浓度有机废水、难降解或毒害废水中的有机物部分或全部转化为CO2、N2和H2O,或可以被微生物降解的物质。该技术在发达国家倍受重视,中国从20世纪80年代开始对该技术进行研究,研究主要集中在催化剂方面[26]。

该技术操作简单且效率高,但是对水质的要求较高,要求废水中不得含有大量的可污染催化剂的物质(如重金属)以及可能造成设备或管道堵塞的物质(如高浓度盐类)。除此之外,寻找合适的催化剂也是一大难题。

3.4 蛋白质饲料(DDGS)工艺

DDGS工艺的大体步骤是:先将燃料乙醇废水进行固液分离,再将滤液的一部分回用于原料的浸泡及发酵,剩余滤液进行蒸发浓缩,取得浓缩物,然后与固液分离产生的固形物一起进入干燥设备,干燥后挤压成粉状饲料。以玉米为原料生产乙醇产生的废水多采用此工艺。

DDGS工艺基本回收了乙醇废水中的固形物,将其转化为高蛋白质饲料,在消除废水污染的同时又产生了新的经济效益,因此该技术越来越受到人们的关注;但该工艺投资、设备维修率、生产耗能及技术要求都很高,清液浓缩后二次冷凝水仍需要处理,整体经济效益不高[27]。

3.5 生物处理法

由于乙醇废水中的营养物质含量丰富、生化性较好,采用生物处理法对该类废水进行处理是切实可行和经济有效的[28],但单独采用厌氧处理法或好氧处理法都不能将其彻底处理,且运行成本较高,根据国内外类似工程的成功经验,采用厌氧-好氧结合工艺是处理乙醇废水最经济成熟的技术工艺[16,29]。

湿糟渣饲料(DDG)+沼气工艺就是采用生物处理法处理燃料乙醇废水的具体应用,该工艺的技术路线是采用固液分离提取饲料,厌氧处理制取沼气,好氧处理达标排放。采用DDG+沼气工艺处理燃料乙醇废水具有工程投资少、经济效益高和治理污染比较彻底等优点,能较好地解决燃料乙醇废水的综合利用问题。

目前,已有越来越多的生物处理法用于乙醇废水处理当中,并取得了一定的成效,但是仍然存在着一些不足,开发一种先进的组合工艺是处理乙醇废水的关键[30]。

4 纤维乙醇废水处理的研究进展

目前,利用木质纤维素原料生产燃料乙醇的工艺路线已经打通,但是由于其处于刚刚起步阶段,国内外对其废水处理的研究尚不透彻。

朱振兴等[7]采用铁炭微电解-Fenton试剂对纤维乙醇废水进行预处理的研究结果表明,此方法对影响乙醇发酵的抑制剂、色度和COD有较好的去除效果,改善了后续生化处理条件,提高了废水的可生化性;但废水中抑制物并未完全去除,需经生物处理后方可进行回用。

乔华军等[31]采用高负荷UASB工艺厌氧处理秸秆乙醇废水,结果发现在中温(37±2) ℃的环境下,厌氧菌具有很强的适应性和降解能力;在UASB有机负荷为8 kg/(m3·d)和HRT为24 h的条件下,COD去除率在80%以上运行稳定。

于丽新[24]首先利用GC-MS技术和国标方法对纤维乙醇废水进行了定性定量分析,得出该废水是一种高浓度酸性有机废水,B/C约为0.4,可以生化处理;比较了自然沉降、离心分离和板框压滤3种固液分离方法对废水的处理效果,结果说明板框压滤是一种较好的预处理方法;最后针对废水的特点采用预处理(板框压滤)、两相厌氧(产酸相—CSTR反应器、产甲烷相—EGSB反应器)和好氧(SBR反应器)联合处理的小试工艺对纤维乙醇废水进行处理,该工艺最终出水COD浓度为300 mg/L,COD去除率可达到97.7%,同时产生13 L/d的高热值沼气,其中CH4含量为75.45%,该工艺不仅能够有效处理纤维乙醇废水,同时也达到了废物资源化的目的。

石智慧[6]对纤维乙醇废水成分及特性进行了分析,进行了实验室试验、中试、工程化试验。在实验室试验中,对比气浮、微电解/H2O2、Fenton试剂催化氧化预处理以及厌氧工艺、好氧工艺生化处理,结果表明采用微电解+厌氧+好氧实验装置对废水进行处理是可行的;对比絮凝沉淀、ClO2催化氧化、Fenton试剂催化氧化、Fenton试剂催化氧化+接触氧化深度处理,得出Fenton试剂催化氧化效果较好的结论。在中试处理中,采用微电解+厌氧+好氧工艺,出水COD浓度稳定在301~507 mg/L,证明了该工艺的技术可行性;对比ClO2、臭氧、Fenton试剂深度处理,结果说明Fenton试剂的效果较好,可使COD降解45%,之后再采用接触氧化,可实现废水达标排放。基于实验室试验和中试研究,采用预处理+UASB+一级好氧+催化氧化、接触氧化复合好氧的处理工艺建设废水处理工程,结果表明,处理系统运行稳定,COD去除率在95%以上,出水达到污水综合排放一级标准。

综上所述,先对纤维乙醇废水采取物理化学方法进行预处理,不但可以降低或去除部分有毒有害的有机物质,而且可以改善废水的生物降解性,提高可生化性,为后续处理创造了条件;然后采用厌氧-好氧联合工艺处理废水,不仅可以产生沼气,还可以大幅度降低有机物的浓度;最后再经过物理化学方法对废水进行深度处理,即可达到排放标准。

5 小结

采用预处理+厌氧处理+好氧处理+深度处理工艺对纤维乙醇废水进行处理是经济有效的,不仅可以使纤维乙醇废水产生清洁能源沼气,同时还可以使废水得到净化达到排放标准,实现有机废水变废为宝,从而实现经济与环境的双赢。

纤维乙醇废水含有糠醛等抑制产甲烷菌活性的抑制剂,寻找适当的方法消除抑制剂的影响,对废水进行有效的预处理使其满足厌氧发酵的条件成为预处理的关键,也是整个废水处理工艺中的瓶颈所在。

参考文献:

[1] TSOSKOUNOGIOU M, AYERIDES G, TRITOPOULOU E. The end of cheap oil: Current status and prospects[J]. Energy Policy,2008,36(10):3797-3806.

[2] SUKUMARAN R K, SINGHANIA R R, MATHEW G M, et al. Cellulase production using biomass feed stock and its application in lignocelluloses saccharification for bio-ethanol production[J].Renewable Energy, 2009,34(2):421-424.

[3] DWIVEDI P, ALAVALAPATI J R R, LAL P. Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments[J]. Energy for Sustainable Development,2009,13(3):174-182.

[4] FARRELL A E, PLEVIN R J, TURNER B T, et al. Ethanol can contribute to energy and environmental goals[J]. Science,2006,311(5760):506-508.

[5] SOLOMON B D, BARNES J R, HALVORSEN K E. Grain and cellulosic ethanol: History, economics, and energy policy[J]. Biomass and Bioenergy,2007,31(6):416-425.

[6] 石智慧.纤维素乙醇废水生物处理技术研究[D].武汉:武汉理工大学,2010.

[7] 朱振兴,颜涌捷,亓 伟,等.铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2):27-30.

[8] TIZAOUI C, BOUSELMI L, MANSOURI L, et al. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems[J]. Journal of Hazardous Materials, 2007,140 (1-2):316-324.

[9] 张新华,钱晓良,刘石明.新型钛基二氧化铅电极降解苯胺的试验研究[J].武汉科技学院学报,2003,16(2):68-72.

[10] QUINTANILLA A, CASAS J A, RODRIGUEZ J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts original research article[J]. Applied Catalysis B: Environmental,2007,76(1-2):135-145.

[11] CHEN F N, YANG X D, MAK H K C, et al. Photocatalytic oxidation for antimicrobial control in built environment: A brief literature overview[J]. Building and Environment, 2010,45(8):1747-1754.

[12] ZHAO J, YANG X D. Photocatalytic oxidation for indoor air purification:A literature review[J]. Building and Environment,2003,38(5):645-654.

[13] SONG S, XIA M, HE Z Q, et al. Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis[J]. Journal of Hazardous Materials,2007,144(1-2):532-537.

[14] 李炳焕,黄艳娥,刘会媛.电化学催化降解水中有机污染物的研究进展[J].环境污染治理技术与设备,2002,3(2):23-27.

[15] 王 领,常 明,高成耀,等.Ta/BDD电极电化学处理超高浓度有机废水的研究[J].天津理工大学学报,2009,25(1):49-52.

[16] 张 超.厌氧好氧工艺设计处理酒精生产废水[J].污染防治技术,2006,19(2):57-59.

[17] 王洪艳.高浓度有机废水处理的技术进展[J].广东化工,2011, 38(4):168-169.

[18] MIZUNO O, LI Y Y,NOIKE T. The behavior of sulfate reducing bacteria in acidogenic phase of anaerobic digestion[J]. Water Research,1998,32(5):1626-1634.

[19] 王 慧,周月霞,柏仕杰,等.染料废水生物法处理技术的研究进展[J].厦门大学学报,2008,47(A02):286-290.

[20] YI J C, MEI F C, CHUNG L L, et al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal,2009,155(1-2):1-18.

[21] 周燕儿.高浓度有机废水处理技术[J].能源工程,2003(3):40-42.

[22] TOMAR P, SUTHAR S. Urban wastewater treatment using vermi-biofiltration system[J].Desalination,2011,282(SI):95-103.

[23] 朱永全,曾凡中.酒厂高浓度有机废水处理工程设计[J].工业用水与废水,2001,32(1):32-33.

[24] 于丽新.纤维素燃料乙醇废水处理及回用实验研究[D].哈尔滨:哈尔滨工业大学,2010.

[25] 王 炜.酒精废水处理及综合利用研究[D].江苏无锡:江南大学,2006.

[26] 卢堂俊.催化湿式氧化法(CWPO)处理染料废水的实验研究[D].西安:陕西师范大学,2010.

[27] GB 8978-2005. 发酵酒精和白酒工业污染物排放标准[S].

[28] 王凯军,秦人伟.发酵工业废水处理[M].北京:化学工业出版社,2001.

[29] 刘广亮,买文宁,赵雅光.酒精废水处理工程实例[J].工业用水与废水,2007,38(1):86-88.

处理高浓度有机废水的方法篇(3)

有机废水无害化处理的首选方法是生物处理。这是由生物处理所具有的处理的相对彻底性( 无二次污染或二次污染较小)以及运行费用低廉等优点决定的。

根据有机废水处理方面的特性可以将其划分为以下3类:①废水中的有机物易于生物降解,同时废水中的毒物含量很少。这类废水主要是生活污水和来自以农牧产品为原料的工业废水等; ②废水中的有机物易于生物降解,同时废水中的毒物含量较多。这类废水主要来自印染、制革废水等;③废水中所含的有机物难于生物降解(生物降解速度极其缓慢),同时,废水中毒物可能较多、亦可能较少。这类废水主要来自造纸、制药废水等。

第①类废水可直接进行生物处理。第③类废水较为复杂,此处不作讨论。本文主要对第② 类废水中的毒物作用机制及应对措施加以讨论。

1、毒物及其作用机制

废水中凡是能延缓或完全抑制微生物生长的化学物质,统称为有毒有害物质,简称毒物。这些毒物,从化学性质上来分可划分为有机物和无机物两大类。从处理的角度又可划分为能被生物处理段去除、转化的物质(如H2S、苯酚等,或称非稳定性毒物)和不能被生物处理段去除、转化的物质(如NaCl、汞、铜等,或称稳定性毒物)两大类。

毒物对微生物的作用机制主要有如下方式:

(1)损伤细胞结构成分和细胞外膜。如:70%浓度的乙醇能使蛋白凝固达到杀菌作用;酚、甲酚、表面活性剂作用于细胞外膜,破坏细胞膜的半透性。

(2)损伤酶和重要代谢过程。一些重金属(铜、银、汞等)对酶有潜在的毒害作用,甚至在非常低的浓度下也起作用。这些重金属的盐类和有机化合物能与酶的-SH基结合,并改变这些蛋白质的三级和四级结构。

(3)竞争性抑制作用。当废水中存在一种化学结构与代谢物质相类似的有机物时便会发生。因为二者都能在酶的活性中心与酶相结合,它们的竞争将抑制中间产物的形成,使酶的催化反应速率降低。

(4)对细胞成分合成过程的抑制作用。当某些化学物质的结构类似于细胞成分的结构时,它们便会被细胞吸收并同化,结果是合成无功能的辅酶或导致生长停止。这种作用最典型的例子便是磺胺酸。

(5)抗生素对核酸的抑制作用。不少抗生素能专一地抑制原核生物的蛋白质合成,如链霉素会抑制氨基酸正确结合于多肽上。

(6)抗生素对核酸的抑制作用。如丝裂霉系C会选择性地阻止DNA的合成,从而抑制微生物的生长。

(7)对细胞壁合成的抑制作用。如青霉素便是通过干扰细胞壁的合成从而达到抑制微生物生长的效果。

2、菌种承受毒物的能力及菌种驯化法

需说明的是,微生物中存在不少能耐受常用代谢毒物的菌株,有的甚至能利用它们作为能源。化学物质对微生物的抑制作用与其浓度有直接关系,并随微生物的驯化而发生变化,经过驯化的微生物对有毒物质的适应能力将逐步加强。微生物这种巨大的适应性(变异性)是由它们的小体积决定的。如一个微球细胞仅具有约100 000个蛋白质分子所能容纳的空间,如此小的体积决定了那些近期用不着的酶是不能储备的,许多分解代谢酶类只有当存在合适的基质时才会产生。在某些条件下这类可诱导的酶可占蛋白质总含量的10%.正是微生物的这种变异性,才使生物法处理含毒有机废水成为可能。但任何微生物承受毒物的能力都是有一定的极限的(此时的浓度叫极限允许浓度),正是这种极限又要求含毒物有机废水在生物处理前需要一定的预处理。

前已说过,微生物由于其体积的细小,而具有巨大的适应性(变异)。因此可以采用人工改变微生物生活环境的方法进行诱导变异,让微生物直接适应原水中毒物浓度或提高微生物对毒物的去除能力。这种方法对稳定性毒物及非稳定性毒物均适用,是处理含毒有机废水的一种基本方法。

在城市生活污水处理厂中,当进水中酚的浓度突然增加到50 mg/L时,便会对生物处理系统产生巨大的破坏作用。严重时,会导致全系统的崩溃。可是,某焦化厂采用适应性变异的方法对菌种进行驯化即菌种驯化法,使微生物内的酶逐步适应了这种毒物的大量存在,便将这种毒物当成其底物而加以分解吸收。实际运行表明,进水中酚的平均浓度为117.5 mg/L时,酚的去除率高达99.6%.

含酚废水处理是应对一种不稳定性毒物的例子,当毒物很稳定时,亦可采用这种驯化方法以提高微生物对毒物的承受能力。但须注意,这种毒物的浓度必须满足最终出水排放标准或另外采取其它措施加以控制。

3、预处理方法

前已说过,驯化是生物处理法中应对毒物的一种基本方法。但任何微生物承受毒物的能力都是有一定的极限的,毒物浓度超过极限允许浓度时就需要一定的预处理。目前,预处理法主要有稀释法、转化法和分离法。

3.1 稀释法

污水中的毒物之所以成为毒物,是与其浓度有关的。当其浓度超过某一极限允许浓度时,毒物就成为毒物;在极限允许浓度以下时,毒物就不表现出毒性甚至成为营养。当废水中毒物浓度超过生物处理的极限允许浓度时,为保证生物处理的正常进行,可采用简单的稀释法,将废水中毒物浓度降低到极限浓度以下。

根据废水中毒物的稳定或非稳定性质,结合实际情况,可采取3种不同的稀释法:污水稀释法,处理出水稀释法,清水稀释法。

(1)污水稀释法。不同的污水中所含的物质不同,将它们混合起来,彼此稀释,可将毒物浓度降低到极限允许浓度以下,这便是污水稀释法。它最简单、最经济,是首选方法,不论毒物的性质是稳定或非稳定均适用。少量的工业废水混入大量的城市污水中,几乎所有的毒物浓度都会被降低到极限允许浓度以下。但是,少量的工业废水彼此间混合后,毒物浓度仍有可能在极限允许浓度以上,仍需继续采取其它措施。

污水稀释法除了上面所说的不同单位所排废水之间的大稀释外,还有同一工厂不同车间所排废水之间的小稀释。比如,制革工厂中,脱毛工段所排的灰碱废水中S2-的浓度高达1 000 mg/L以上,但脱毛工段所排的灰碱废水只占全厂总排水量的5%左右,只要建一较大的调节池(停留时间HRT一般在12 h左右),不同工段所排废水在此搅拌混合后,总出水中S2-的浓度便可降低到100 mg/L以下。这对后续处理非常有利。

(2)处理出水稀释法。这种方法只适用于废水中的毒物为非稳定这一单一情况。处理出水稀释法又有两种:①曝气池池型采用完全混合式;②处理出水回流稀释法。出于经济方面的考虑,方法①应是首选。

实例:制革废水中S2-的存在对生物处理具有极大的危害,生物处理的极限允许浓度为30 mg/L.制革废水经调节池调节稀释后,进入曝气池时S2-仍然在50 mg/L 以上。以前,许多设计单位主张采用分隔处理,即先把灰碱废水单独进行脱S预处理,把进水中的S2-降低到30 mg/L以下,再进行综合处理。有经验表明,可采用处理出水稀释法来消除S2-对生物处理的影响,不需要进行分隔处理,而直接进行综合处理。东南大学设计的南京制革厂废水处理站,采用的处理流程为调节池初沉池生物处理,生物处理采用的是氧化沟,该氧化沟沟宽6 m,有效水深3 m,沟内水流平均流速0.4 m/s,做如下两个假定:①废水进入氧化沟后经过1周的循环,其中的S2-经曝气氧化后全被去除(被氧化成单体硫或硫代硫酸盐);②废水一进入氧化沟后,横向扩散很好,横断面上各点水质完全相同。按S2- 的极限允许浓度30 mg/L进行计算,理论上可得该氧化沟进水S2-的最大允许浓度为 7776 mg/L.从30 mg/L到7776 mg/L可以看出稀释法的巨大作用。当然,在实际运行中①,②两条假定不可能完全做到,故实际进水最大允许浓度远远不能达到7776 mg /L.根据该厂长达12年的稳定运行经验表明,在调节池出水S2-不超过100 mg/L 的情况下,S2-对氧化沟的稳定运行是完全没有影响的,而且氧化沟出水S2-始终在排放标准1 mg/L以下。这是稀释法成功应用的一个例子。

(3)清水稀释法。这种方法只有在废水中的毒物为稳定性毒物,不能采用处理出水稀释,工厂内部及其附近又没有其它废水可以用来稀释它,而且这种毒物又不能采用分离法或转化法去除时才能使用。这是由于①这种方法的不经济性。采用清水稀释本身就要花费大量的水费;原水采用大量的清水稀释后,处理投资和运行费都要增加。②随着环境管理的加强,已由浓度排放控制过渡到排放总量控制。

实例:南京某石化公司化工二厂废水处理站,进水COD为6 000 mg/L,但同时含有CaCl 250 000 mg/L,如此高的盐度将会极大地抑制生物处理的正常运行,所以在生物处理之前必须对盐加以适当处理。考虑到生物处理对CaCl2无去除或转化作用,其它的分离或转化方法又不经济,该厂地处郊区,附近无其它工厂或本厂的另类废水可利用来稀释,故设计单位与甲方商量后采用了清水稀释法,即将原水加清水稀释10倍,将CaCl2浓度降为5 000 mg/L后,再进行深井曝气法处理,取得了满意的效果。

3.2 转化法

化学物质只有在特定的情况下才会表现毒性,比如,硝基苯毒性较大,转化为苯胺后,毒性就大为降低。Cr6+的毒性很大,可是被还原为Cr3+后,毒性就大为降低。所以,可以通过化学方法,将有机废水中的毒物转化为无毒或毒性较低的物质,以保证生物处理的正常进行。这种方法对稳定性毒物或非稳定性毒物均适用。采用这种方法一定要注意两个问题:①转化后,稳定性毒物的浓度必须在生物处理极限允许浓度以下,非稳定性毒物的浓度必须保证生物处理的正常运行;②最终出水中,毒物浓度也应满足排放标准。

实例:化工废水中的硝基苯是一种毒性较大,可生化性较差的物质。直接对它进行生物处理,由于毒物负荷的限制,使得生化曝气池的BOD负荷极低,效率不高。故绝大多数工程在废水进入曝气池之前进行预处理,用化学法(比如亚铁还原)将硝基苯转化为苯胺,苯胺与硝基苯相比,其毒性大为降低,而且可生化性大幅提高,使曝气池BOD负荷大大提高。

3.3 分离法

利用分离的手段,将废水中的毒物转移到气相或固相中去,以保证废水生物处理的正常运转,这便是分离法的原理。此法对稳定性或非稳定性毒物均适用。采用这种方法时应注意如下几点:①分离后,废水中稳定性毒物浓度必须在生物处理的极限允许浓度之下,非稳定性毒物的浓度必须保证生物处理的正常运行;②必须保证最终出水各项指项(包括毒物)达到国家排放标准;③转移到气相或固相的毒物必须进行妥善处理,不允许出现二次污染。

实例:制革废水中S2-是一种毒物,我们可以向废水中投加Fe2+使之形成FeS沉淀去除,出水可以直接进行生物处理而不受S2-的影响,沉淀的FeS可以送去制砖或进行填埋处理;亦可以向废水中加酸,将废水中的S2-形成H2S吹脱到空气中去,用NaOH吸收后形成Na2S再回用于制革生产。

4、结语

为保证生物处理的正常进行,可采用的消除毒物影响的措施是很多的,如何从繁多的方法措施中选择一个最佳方案,是一个全系统优化课题。优化的原则是:①废水中各项指标(包括毒物)必须达到国家排放标准;②必须保证生物处理的正常运行;③在此基础上,应努力追求工艺流程简单、投资省、运行费用低、无二次污染以及管理方便。

处理高浓度有机废水的方法篇(4)

有机废水无害化处理的首选方法是生物处理。这是由生物处理所具有的处理的相对彻底性(无二次污染或二次污染较小)以及运行费用低廉等优点决定的。

根据有机废水处理方面的特性可以将其划分为以下3类:①废水中的有机物易于生物降解,同时废水中的毒物含量很少。这类废水主要是生活污水和来自以农牧产品为原料的工业废水等;②废水中的有机物易于生物降解,同时废水中的毒物含量较多。这类废水主要来自印染、制革废水等;③废水中所含的有机物难于生物降解(生物降解速度极其缓慢),同时,废水中毒物可能较多、亦可能较少。这类废水主要来自造纸、制药废水等。

第①类废水可直接进行生物处理。第③类废水较为复杂,此处不作讨论。本文主要对第②类废水中的毒物作用机制及应对措施加以讨论。

1、毒物及其作用机制

废水中凡是能延缓或完全抑制微生物生长的化学物质,统称为有毒有害物质,简称毒物。这些毒物,从化学性质上来分可划分为有机物和无机物两大类。从处理的角度又可划分为能被生物处理段去除、转化的物质(如H2S、苯酚等,或称非稳定性毒物)和不能被生物处理段去除、转化的物质(如NaCl、汞、铜等,或称稳定性毒物)两大类。

毒物对微生物的作用机制主要有如下方式:

(1)损伤细胞结构成分和细胞外膜。如:70%浓度的乙醇能使蛋白凝固达到杀菌作用;酚、甲酚、表面活性剂作用于细胞外膜,破坏细胞膜的半透性。

(2)损伤酶和重要代谢过程。一些重金属(铜、银、汞等)对酶有潜在的毒害作用,甚至在非常低的浓度下也起作用。这些重金属的盐类和有机化合物能与酶的-SH基结合,并改变这些蛋白质的三级和四级结构。

(3)竞争性抑制作用。当废水中存在一种化学结构与代谢物质相类似的有机物时便会发生。因为二者都能在酶的活性中心与酶相结合,它们的竞争将抑制中间产物的形成,使酶的催化反应速率降低。

(4)对细胞成分合成过程的抑制作用。当某些化学物质的结构类似于细胞成分的结构时,它们便会被细胞吸收并同化,结果是合成无功能的辅酶或导致生长停止。这种作用最典型的例子便是磺胺酸。

(5)抗生素对核酸的抑制作用。不少抗生素能专一地抑制原核生物的蛋白质合成,如链霉素会抑制氨基酸正确结合于多肽上。

(6)抗生素对核酸的抑制作用。如丝裂霉系C会选择性地阻止DNA的合成,从而抑制微生物的生长。

(7)对细胞壁合成的抑制作用。如青霉素便是通过干扰细胞壁的合成从而达到抑制微生物生长的效果。

2、菌种承受毒物的能力及菌种驯化法

需说明的是,微生物中存在不少能耐受常用代谢毒物的菌株,有的甚至能利用它们作为能源。化学物质对微生物的抑制作用与其浓度有直接关系,并随微生物的驯化而发生变化,经过驯化的微生物对有毒物质的适应能力将逐步加强。微生物这种巨大的适应性(变异性)是由它们的小体积决定的。如一个微球细胞仅具有约100000个蛋白质分子所能容纳的空间,如此小的体积决定了那些近期用不着的酶是不能储备的,许多分解代谢酶类只有当存在合适的基质时才会产生。在某些条件下这类可诱导的酶可占蛋白质总含量的10%.正是微生物的这种变异性,才使生物法处理含毒有机废水成为可能。但任何微生物承受毒物的能力都是有一定的极限的(此时的浓度叫极限允许浓度),正是这种极限又要求含毒物有机废水在生物处理前需要一定的预处理。

前已说过,微生物由于其体积的细小,而具有巨大的适应性(变异)。因此可以采用人工改变微生物生活环境的方法进行诱导变异,让微生物直接适应原水中毒物浓度或提高微生物对毒物的去除能力。这种方法对稳定性毒物及非稳定性毒物均适用,是处理含毒有机废水的一种基本方法。

在城市生活污水处理厂中,当进水中酚的浓度突然增加到50mg/L时,便会对生物处理系统产生巨大的破坏作用。严重时,会导致全系统的崩溃。可是,某焦化厂采用适应性变异的方法对菌种进行驯化即菌种驯化法,使微生物内的酶逐步适应了这种毒物的大量存在,便将这种毒物当成其底物而加以分解吸收。实际运行表明,进水中酚的平均浓度为117.5mg/L时,酚的去除率高达99.6%.

含酚废水处理是应对一种不稳定性毒物的例子,当毒物很稳定时,亦可采用这种驯化方法以提高微生物对毒物的承受能力。但须注意,这种毒物的浓度必须满足最终出水排放标准或另外采取其它措施加以控制。

3、预处理方法

前已说过,驯化是生物处理法中应对毒物的一种基本方法。但任何微生物承受毒物的能力都是有一定的极限的,毒物浓度超过极限允许浓度时就需要一定的预处理。目前,预处理法主要有稀释法、转化法和分离法。

3.1稀释法

污水中的毒物之所以成为毒物,是与其浓度有关的。当其浓度超过某一极限允许浓度时,毒物就成为毒物;在极限允许浓度以下时,毒物就不表现出毒性甚至成为营养。当废水中毒物浓度超过生物处理的极限允许浓度时,为保证生物处理的正常进行,可采用简单的稀释法,将废水中毒物浓度降低到极限浓度以下。

根据废水中毒物的稳定或非稳定性质,结合实际情况,可采取3种不同的稀释法:污水稀释法,处理出水稀释法,清水稀释法。

(1)污水稀释法。不同的污水中所含的物质不同,将它们混合起来,彼此稀释,可将毒物浓度降低到极限允许浓度以下,这便是污水稀释法。它最简单、最经济,是首选方法,不论毒物的性质是稳定或非稳定均适用。少量的工业废水混入大量的城市污水中,几乎所有的毒物浓度都会被降低到极限允许浓度以下。但是,少量的工业废水彼此间混合后,毒物浓度仍有可能在极限允许浓度以上,仍需继续采取其它措施。

污水稀释法除了上面所说的不同单位所排废水之间的大稀释外,还有同一工厂不同车间所排废水之间的小稀释。比如,制革工厂中,脱毛工段所排的灰碱废水中S2-的浓度高达1000mg/L以上,但脱毛工段所排的灰碱废水只占全厂总排水量的5%左右,只要建一较大的调节池(停留时间HRT一般在12h左右),不同工段所排废水在此搅拌混合后,总出水中S2-的浓度便可降低到100mg/L以下。这对后续处理非常有利。

(2)处理出水稀释法。这种方法只适用于废水中的毒物为非稳定这一单一情况。处理出水稀释法又有两种:①曝气池池型采用完全混合式;②处理出水回流稀释法。出于经济方面的考虑,方法①应是首选。

实例:制革废水中S2-的存在对生物处理具有极大的危害,生物处理的极限允许浓度为30mg/L.制革废水经调节池调节稀释后,进入曝气池时S2-仍然在50mg/L以上。以前,许多设计单位主张采用分隔处理,即先把灰碱废水单独进行脱S预处理,把进水中的S2-降低到30mg/L以下,再进行综合处理。有经验表明,可采用处理出水稀释法来消除S2-对生物处理的影响,不需要进行分隔处理,而直接进行综合处理。东南大学设计的南京制革厂废水处理站,采用的处理流程为调节池初沉池生物处理,生物处理采用的是氧化沟,该氧化沟沟宽6m,有效水深3m,沟内水流平均流速0.4m/s,做如下两个假定:①废水进入氧化沟后经过1周的循环,其中的S2-经曝气氧化后全被去除(被氧化成单体硫或硫代硫酸盐);②废水一进入氧化沟后,横向扩散很好,横断面上各点水质完全相同。按S2-的极限允许浓度30mg/L进行计算,理论上可得该氧化沟进水S2-的最大允许浓度为7776mg/L.从30mg/L到7776mg/L可以看出稀释法的巨大作用。当然,在实际运行中①,②两条假定不可能完全做到,故实际进水最大允许浓度远远不能达到7776mg/L.根据该厂长达12年的稳定运行经验表明,在调节池出水S2-不超过100mg/L的情况下,S2-对氧化沟的稳定运行是完全没有影响的,而且氧化沟出水S2-始终在排放标准1mg/L以下。这是稀释法成功应用的一个例子。

(3)清水稀释法。这种方法只有在废水中的毒物为稳定性毒物,不能采用处理出水稀释,工厂内部及其附近又没有其它废水可以用来稀释它,而且这种毒物又不能采用分离法或转化法去除时才能使用。这是由于①这种方法的不经济性。采用清水稀释本身就要花费大量的水费;原水采用大量的清水稀释后,处理投资和运行费都要增加。②随着环境管理的加强,已由浓度排放控制过渡到排放总量控制。

实例:南京某石化公司化工二厂废水处理站,进水COD为6000mg/L,但同时含有CaCl250000mg/L,如此高的盐度将会极大地抑制生物处理的正常运行,所以在生物处理之前必须对盐加以适当处理。考虑到生物处理对CaCl2无去除或转化作用,其它的分离或转化方法又不经济,该厂地处郊区,附近无其它工厂或本厂的另类废水可利用来稀释,故设计单位与甲方商量后采用了清水稀释法,即将原水加清水稀释10倍,将CaCl2浓度降为5000mg/L后,再进行深井曝气法处理,取得了满意的效果。

3.2转化法

化学物质只有在特定的情况下才会表现毒性,比如,硝基苯毒性较大,转化为苯胺后,毒性就大为降低。Cr6+的毒性很大,可是被还原为Cr3+后,毒性就大为降低。所以,可以通过化学方法,将有机废水中的毒物转化为无毒或毒性较低的物质,以保证生物处理的正常进行。这种方法对稳定性毒物或非稳定性毒物均适用。采用这种方法一定要注意两个问题:①转化后,稳定性毒物的浓度必须在生物处理极限允许浓度以下,非稳定性毒物的浓度必须保证生物处理的正常运行;②最终出水中,毒物浓度也应满足排放标准。

实例:化工废水中的硝基苯是一种毒性较大,可生化性较差的物质。直接对它进行生物处理,由于毒物负荷的限制,使得生化曝气池的BOD负荷极低,效率不高。故绝大多数工程在废水进入曝气池之前进行预处理,用化学法(比如亚铁还原)将硝基苯转化为苯胺,苯胺与硝基苯相比,其毒性大为降低,而且可生化性大幅提高,使曝气池BOD负荷大大提高。

3.3分离法

利用分离的手段,将废水中的毒物转移到气相或固相中去,以保证废水生物处理的正常运转,这便是分离法的原理。此法对稳定性或非稳定性毒物均适用。采用这种方法时应注意如下几点:①分离后,废水中稳定性毒物浓度必须在生物处理的极限允许浓度之下,非稳定性毒物的浓度必须保证生物处理的正常运行;②必须保证最终出水各项指项(包括毒物)达到国家排放标准;③转移到气相或固相的毒物必须进行妥善处理,不允许出现二次污染。

实例:制革废水中S2-是一种毒物,我们可以向废水中投加Fe2+使之形成FeS沉淀去除,出水可以直接进行生物处理而不受S2-的影响,沉淀的FeS可以送去制砖或进行填埋处理;亦可以向废水中加酸,将废水中的S2-形成H2S吹脱到空气中去,用NaOH吸收后形成Na2S再回用于制革生产。

4、结语

为保证生物处理的正常进行,可采用的消除毒物影响的措施是很多的,如何从繁多的方法措施中选择一个最佳方案,是一个全系统优化课题。优化的原则是:①废水中各项指标(包括毒物)必须达到国家排放标准;②必须保证生物处理的正常运行;③在此基础上,应努力追求工艺流程简单、投资省、运行费用低、无二次污染以及管理方便。

处理高浓度有机废水的方法篇(5)

关键词:高盐有机废水 处理技术 研究与发展

高盐度,也就是所说的含盐度高于1%,即盐度大于10g/L。而高盐度废水,不仅包含无机盐,其中还含有大量有机物和总溶解性固体物。高盐度废水主要来自于海水的利用,例如,当海水用于生活用水与工业用水时,排放的废水中含有大量的无机盐,这些无机盐逐渐形成高盐度废水;还有一种情况就是许多工业部门,诸如海产品、奶制品加工、肉类加工、制药和发酵等工业部门,随意排放废水,形成了高盐度废水。另外一种高盐废水来源于多方面,主要是一些污染严重,又未经处理的废水形成的。目前,处理高含盐度有机废水的方法有很多种,而常规的处理方法不适宜去处理,现有的处理方法又存在较多的劣势,高效处理高盐有机废水是当前治理环境的重要任务。

一、高盐有机废水处理技术研究现状

1.驯化污泥处理高盐有机废水

世界上许多先进的国家投入大量的资金去研究高含盐有机废水的生物处理方法,研究的重点主要放在了污泥的驯化方式与机制,同时取得了一定的进展。在研究处理方法的过程中,他们以有机物去除率、系统的稳定性、系统容积负荷等一系列指标为基准,对驯化污泥处理技术和高盐有机废水生化处理工艺设计参数进行了细致的研究。

1.1传统活性污泥法

在许多处理方法中,有一种方法是培养出一种微生物去处理,这种微生物是经过了活性污泥的驯化,具有良好的降解性与耐盐性。培养这种微生物不仅是有效处理高盐有机废水的条件,而且这种方法是处理高盐有机废水最普及的一种,人们通常称这种方法为传统活性污泥法。

1.2 SBR及其改良工艺

另一种处理方法以及它的改良工艺完全优于传统活性污泥法,具有较强的灵活性与抗负荷能力,它的许多优势是许多方法不能够相提并论的,这种方法通常称为序批式活性污泥法(SBR)。

张华与张学洪在研究高盐度采油废水处理工艺的调试与运行时采用了先进的ABR+SBR组合的方法。这种方法的优点在于出水的质量比污水综合排放标准(GB8978-1996)要优,它的工作原理是在污泥的培养驯化期间,有效控制水的比例(污水于清水)。随着清水的减少,盐度也会相应地提高,最终其盐度与污水相同。污泥中筛选出的耐盐菌可以在污水中生存,生物处理系统趋于稳定。

1.3生物膜法

还有一种较为节省时间的方法,这种方法的抗毒性与抗冲击性较前两种方法都有比较大的提高,它有利于对污泥龄的维持,同时对生物的稳定也有积极作用,这种方法被称为生物膜法。

张明生与齐永红在处理高含盐度废水时采用了生物接触氧化法。它的目的是为了研究当盐浓度升高时,系统是否对COD去除率和抗冲击力产生较大的影响。经研究得知,当进水硫代硫酸钠浓度、出水COD浓度、COD去除率分别保持在573”—”14812mg/L、500mg/L、91~95%时,抗冲击能力以及恢复程度较好。

2.利用嗜盐菌处理高盐有机废水

嗜盐菌是一种生活在高盐度环境中的细菌,嗜盐菌具有异常的膜,只有在高盐浓度下才能保持稳定。在处理高盐有机废水时,利用嗜盐菌的特点可以减小盐浓度对有机废水生物处理系统的压力。

C.R.Woolard在处理高含盐度有机废水时采用了嗜盐菌,实验中的嗜盐菌从大盐湖中提取出来,经过试验,得出以下结论,当序批式反应器中盐、氨、磷等物质浓度达到15%时,酚就可降解。合成酚废水(含1~15%的盐)经过7小时的反应处理后,酚基本去除,出水悬浮物、SVI浓度都保持在合理范围内。

F.Kargi在处理高含盐度有机废水时采用了嗜盐菌,不同的是该实验室在好氧序批式反应器中进行的。在一定时间内,废水中的COD得到大规模去除。实验表明,耐盐菌有利于去除废水中的COD,去除效率远大于普通活性污泥处理法。

李维国与马放在利用嗜盐菌处理高盐制革废水时是在SBR反应器中进行的,实验中的嗜盐菌在晒盐池的盐水中提取,并与生物活性碳技术同时进行实验,得出以下结果,经过较长时间处理高盐制革废水,CODcr、COD都得到比较理想的去除。该实验说明了“嗜盐生物活性碳”技术可有效治理高盐制革废水。

综上所述,嗜盐菌在处理高盐有机废水方面具有巨大的优势,它处理工艺简单、处理周期短,这些优势使得嗜盐菌会有广阔的发展前景,在处理污水方面必将会大范围的替代传统污水处理法。

二、已有研究及技术的不足与发展趋势

在目前已有的高盐废水处理技术中,依然存在着一些技术难题问题,例如,在高盐有机废水生化处理过程中,盐分的浓度对微生物的生产有着较显著的影响,微生物不能适应高盐度的环境,而经高盐度环境驯化之后的微生物种类会减少,这又会影响生物系统的稳定性;微生物的驯化过程同样存在着周期长、启动慢、技术难度大等难以解决的问题;除此之外,在嗜盐菌强化处理高盐有机废水的研究中,研究没有形成一定的体系,研究对象单一,研究过程较为复杂。在这些缺陷上还有待研究,进一步扩大嗜盐菌在处理有机废水领域的使用范围。 上述问题在高盐有机废水处理技术的研究与实践中已经逐渐引起学界重视,相信在今后的技术研究中,解决这些问题将会成为重点研究方向。

三、总结

综上所述,生物处理法在废水处理中体现出较强的经济型和有效性,但是高盐有机废水的高盐度对生物的毒害作用制约着常规生物处理对该种污水的处理效率,对此应强化对嗜盐菌株的筛选与培养,进一步提升生物处理法对高盐有机废水的处理效率。

参考文献

[1]信欣、王焰新、羊依金等.生物强化技术处理高盐有机废水.[J].水处理技术.2008,34(8):66-70.

[2]邹小玲、丁丽丽、赵明宇.高盐度废水生物处理研究.[J].工业水处理.2008,28(9):1-4.

处理高浓度有机废水的方法篇(6)

关键词:高浓度;发酵废水;处理技术

Abstract: in the promotion of economic and technical development, effectively promotes the development in our country, some biochemical manufacturing industry, a large number of high concentration fermentation wastewater will be produced in the biochemical industry development, this kind of wastewater pollutant concentration is very high, has good biodegradability. So, how to deal with these wastewater has become a very important work.

Keywords: high concentration; fermentation wastewater; treatment technology

因生化行业的不断发展,出现了越来越多的高度浓度发酵废水,严重威胁着人类的健康。所以,面对这样的情况,如何进行高度浓度发酵废水的处理,就显得非常重要。对此,文章通过下文对相关方面的内容进行了分析与阐述,从而为有关单位及工作人员在实际工作中提供一定的帮助作用。

1、分析高浓度发酵废水

味精废水、淀粉废水、啤酒废水和酒精废水等为主要的高浓度发酵废水,这种类型的废水不但有着较高的COD、氨氮等污染物,而且处理难度大,成分复杂。当前主要通过UASB、EGSB、IC厌氧反应器等为主体的方法来处理高浓度发酵废水,厌氧处理方法效果优越,其中水解、酸化与甲烷化为其中三个关键性阶段,其有着较强的理论优势,一方面其有着较高的容积负荷,这样在对高浓度废水进行降解的过程中效果会非常明显;其次,对于厌氧处理过程中所生成的沼气也可回收再利用,“变废为宝”,此外,此类处理方式也渐渐走向了成熟。然而,在对废水处理的过程中也会面临一定的困难[1]。例如,对于PH、DO和温度等方面的操作都有极高的要求,很多的时候,反应器很难将最高效状态呈现出来,很难发挥出较高的降解效率。当前,我们国家的很多企业在进行制造生产中都会生成这些高浓度发酵废水,然而规模都不会太大,也不会有过大的沼气量,所以应用起来就会非常困难,因为发酵行业在浸泡原材料时,有着较高的机械强度,对可溶性蛋白不能全部分离。此外,为了对微生物的孽生繁衍进行抑制,在浸泡的过程中将一定量的亚硫酸溶液加入进去,从而确保有一定的SO42和SO32存在于其中。在厌氧环境下,二者对甲烷菌有着极强的毒害和抑制作用。

2、具体的处理技术分析

1、厌氧处理法的应用

在对高浓度有机废水进行处理中,厌氧处理法在其中发挥着重要的作用,其中厌氧复合床、厌氧膨胀颗粒污泥床、厌氧内循环反应器、厌氧过滤器和上流式厌氧污泥床为其中的主要技术类型。同好氧处理进行对比,厌氧处理具备相应的优势,处理期间不会生成过多的污泥,较低的能耗,沼气可以被回收,将高浓度污染物降解成低浓度[2]。

例如,在对抗生素废水处理时,应用了全新的厌氧反应器,结合AF和UASB的优点,大大的改善了反应器的性能,例如,对乙酰螺旋霉素、维生素 C等制药废水进行处理中,可以应用完全混合式反应器或者生流式厌氧污泥床。此系统有着较强的抗冲击负荷能力,可以有效的处理磺胺二甲嘧啶。或者通过膨胀颗粒污泥床,处理高能度发酵废水,通常在15℃以下完成, 5~20 kgCOD(/m3・d)的有机负荷,在经过了450d的运转以后,会有着60%-70%的COD去除率。

2、好氧处理技术

①、一般由载体、曝气系统和池体一同构成了生物膜反应器,在水中浸没载体,在载体处通过废水时,就会截留悬浮物,并且有很多的胶状物被载体的表面吸附,将良好的栖息与繁殖环境为微生物创造出来,这样一层生物膜就被构造了出来,通过传质,废水将有机物输送到生物膜表层,然后进行相应的净化处理。在此过程中,会不断的增加生物膜,在达到某种厚度后,因为没有充足的氧气存在于内部,这样厌氧分解就会取代以前的需氧分解,渐渐的衰亡了微生物,并且从载体表现渐渐的脱落了生物膜,顺着水流往沉淀池中进入,从而完成相应的处理工作[3]。

②、活性污泥技术

这为人工水体自净强化法,基本机理是将活性污泥当做主体,通过好氧细菌对污水里面的有机物质进行分解,例如,在对氨基酸废水中有机物进行处理时,该废水池内的水温在28-35℃之间,8h-10h的水质停留时间,当DO在1mg/L-3mg/L控制时,此技术在去除COD、氨氮和TSS时,去除率能够达到90%、85%和95%。

3、物理化学技术

①、湿式催化氧化技术

在高压与高温的状态下,将空气中的氧气、臭氧和过氧化氢作为氧化剂,在催化剂的帮助下,把废水里面的有机物氧化为谁与二氧化碳。这种方法氧化速度快、效率高。

②、将Fe2+和H2O2结合起来构成Fenton试剂,在经过反应之后,将有着极强氧化功能的・OH生成出来,这样对废水里面的有机物能偶有效的进行氧化处理。在有着适宜的PH值时,铁离子在试剂内部发挥着沉淀和絮凝的作用,从而将COD的浓度进一步降低,有机物的混凝和氧化是有机物在废水处理中的主要作用。例如,在核苷发酵废水处理中,当COD浓度为5600mg/L时,Fe2+和H2O2的比例为1:2时,就会有着90%的COD去除率,从而就会有效的降低出水有机物浓度[4]。

③、超临界氧化技术,当水的临界压力或者临界温度低于压力和温度时,有氧化反应现象出现在水中,在超临界的状态下,水的扩散系数、介电常数、粘度和密度等都会发生一定的变化,其中的氧气和游击区可以通过一定的比例混合到一起,然后强化氧化反应就会迅速发生,然后将水中的有机质去除掉,在石化和化工等昂也中都比较适合应用这种方法进行废水处理。

结语:

进入21世纪以来,我国生化行业、生产制造行业都进入了一个全新的发展阶段,但是,很多行业在生产中,会生成很多的高度浓度发酵废水,为我们的生存环境带来了较大的威胁,对此,文章通过对高浓度发酵废水处理技术工艺的相关内容进行了阐述,从而为有关单位及工作人员在实际工作中提供一定的帮助作用。

参考文献:

[1]涂孟波.UASB工艺处理啤酒废水的调试运行与参数优化[J].江西科学.2006,24(06):502-504.

[2]李亚峰, 陈涛, 金亚斌等.玉米淀粉废水处理中 UASB 反应器内颗粒污泥特性及其影响因素的研究[J].沈阳建筑大学学报.2006,22(06):962-967.

[3]刘文剑,刘扬林,刘淑云等.糖蜜废水处理与资源化研究进展[J].中国资源综合利用.2009,27(07):39-41.

处理高浓度有机废水的方法篇(7)

关键词:乳化废液 湿式氧化出水 生化处理 分离技术

乳化废液也称高浓度乳化废水,属于高浓度难降解废水,目前在工程实际中还没有一种切实可行的治理措施,问题的关键在于预处理技术不过关。由于传统的预处理方法如粗粒化、电解破乳浮选、吸附等技术难以实现污染物的有效分离,新兴的膜分离技术用于含非离子表面活性剂的乳化废水的处理时易造成严重的膜面污染,因而都难以推广应用[1],而湿式氧化方法[2、3]却能有效地分解乳化废水中的高分子有机物,并解除其生物毒性,是有效的预处理技术。采用湿式空气氧化法处理乳化废水,在200~220 ℃的操作条件下能够得到较高的有机物去除率,但是若原水浓度很高时也难以做到一步达标。由于该工艺[4]的设备投资及运行成本(主要是空压机能耗)较高,因此考虑采用湿式氧化作 为预处理手段以改善废水的可生化性,再以生化方法彻底解除污染是本研究的思路[5]。针对乳化废液的湿式空气氧化出水开展SBR间歇工艺处理研究的目的在于为该种废水的后续处理摸索现实可行的途径。 1 试验材料及方法 1.1 试验材料

未经处理的乳化废液主要成分是非离子表面活性剂及其毒性助剂。取某汽车空调器生产车间产生的铝制品清洗废液,其CODCr浓度达50000 mg/L,试验用水为其经过200 ℃ 和220 ℃ 氧化2 h后的出水。在此条件下,氧分压为1.2 MPa、反应2 h分别获得75%和85%的COD去 除率。经对比可知,未经氧化的乳化废液表观呈乳白色浆状,经过氧化后的出水为透明的黄色或淡黄绿色,其CODCr浓度为8000~14 000 mg/L,pH值为4.20左右。SBR好氧试验用水为该湿式氧化出水经稀释配制而成。

1.2 试验设备

试验用2个筒式间歇生化处理装置(SBR),其容积分别为3 L和2 L。

其中3 L反应器主要用来研究进水CODCr浓度为2 000~3 000 mg/L的情况,2 L反应器则针对进水COD为1 000~2 000 mg/L的情况。SBR装置的运行周期为1 d,进水为0.5 h、沉淀为1.5 h、排水为0.5 h,排水量和进水量均为容积的1/2。

1.3 试验方法

由于直接利用的湿式氧化出水在厌氧工况下几乎没有降解效果,因此SBR试验主要考察了好氧状态下的生物降解情况。氧化出水稀释成一定浓度、再调节pH值后送进SBR反应器内,然后开启曝气装置进行反应,反应结束后沉淀排水。在进水后每隔2 h取样一次,在曝气时段的中间处取样100 mL用于MLSS的测定以了解其沉降性能。

1.4 测试指标[6]及方法

测定项目及方法见表1。 表1 测定项目及方法 测试指标 方法 CODCr 重铬酸钾法 BOD5 稀释接种法 生物毒性 DXY—2检测仪 挥发酸 蒸馏滴定法 注: 生物毒性检测装置采用中科院南京土壤研究所研制的DXY—2型生物毒性检测仪。 2 可生化性分析

对于工业废水,若单纯采用B/C值来衡量其可生化性则存在较大的局限性。对于含化学合成产品的废水,由于其成分复杂,在BOD5测定中需采用高倍稀释的方法,难以 真正体现废水的可生化性,但B/C值又是判断可生化性的一个基本前提,因此 在进行生化试验之前从多方面考察了湿式氧化出水的可生化性。

2.1 B/C值

乳化废液在未氧化之前,其B/C值在0.05~0.10左右,可生化性极差。经过温度为2 00 ℃、氧分压为1.2 MPa氧化2 h后,出水CODCr浓度为12 000 mg/L左右, B/C平均值提高至0.51;在220 ℃、氧分压为1.2 MPa氧化2 h后,其CODCr 可由原来的50 000 mg/L降至9 000 mg/L左右,B/C平均值提高至0.55。若单从 B/C值来看,经湿式氧化后废水具有良好的可生化性。

2.2 生物毒性变化

经检测,未经处理的乳化废液具有很高的毒性,与0.12 mg/L氯化汞溶液的毒性相当;而经过200 ℃和220 ℃氧化后的废水仅相当于0.02 mg/L氯化汞溶液的毒性。

2.3 废水成分的变化

未经氧化的废水按照对COD贡献率分析,其非离子表面活性剂约占80%,矿物油占10%,其他添加剂占10%。在200 ℃下、氧化2 h后出水中低级脂肪酸(乙酸)含量大约在30%左右,其作为挥发酸约占COD贡献率为49%,而最终出水中不仅存在挥发酸(如乙酸),还存在小分子的醇类(如甲醇、乙醇以及低级醚、低级酯等),估计小分子有机物总量可在50%以上,因此在毒性基本解除的情况下,该废水完全有可能采用生化工艺进一步处理。 3 SBR试验结果与讨论

SBR工艺操作过程一般分为进水、反应、沉淀、排水、闲置5个阶段,影响处理过程的因素主要是好氧曝气时间,因此重点考察了曝气时间对不同进水负荷下有机物去除率的影响。试验污泥浓度为2 500~6 000 mg/L,起始VSS/TSS为0.60,正常运行后VSS/ TSS为0.87左右,污泥活性高、沉降性能良好。

3.1 原水pH值的调节

试验用水(湿式氧化后出水)pH值一般较低(pH=4.2左右),从微生物生存的一般环境来说,污水环境的pH值不能低于细菌细胞的等电点,pH值过低和过高均会破坏细菌的细胞外壁结构,因此在好氧运行时必须对原水pH值稍加调节。SBR体系的缓冲能力试验结果.

调节SBR系统进水pH值为5.0左右,则COD去除率稳定在94%左右。起始点进水 CODCr为500 mg/L时,第1天调节进水pH值为4.70,则有机物去除率较低;第 10天的有机物去除率也很低是由于经过污泥取样分析后使污泥浓度骤然下降所致。

3.2 处理效果 试验用活性污泥为某污水处理站MSBR中试剩余污泥,具有较好的活性。初期以低负荷(COD Cr为300~500 mg/L)进行驯化,经过一周培养后污泥由黑褐色变成灰褐色、黄色,污泥絮体也由原来的细末变成粗大的矾花状,污泥沉降比达50%,1.5 h基本完成整个沉淀过 程。培养稳定后逐渐提高进水有机物负荷,每一进水负荷均运行一周左右再进行下一操作。SBR1#(3 L)装置从进水CODCr为500 mg/L开始提高负荷。

当进水CODCr为1 000 mg/L、曝气时间为8 h时,COD去除率达96%左右;当进水CODCr浓度为2 000 mg/L、曝气时间由8 h调整为10 h时,COD去除率为95% 左右;当进水CODCr为2 500 mg/L、曝气时间为10 h时,COD去除率为93%;若延长曝气时间至12 h, COD去除率上升至95%左右;当进水CODCr浓度升至3 000 mg/L、曝气时间为12 h或14 h时,有机物去除率均在93%以上。

3.3 进水浓度和污泥浓度

进水有机物浓度和污泥负荷是影响总有机物去除效率的重要因素。不同进水浓度和污泥负荷下的运行结果见表2。 表2 各工况运行参数 进水COD(mg/L) 进水 曝气 沉淀 排水 MLSS(mg/L) Ns [kgCOD/kgMLSS·d] 出水COD(mg/L) COD去除率 (%) (h)1.5 1000 0.5 10 1.5 0.5 2467 0.641 61.5 95.2 1500 0.5 10 1.5 0.5 2783 0.591 84.1 95.0 2000 0.5 10 2.0 0.5 3560 0.479 97.0 95.4 2500 0.5 10 2.0 0.5     126 96.3 2500 0.5 12 2.0 0.5     115 96.1 2500 0.5 14 2.0 0.5 5924 0.465 91.6 95.6 3000 0.5 12 2.0 0.5     118 95.9 3000 0.5 14 2.0 0.5 5277 0.611 133 94.4

当进水CODCr浓度为1000、1 500 mg/L、污泥浓度为2 500~2 800 mg/L、污泥负荷为0.6 kgCOD/(kgMLSS·d)时,COD去除率为95%;随着进水COD浓度的进一步提高,污泥增长加快,当进水CODCr浓度为2 000~3 000 mg/L、污泥负荷下降至0.5 kgCOD/ (kgMLSS·d)甚至更低时,COD去除率则提高至96%;当进水COD浓度为3 000 mg/L、运行时间较长、后期由于取样及排泥和延长曝气时间等原因而使污泥浓度下降、污泥负荷提高时,COD去除率降至94%。在污泥负荷<0.5 kgCOD/(kgMLSS·d)、进水CODCr为3 000 mg/L时,出水CODCr为100~120 mg/L。

3.4 有机物降解过程

为了解有机物随时间变化的降解情况,对进水CODCr为1 000~3 000 mg/L的各种工况进行了有机物降解过程的考察,即每一浓度条件下呈现出相似的规律:初期具有较高的降解速率,后期降解缓慢;约98%~99%的有机物是在开始曝气后5 h之内完成的。

由于是小试,曝气时间长,污泥浓度提高较慢,特别是测量污泥浓度会大量减少污泥量,因而在试验规模的污泥浓度下,曝气几小时较难保证出水CODCr在100 mg/L以下。实际应用时可以较低曝气时间运行,不断提高污泥浓度(SBR工艺的一个特点就是可以获得很高的污 泥浓度),这样即使进水有机物浓度达到3 000 mg/L,在提高污泥浓度、降低污泥负荷后, 出水达标也是可能的。

3.5 处理后水质的稳定性

经过SBR工艺处理后的排放水具有很好的稳定性,试验中测定了进水CODCr为2 00 0 mg/L、出水CODCr为108 mg/L时的生物毒性和B/C值,测得的发光菌发光度高出空白值200%,完全没有生物毒性;其B/C值为0.042,接近清洁河 水的B/C值。

4 结语

① 乳化废液经过湿式空气氧化后具有良好的可生化性,适于采用生化方法做进一步处理。当进水CODCr浓度在1 000~3 000 mg/L时,COD去除率均在94%左右。

② SBR间歇工艺仅仅是作为一种试验方法,目的在于验证生物化学方法的有效性,并不仅限于SBR工艺。

③ 按照GB 8978—1996中的一级排放标准(CODCr≤100 mg/L),进水有机物浓度不宜过高,可在2 500~3 000 mg/L左右,污泥负荷应不超过0.7 kgCOD/(kgMLSS·d),曝气时间可控制在5 h以内;若执行二级排放标准,应适当降低污泥负荷,则进水COD浓度可在3000 mg/L以上。

致谢:特别感谢任鹤云先生对论文的悉心指导。 参考文献

[1] [著者不详].上海工业废水治理最佳实用技术[M].上海:上海科学普及出版社,1992.

[2] Mishra V S,et al,Wet air oxidation[J].Ind Eng Chem Res,1995, 34(1):2-48.

[3] Randall T,Knop P V.Detoxification of specific organic substances by wet oxidatio n[J].JWPCF,1980,52(8):2117-2130.

[4] L A Pradt,Zimpro,Inc,et al.Developments in wet air oxidation[J].Chemical Engineering Progress,1972,68(12):72-77.

[5] Mantzavinos Dionissios,et al.Wet oxidation as a pretreatment method for wastewaters contaminated by bioresistant organics[J].Water Sci Technol,1997,36(2 -3):109-116.

友情链接