期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 高性能集成电路的概念

高性能集成电路的概念精品(七篇)

时间:2023-12-24 16:37:56

高性能集成电路的概念

高性能集成电路的概念篇(1)

2011年7月29日,宝马集团在德国法兰克福会展中心隆重推出纯电动BMWi3概念车和插电式混合动力BMWi8概念车,展示其对未来个体机动性的解读。这两款全球首次亮相的概念车,诠释了宝马集团全新子品牌BMWi旗下首批量产电动车的设计理念。BMWi3和BMWi8将于2013年和2014年陆续上市。德国联邦交通部部长拉姆绍尔博士,宝马集团董事会成员全体7位高管出席仪式,与来宾一起,共同见证集团历史上这一重要时刻。

在上述两款概念车的揭幕仪式上,宝马集团董事长诺伯特•雷瑟夫博士表示:“我们正在创造宝马集团历史上的又一个里程碑。身为集团董事长和一名工程师,我感到无比自豪。作为世界上领先的高档汽车制造商,我们致力于为客户提供根据电动车特性全新设计的电驱动车辆。”

零排放电驱动、巡航里程约150公里,BMWi3概念车是专为城市环境使用研发的一款产品。输出达125千瓦的电机功率和后轮驱动保证了BMW典型的动态操控性。BMWi3概念车开发了LifeDrive架构,采用全碳纤维车体设计。得益于这一创新的架构,BMWi3整车重量仅1250千克,车内空间非常宽敞,同时实现了最高级别的碰撞安全保护。此外,4座设计、200升的行李箱容积,BMWi3可以完全满足日常使用需求。

德雷格博士:汽车设计的一次革命

宝马集团负责研发的董事克劳斯•德雷格博士强调:“BMWi3的面世是汽车设计的一次革命。它将是第一款车体主要由碳纤维材料制成的量产汽车。新型CFRP(碳纤维增强复合材料)技术的应用使BMW i3的车身重量比传统电动车减轻了250-350千克,也就意味着它可以在更大范围内实现更多动态操控。BMWi3从静止提速到100公里/时仅需8秒。使用高速充电器,只要1小时即可完成80%的电池充电。

驱动系统零排放,以及在全增值体系实施可持续性设计,BMWi3在生命周期内的排放量比一款高效内燃机汽车至少减少三分之一。如果BMWi3的驱动电能来自可再生资源,则其排放减少量可达50%。

BMWi8概念车:新生代跑车

BMWi8概念车的百公里提速时间不超过5秒,百公里油耗不到3升。插电混合动力系统的输出功率达260千瓦,在纯电动驱动模式下可行驶35公里,可满足绝大多数的日常驾驶需要。当有激情驾驶或是长途旅行需要时,高性能的3缸汽油发动机即加入工作。这款跑车的最高时速是250公里/小时(电子限速),可搭载四位乘员。德雷格博士强调:“BMWi8概念车是新生代跑车,纯粹而极具感染力,代表可持续性发展理念。”

通过BMWi,宝马集团再次捍卫了其作为全球最具创新精神和可持续发展能力的高档汽车制造商的市场领先地位,连续6年稳居道琼斯可持续性发展指数行业首位的骄人成绩便是最具说服力的证明。通过BMWi,宝马集团为应对未来个体机动性的挑战提供了全方位的解决方案。除了研发生产更有针对性的电动高档汽车,宝马公司还将提供智能化的车辆移动服务。

高性能集成电路的概念篇(2)

【关键词】电力 电子集成 现状 趋势

我们在研发电力电子技术以及生产、维护装置上要投入大量的人力、物力,因此极大的限制了电力电子装置的普及使用,让电能使用技术的进步和发展被约束。根据相关研究表明,电力电子集成技术是制约电力电子技术发展的主要原因。因此深入的研究电力电子集成技术对电力电子技术的普及具有重要的现实意义。笔者在本文中首先分析了电力电子集成技术的概念和重要意义,然后探讨了集成技术的形式和层次,最后分析了研究的现状以及发展方向,以期进一步提升电力电子集成技术的运用和发展。

1 电力电子集成技术的概念和重要意义

1.1 概念

早在几十年前就已经出现电力电子集成概念,1946年,在美国诞生第一台计算机――ENIAC,随着计算机技术的发展和进步,出现了晶体管计算机,由此出现集成电路。集成电路的出现让人类科技获得突飞猛进的发展和进步,出现了早期的单片集成,同时初步形成集成的片内系统(System On Chip―SOC)理念。但是在单片集成上存在显著地问题如导热、电流小等,这些情况致使单片集成的适用范围难以普及。当前,电力电子集成化思想已逐渐明确,以电力电子功率模板为基础对单片集成技术进行革新,形成了更加完善的集成化理念。

1.2 重要意义

电力电子集成技术的提升和电力电子行业的发展息息相关。这对复杂的电力电子集成系统的研发比较有利,会有效的降低设计成本以及设计的人力、物力投入,进一步创新电力电子行业的技术,对电力、能源以及工业生产的自动化产生深远的影响。同时电力电子领域的技术密集产业以及劳动等问题可以被电力电子集成技术的发展和进步过程中很好的解决。

2 集成技术的不同层次和形式

2.1 单片集成

在加工的过程中使用半导体集成电路方法是在同一片硅片上集成制作电力电子电路中的功率器件、驱动、控制和保护电路,其主要思想为SOC单片系统概念。和其他集成方式相比,这种集成方式的集成度最高,比较适合自动化、大批量生产,成本较低,但是制造工艺差别较大,还存在传热、高压隔离等问题。所以单片集成的难度较高,当前使用的范围较小。随着新型半导体材料制造工艺的进步和提升,其会有较大的发展,大功率是未来发展的方向。

2.2 混合集成

所谓的混合集成技术,是一种封闭操作的混合技术,其主要是在一块模版中组合功率器件、保护电路等相关的硅片,进而通过相互独立的工作形式形成一个个独立的工作的单元。该混合集成技术能够把产品加工过程中高压隔离等问题很好的解决,同时具有高密度集成的优点,由于具有体积小、质量轻等特性,在电子集成领域被广泛的运用。但是因为其内部存在电磁兼容的问题,需要进一步提升其可靠性。

2.3 系统集成

机器的有机组装被大量有实体设备的出现而实现,对组合和搭配合理的制定可以形成机器系统。因为电力电子技术在不断变化之中,对系统进行集成的过程中,进行系统集成可以使用电路设备以及和此相关的设备,进一步提升系统的完整性。功能是集成的重点,集成不同的功能能够发挥更大的作用,同时要求的集成技术要求较低。运用这样的方式集成组合系统,和未集成的系统相比,其不仅体积较大而且重量也很大,集成线路所具备的优势无法系统的发挥。

3 主要研究内容及现状

3.1 电力电子集成模块的电路技术和磁技术

集成模块是电力电子集成模块研究的主要内容,作为一种主电路其具有一定的通用性能,其中还具有驱动电路、控制电路等原件,具有较高的技术性。在选择研究目标以及性能提高上具有显著的作用,使用的工程中能耗会被进一步降低,该技术方案可靠性较强。在研究主电路的过程中可以使用直流/交流变换电力开关等器件,保障有效的使用电子集成模块。

3.2 新型电力电子器件

在研究新型电力电子器件的时候,SiC器件和Si器件是研究的主要对象,主要研究改进工艺,我们主要致力于研究怎样有效地降低器件的损耗,保障发热水平,开发模块的散热装置。

3.3 电力电子集成模块的封装技术

混合集成是国内在电力电子集成方面的主要方式,所要要重点的研究电力电子集成模块的封装技术。当前铝丝键合技术是集成上使用的主要技术,不仅更便于使用,而且投入的成本较低;但是也具有一定的缺点:

(1)没有较大的键和点面积、传递热速度较慢;热点比较集中,容易出现芯片局部过热的情况,破坏芯片。

(2)电流不易扩散容易在局部集中,在开关等绝缘处较易出现过电情况。

(3)铝丝之间的电流分布不均匀,出现的电流会集中在局部。

所以在对键和技术进行研究的同时,可能会有很多问题,因此我们主要对多芯片模块技术进行研究。对其进行研究,不仅要借鉴加工以及组装集成电路的方法,同时在安装的时候还需要集中不同的裸片,开展多层的互联工作,保障制作的模块具有完整的功能。

3.4 电力电子集成模块的计算机仿真、辅助设计理论和方法

IPEM具有较高的集成度,同时工艺以及结构相对复杂,其设计的领域以及技术问题比较多如:电路、控制、材料、传热等,必须在计算机仿真以及辅助设计工作,但是现在开发出的软件不能胜任这项工作,要集中电磁场、传热、电路等多种仿真和辅助设计工具有效的结合才能实现目的,这给仿真和辅助设计工具的开发提出的更高的要求。

4 电力电子集成技术的发展趋势

如今,新型半导体材料的改善以及加工工艺的提升,未来单片集成的方向和发展趋势必然为大功率,这有利于适用范围的扩大和推广使用。混合集成的集成程度以及技术上的发展优势比较突出,所以,未来电力电子集成技术而言,市场前景比较大。深入的研究电力电子集成模块的磁技术和电路技术并对其加以改善,有效的提升电路的性能,降低损耗。今后,电力电子集成技术的发展方向为功率原件、电路元件等效应集成上发展。保障高度集成元件内部,让生产成本更低,满足自动化生产的需要。

5 结束语

随着电力电子技术的产生和发展我们利用电能的方式发生了很大的改变。同时人们使用电能的观念也由于电力电子技术的发展而有所改变。但是就电力电子技术的实际发展情况来看,存在的主要问题为电力电子装置的应用范围有限。对集成技术的现状进行研究,分析电力电子集成技术未来的发展趋势,和实际的科学技术有效的集合在一起,采用最优的集成形式,有效的推进实用化、产业化集成技术的发展。

参考文献

[1]D.Boroyevich,J.D.Wyk F.C.Lee,顾廉楚.电力电子系统集成化的前景概述(下)[J].变频器世界,2007(02).

[2]D.Boroyevich,J.D.Wyk,F.C.Lee,Z.Liang,顾廉楚.电力电子系统集成化的前景概述(上)[J].变频器世界,2007(01).

[3]钱照明,张军明,谢小高,顾亦磊,吕征宇,吴晓波.电力电子系统集成研究进展与现状[J].电工技术学报,2006(03).

[4]顾亦磊,汤建新,吕征宇,钱照明.电力电子系统集成技术发展的若干新思路[J].电力电子技术,2005(06).

[5]王兆安,陈桥梁.集成化是电力电子技术发展的趋势[J].变流技术与电力牵引, 2006(01).

作者简介

潘元忠(1963-)男,壮族,广西壮族自治区上林县人。大学本科学历。现供职于广西水利电力职业技术学院,主要研究方向为电工基础、电子技术。

高性能集成电路的概念篇(3)

关键词:电工基础 联系实际 教学方法

一、科学组织教学内容,突出“框架式”教学理念

《电工基础》是一门基础学科,科学安排教学内容、优化教学程序,可对教学起一定推动作用,提倡“框架式”教学理念,能使教学深入浅出,事半功倍。因为《电工基础》这门学科,内容主要分为直流部分和交流部分。直流部分含电阻、线圈、电容器在直流电路中性质、串并联、混联电路分析、电容器在电路中状态;交流部分含电阻、线圈、电容器在交流电路中性质、串并联电路分析、磁场和电磁感应现象、线圈在电路中状态过程等。教学时,可通过“树形结构”的方式对两条主线进行内容填充,逐步丰富“树干”,让学生感到学习知识不是囫囵吞枣,而是按部就班、循序渐进。在此基础上,老师可要求学生自行总结一株属于自己的《电工基础》知识“树”,再与老师的知识框架进行对比,找出差距,提高自己。这对学生理清知识点,提高效率很有帮助。

二、理论联系实际,培养学生想象推理能力

教学中除了合理选择教学内容外,还应突出理论指导实践的意义。如在分析串联电路应用时,我就列举了如下例子给学生思考: 一个灯泡的额定电压是12V,额定功率为3W,把它接在220V的电路中,应该串联多大的电阻?A.500Ω;B.700Ω;C.1000Ω;D.1200Ω。

问题提出后,我耐心引导学生寻找解题思路:根据电压电流及功率的关系,计算出电流为0.25A,电阻为48Ω;再根据串联电路的性质,计算出分压电阻的阻值为832Ω。

那么,在接近832Ω这个电阻的700欧姆、1000欧姆两个中,应该选取哪一个呢?能否选取最接近832欧姆的700欧姆呢?答案是否定的。因为如果选了700欧姆的电阻,串联后流过小灯泡的电流为0.29A,超过了它的额定电流,这是不允许的。

老师还要善于发挥学生的想象力。如讲到闭合电路的欧姆定律时,我又提出这样一个问题给学生思考:在闭合电路中,外电路由两个电阻串联组成,其中一个电阻无穷大,断开了,那在断口处的电压是多少?学生感到茫然,说那就没有电压了。我发现学生的思维有误,便引导学生说,这个问题,我们可用动态抽象电路去思考和想象:如果我们在那个逐渐变大的电阻两端接上电压表,细心观察,则会发现,电压表读数就会越来越大,最终电压表的读数必然与电源电压相同。

在两点间的电压计算时,学生普遍认为:如果一个原来闭合的电路有某处断开,那么断开的两点间的电压为零。如何引导学生走出这个误区?我让学生思考这样的一个现实问题:为什么电线断了后如果有人碰到它就会触电?学生很快理解了我的意思,明白断开的两点间的电压并不为零。这种理论结合实际的教学方法,能激发学生想象力,调动学生学习积极性,加深学生对概念的理解,让他们感到自己所学的知识是有用的。

三、把相似内容集中教学,通过类比避免概念混淆

《电工基础》的教学内容,有些概念相似,容易混淆。如果打破章节顺序,把类似概念放在一起教学,集中讲解,则可起到事半功倍的效果。例如,在“电磁与电磁感应”教学时,左、右手定则和右手螺旋定则,均不在同一节,而且这三个定则都是在介绍其他概念时配合应用的,比较分散,提法相近,学生容易混淆。如果采用类比区别、集中教学的方法,就能解决这个问题。

四、合理采用比拟法教学,提高学生学习兴趣

如在分析电压与电位的区别时,学生常将这两个概念混淆。我就这样引导学生:把电位比拟为高度,把电位差比拟为高度差。因为学生对高度和高度差有深刻的感性认识。电位的特点是电路中某点相对于参考点的电压。它是相对值,其大小随着参考点的改变而不同。教学中可把讲台的桌面高比拟为电路中某点的电位,这时,我们可以选择不同的参考点来看讲台的桌面高度,选择的参考点不同,讲台的桌面高度就会出现不同的值,这些值如果以地面为参考点,它就是正值;如果以屋顶为参考点,它就是负值;如果以讲台的桌面为参考点,它就为零。这种比拟式教学法,可加深学生对电位是相对值这一概念的理解和记忆。

五、合理安排实验教学,加强实验技能的培养

高性能集成电路的概念篇(4)

关键词:电工基础 教学 技巧 细节

《电工基础》是一门基础学科,它的对象是中专机械专业学生,其内容必须与后续专业课相符合。其基本理论以必要够用为度,减少数理论证,以掌握概念、突出应用和培养技能为教学重点。通过该课程的学习,学生可获得基本电路、电与磁、安全用电,电工测量的基本理论、基本知识和基本技能。由于它有基本概念多、涉及知识面广、内容综合度高、课后实验实践性强等特点,所以在教学中要做到重点突出、深入浅出,使学生尽快掌握,不是一件简单的事。笔者就《电工基础》教学中的细节问题谈谈自己的体会。

一、调整顺序,整合内容,相似概念集中教学

《电工基础》的教学内容中有些概念十分相似,很容易混淆。如果只是按照教材内容的结构顺序讲述,这些相似的内容就会被割裂开来,让学生理不清关系,抓不住要领。如果打破章节顺序,把类似的概念放在一起相互比较、集中讲解,则可起到事半功倍的效果。例如,在“电磁与电磁感应”教学时,左手定则、右手定则和右手螺旋定则都处于不同小节,而这几个定则又都是在介绍其他概念时配合应用的,比较分散,形式又很相近,致使很多学生经常混淆这三个定则的用法。如果采用集中教学、横向比较的方法,就能解决这个问题。先把这三个定则同时列出,并区分它们的适用场合,即右手螺旋定则用于判断通电导线周围的磁场方向,左手定则用于判断通电导线在磁场中的受力方向,而右手定则用于判断导线切割磁力线后产生的感应电动势的方向。再针对不同的使用场合具体地分析大拇指所指的方向代表什么,食指的方向代表什么,手心手背又有什么作用等等。这样,学生对三个定则概念的理解和使用方法的印象就非常深刻了。

二、找准特点,编顺口溜,记忆知识事半功倍

在《电工基础》中有些知识点很零碎,不容易记忆。如果让刚刚接触这些东西的学生死记硬背的话效果很差,而且日子一长就很容易弄错。例如正弦交流电路中的纯电感电路和纯电容电路中的电流电压相位关系:两种电路中电流电压相位都是相差π/2,但谁超前谁滞后学生很容易记混。这时我们就可以用顺口溜“鸭绒(压容)慢慢飘,流感后来到”来帮助学生记忆--电容中电压滞后于电流,电感中电流滞后于电压。通过记忆这样有意义的的语句来强化对零散知识点的记忆,可以达到不错的效果。

三、采用比喻,化新为旧,帮助学生掌握知识

在《电工基础》课程中有些新概念不容易理解,学生学起来觉得比较吃力,所以往往对这些内容不感兴趣,如何帮助学生掌握这部分内容,往往要在教学中突出概念的理解性,采用比喻是一种让学生能理解掌握知识的好方法。例如,在讲解基尔霍夫电流定律和电压定律时,很多学生对支路、节点和回路的含义不理解,因而对掌握这两条定律感觉很困难。在教学中我们可以把支路比喻为城市里的街道,节点比喻成各个路口,回路比喻成环行路,而把电路中的电流比喻成城市里面的车辆。电流从一些支路流入节点(车辆从一些街道驶入路口),又从节点流向其他支路(车辆从路口驶出),流入节点的电流之和等于流出节点的电流之和(有多少车辆驶入路口就会有多少车辆驶出路口)等等。因为学生对比喻出来的这些事物很熟悉,所以就能够很轻松地理解这些刚接触到的概念。

四、依据理论,联系实际,培养学生推理能力

在《电工基础》的教学中,除了合理选择教学内容外,还应突出教学的实践性,充分强调对实际的指导意义,思考分析理论在实际的具体应用。例如,在分析串联电路的应用时,学生对它的实际指导意义理解不深,我就补充举了个例子:有一个小灯泡额定电压为12V,额定功率为3W,要把它作为信号灯接到220V电路中,应该串联一个多大的电阻?可选的电阻有500欧姆、700欧姆、1000欧姆、1200欧姆四种。学生根据小灯泡的电压、功率,算出了小灯泡的额定电流为0.25A,电阻为48欧姆,再根据串联电路的电流0.25A和总电压220V算出串联电路的总电阻为880欧姆,最后将总电阻880欧姆减去小灯泡的电阻48欧姆得到832欧姆,即为应串联的电阻阻值。那么,能否选取最接近832欧姆的700欧姆呢?答案是否定的。因为如果选了700欧姆的电阻,串联后流过小灯泡的电流为0.29A,超过了它的额定电流,这是不允许的。在这个问题中前面算出的额定电流在实际应用时隐含的条件是只能小于等于它,而不能大于它。选取1000欧姆的电阻串联后,虽然电流下降到0.21A,小灯泡的亮度有所下降,但却能保证电路设备安全。

在《电工基础》的教学中善于引导和充分发挥学生的想象力也是十分重要的。在讲串联电路中电压和电阻成正比的关系时,我突然问了这样一个问题:如果两个电阻串联,其中一个电阻特别大,大到了无穷大,也就是断开了,那么在断口处的电压是多少?有的学生感到茫然,有的学生说那就没有电压了。其实这个问题可用动态抽象的电路去想象――在那个逐渐变大的电阻两端接上电压表一直监视,则电压表读数必然会越来越大,最终电压表的读数必然与电源电压相同。这就是为什么电线断线后如果有人碰到就会触电的原因。引导学生联系实际,让学生自己去推理解决问题不仅能加深学生对概念的理解,也能调动学生的学习积极性,让他们感到学的东西有用。

五.重视实验,培养技能,提高学生动手能力

《电工基础》是一门与生产实践联系很紧密的课程,是培养学生动手能力的重要环节,需要充分调动和发挥学生的主观能动性。必须扭转学生重理论、轻实践的倾向,加强对学生实验技能的培养。以往学生上实验课,都是由实验教师讲解后,按照给出的电路图接线,规定的实验步骤操作,画好的表格填写数据这样一种老是依样画葫芦的办法进行,束服了学生的手脚,所以,在讲解一些实验的共性问题时,比如针对实验内容怎样画好电路图、怎样选择仪表、如何操作、如何处理数据、如何书写实验报告之类问题进行介绍,并且举例示范。在以后的实验课中,要求学生在课下根据实验题目自己拟定实验方法、实验步骤以及所需使用的仪器设备。在上实验课操作之前,教师先进行检查,如发现问题和学生一起讨论,解决问题,然后学生进行独立操作,测出实验数据,最后写出完整的实验报告。这种办法有利于培养学生动手、动脑的习惯,提高学生实际操作和研究问题的能力。

总之,在《电工基础》教学过程中有很多有趣和耐人寻味的细节问题,只要我们多观察、多思考、多联想、多实践,就能使这门专业课生动、富有吸引力,使更多的学生喜欢它。

参考文献:

[1]柳青.《电工基础》教学方法的改革[J].机械职业教育,2001(4).

[2]张江城.电工基础[M].南京:东南大学出版社,2005.

[3]陶月强.浅谈《电工基础》课程的教学方法[J].职业教育研究,2004(4).

高性能集成电路的概念篇(5)

[关键词] EDA技术 电子系统 仿真

二十世纪后半期,随着集成电路和计算机的不断发展,电子技术面临着严峻的挑战。由于电子技术发展周期不断缩短,专用集成电路(ASIC)的设计面临着难度不断提高与设计周期不断缩短的矛盾。为了解决这个问题,要求我们必须采用新的设计方法和使用高层次的设计工具。在此情况下,EDA(Electronic Design Automation即电子设计自动化)技术应运而生。随着电子技术的发展及缩短电子系统设计周期的要求,EDA技术得到了迅猛发展。

一、EDA技术的定义及构成

所谓EDA技术是在电子CAD技术基础上发展起来的计算机软件系统。它是以计算机为工作平台,以硬件描述语言为系统逻辑描述的主要表达方式,以EDA工具软件为开发环境,以大规模可编程逻辑器件PLD(Programmable Logic Device)为设计载体,以专用集成电路ASIC(Application Specific Integrated Circuit)、单片电子系统SOC(System On a Chip)芯片为目标器件,以电子系统设计为应用方向的电子产品自动化设计过程 [J]。在此过程中,设计者只需利用硬件描述语言HDL(Hardware Description language),在EDA工具软件中完成对系统硬件功能的描述,EDA工具便会自动完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至特定目标芯片的适配编译、逻辑映射和编程下载等工作,最终形成集成电子系统或专用集成芯片。尽管目标系统是硬件,但整个设计和修改过程如同完成软件设计一样方便和高效。

现代EDA技术的基本特征是采用高级语言描述,具有系统级仿真和综合能力。EDA技术研究的对象是电子设计的全过程,有系统级、电路级和物理级各个层次的设计。EDA技术研究的范畴相当广泛,从ASIC开发与应用角度看,包含以下子模块:设计输入子模块、设计数据库子模块、分析验证子模块、综合仿真子模块和布局布线子模块等。EDA主要采用并行工程和“自顶向下”的设计方法,然后从系统设计入手,在顶层进行功能方框图的划分和结构设计,在方框图一级进行仿真、纠错,并用VHDL等硬件描述语言对高层次的系统行为进行描述,在系统一级进行验证,最后再用逻辑综合优化工具生成具体的门级逻辑电路的网表,其对应的物理实现级可以是印刷电路板或专用集成电路。

二、EDA技术的发展

EDA 技术的发展至今经历了三个阶段:电子线路的CAD是EDA发展的初级阶段,是高级EDA系统的重要组成部分。它利用计算机的图形编辑、分析和存储等能力,协助工程师设计电子系统的电路图、印制电路板和集成电路板图。它可以减少设计人员的繁琐重复劳动,但自动化程度低,需要人工干预整个设计过程。

EDA技术中级阶段已具备了设计自动化的功能。其主要特征是具备了自动布局布线和电路的计算机仿真、分析和验证功能。其作用已不仅仅是辅助设计,而且可以代替人进行某种思维。

高级EDA阶段,又称为ESDA (电子系统设计自动化)系统。过去传统的电子系统电子产品的设计方法是采用自底而上(Bottom-UP)的程式,设计者先对系统结构分块,直接进行电路级的设计。EDA技术高级阶段采用一种新的设计概念:自顶而下(TOP-Down)的设计程式和并行工程(Concurrent Engineering)的设计方法,设计者的精力主要集中在所设计电子产品的准确定义上,EDA系统去完成电子产品的系统级至物理级的设计。此阶段EDA技术的主要特征是支持高级语言对系统进行描述。可进行系统级的仿真和综合。

三、基于EDA技术的电子系统设计方法

1.电子系统电路级设计

首先确定设计方案,同时要选择能实现该方案的合适元器件,然后根据具体的元器件设计电路原理图。接着进行第一次仿真,包括数字电路的逻辑模拟、故障分析、模拟电路的交直流分析和瞬态分析。系统在进行仿真时,必须要有元件模型库的支持,计算机上模拟的输入输出波形代替了实际电路调试中的信号源和示波器。这一次仿真主要是检验设计方案在功能方面的正确性。仿真通过后,根据原理图产生的电气连接网络表进行PCB板的自动布局布线。在制作PCB板之前还可以进行后分析,包括热分析、噪声及窜扰分析、电磁兼容分析和可靠性分析等,并且可以将分析后的结果参数反标回电路图,进行第二次仿真,也称为后仿真,这一次仿真主要是检验PCB板在实际工作环境中的可行性。

可见,电路级的EDA技术使电子工程师在实际的电子系统产生之前,就可以全面了解系统的功能特性和物理特性,从而将开发过程中出现的缺陷消灭在设计阶段,不仅缩短了开发时间,也降低了开发成本。

2. 系统级设计

系统级设计是一种“概念驱动式”设计,设计人员无须通过门级原理图描述电路,而是针对设计目标进行功能描述。由于摆脱了电路细节的束缚,设计人员可以把精力集中于创造性概念构思与方案上,一旦这些概念构思以高层次描述的形式输入计算机后,EDA系统就能以规则驱动的方式自动完成整个设计。

系统级设计的步骤如下:

第一步:按照“自顶向下”的设计方法进行系统划分。

第二步:输入VHDL代码,这是系统级设计中最为普遍的输入方式。此外,还可以采用图形输入方式(框图、状态图等),这种输入方式具有直观、容易理解的优点。

第三步:将以上的设计输入编译成标准的VHDL文件。对于大型设计,还要进行代码级的功能仿真,主要是检验系统功能设计的正确性,因为对于大型设计,综合、适配要花费数小时,在综合前对源代码仿真,就可以大大减少设计重复的次数和时间,一般情况下,可略去这一仿真步骤。

第四步:利用综合器对VHDL源代码进行综合优化处理,生成门级描述的网表文件,这是将高层次描述转化为硬件电路的关键步骤。综合优化是针对ASIC芯片供应商的某一产品系列进行的,所以综合的过程要在相应的厂家综合库支持下才能完成。综合后,可利用产生的网表文件进行适配前的时序仿真,仿真过程不涉及具体器件的硬件特性,较为粗略。一般设计,这一仿真步骤也可略去。

第五步:利用适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作,包括底层器件配置、逻辑分割、逻辑优化和布局布线。

第六步:将适配器产生的器件编程文件通过编程器或下载电缆载入到目标芯片FPGA或CPLD中。如果是大批量产品开发,通过更换相应的厂家综合库,可以很容易转由ASIC形式实现。

四、前景展望

21世纪将是EDA技术的高速发展时期,EDA 技术是现代电子设计技术的发展方向,并着眼于数字逻辑向模拟电路和数模混合电路的方向发展。EDA将会超越电子设计的范畴进入其他领域随着集成电路技术的高速发展,数字系统正朝着更高集成度、超小型化、高性能、高可靠性和低功耗的系统级芯片(SoC,System on Chip)方向发展,借助于硬件描述语言的国际标准VHDL和强大的EDA工具,可减少设计风险并缩短周期,随着VHDL语言使用范围的日益扩大,必将给硬件设计领域带来巨大的变革。

参考文献:

[1]谭会生,张昌凡.EDA技术及应用[M].西安:西安电子科技大学出版社,2001.

[2]李经智.EDA技术及其应用[J].齐齐哈尔大学学报,2006.

高性能集成电路的概念篇(6)

关键词:数字电路 教学 课堂教学 实验教学

中图分类号:TN79-4 文献标识码:A 文章编号:1007-9416(2012)09-0121-02

数字电路是电子信息类专业的一门学科基础课程,通过本课程的学习,同学们能够了解数字电子技术的基本概念、数字逻辑电路分析和设计方法,掌握常用集成电路芯片的使用,实现简单数字应用电路设计,为后续有关专业课程学习和解决工程实践中遇到的数字逻辑问题打下良好的基础,培养具有一定创新能力的应用型人才。

数字电路是现代电子系统的必要组成部分,从一般的数字逻辑电路、微处理器控制电路、到复杂的信号处理系统,无不留下数字电路的身影,因此掌握数字电路分析、设计方法和测试方法是电子信息类专业的基本要求。

1、对数字概念的建立是该门课程的重要基础。

数字电路是真正接触数字逻辑、数字概念的第一门课,这部分概念的掌握与否,直接影响到后续课程的学习,比如:微机原理、单片机原理、数字信号处理和EDA等。

(1)逻辑量概念和逻辑运算是数字电路的基础,逻辑量是用来表示事件是否发生的物理量,在具体电路实现上用高低电平来表示逻辑量0和1。逻辑关系表示了事件之间的因果关系,在具体电路方面用各种门电路来实现。

(2)编码方法、二进制概念、算术运算是数字逻辑的具体应用。用多位有序逻辑量排列来表示不同的符号和不同的数就形成了编码,其中二进制是表示数的一种常用方法,这时的0和1也变成了数,但是其运算电路实现仍然是用逻辑电路来实现的。

比如一位全加器就是一个典型的二进制运算器,其运算规则是按照二进制运算进行的,每个变量的值,代表真实的二进制数0和1,但是其实现电路有时按照逻辑电路来实现的。

假设一位全加器的输入信号两个加数分别为Ai,Bi与低位进位Ci-1,输出信号分别为和Si与进位Ci,则得到真值表如下。

由上述逻辑表达式就可以得到一位二进制全加法器,如果有多个这样的二进制全加器就可以实现多位二进制加法器,实现加法运算。

2、组合逻辑电路和时序逻辑电路的分析和设计是数字电路教学的主要内容

组合逻辑电路的分析和设计主要包括各种门电路和一些常用组合逻辑电路,这部分内容是逻辑运算关系的具体实现,也是一些常用小规模集成电路原理理解和应用的具体实现,特别是译码器74LS138和数据选择器74LS151的理解和应用。

时序逻辑电路的分析和设计主要包括触发器原理介绍、由触发器构成的时序电路和中小规模集成电路的应用,这部分内容是数字电路教学的主要内容,特别是用时序电路来解决具体应用问题时,如何把具体问题转换成电路设计问题时一大难点。其中两个重要的集成电路模块是移位寄存器74LS194和异步复位十六进制计数器74LS161。

组合逻辑电路和时序逻辑电路是按照电路中有无触发器来区分的两种电路形式,实际时序逻辑电路中往往肯定包含组合电路,按照一定的分析和设计思路,就可以顺利完成电路的分析和设计。

图一是用译码器和数据选择器分别实现全加器的电路图,我们在输入端用拨动开关来表述不同的输入信号,在输出端用发光二级管来表示输出结果,这样非常直观,利于同学们的理解。

(b)用74LS151数据选择器实现

图1 全加器实现与演示

3、积极改进教学内容,注重应用技能的培养

数字电子技术的发展、电子设计手段的进步已经发生了巨大的变化,但是我们教材的主要内容和20多年前没有大的变化,强调数字技术的基础性,在门电路、集成电路方面花了很多的篇章,这也是现在同学们学习时比较难掌握的部分,但是这一部分也是绝大部分同学今后很少用到的部分。另外一方面,现代设计所需要的CPLD、FPGA知识和HDL语言没有介绍或介绍不够。因此,我们在教学中,弱化门电路和集成电路的教学,强调集成电路的功能和接口条件,在介绍集成电路芯片的同时,介绍其Verilog HDL描述。这样对照硬件和软件进行学习,相互印证,能够得到比较好的效果。这种学习方法,可以适应硬件设计的软件化设计趋势。

4、积极改进理论和实验教学方法,加强动手能力的培养

在数字电路教学中多讲解各种实用电路的设计和实验,可以提高课程教学的效果,帮助同学们理解数字电路理论教学内容,增强同学们感官认识和动手能力。现在数字电路实验特别是多个集成电路芯片的实验因为接线问题,常常影响同学们的实验效果,甚至得不到所需要的结论。另外硬件实验要花费较多的时间资源和硬件资源,并且以后的工作需要更多的是软件仿真工作,因此仿真工作是很多设计过程中不可或缺的一个重要环节。因此在教学过程中我们要求学生掌握Multisim仿真软件。通过老师演示,学生自己仿真,花时间少,可以充分发挥自己的想象。

Mutilsim软件具有非常强大的功能,不仅可以满足数字电路的仿真还可以满足模拟电路的仿真要求,系统提供了大量的信号源和测试设备,使系统的运行看起来非常逼真。系统还可以实现硬件描述语言编程的仿真,还可以进行CPU软件编程程序的仿真,因此建议同学们掌握Mutilsim软件的使用。(如图2)

图2是60进制计数器的电路,图中不仅包含由两个74LS161组成的60进制计数器,还包含了两个数码管驱动电路和两个7段数码管。这样通过仿真软件实现具有下列优点:

(1)可以方便地修改60进制计数器的各种设计方法,只需简单修改就可以实现同步计数电路、异步计数电路、同步置零、异步清零等计数器控制策略;

(2)可以方便地实现其他进制的计数器,如果采用74LS160电路可以更简单;

(3)进一步理解数码管驱动电路的原理和使用方法。

(4)进一步理解数码管的模块的连接方法。

本文针对数字电路课程教学中的数字电路概念、教学内容和教学方法等问题做了比较具体的分析,并用具体实例进行了说明。

参考文献

[1]谢剑斌,李沛秦等.在“数字电子技术”教学中培养学生创新能力.电气电子教学学报,Vol.32,No.6,2010.12.

[2]张振亚.数字电路教改探讨.西南民族大学学报·自然科学版第37卷5,2011.5.

[3]宋伟,朱幼莲.“数字电路”课程设计教学改革探索.江苏技术师范学院学报Vol.17,No.8,2011.8.

高性能集成电路的概念篇(7)

【关键词】电工学 教学 教学实践 教学方法 实验技能

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2012)08-0017-01

前言

电工学课程是工科高职、高专院校为学生开设的一门重要的技术基础课。在科学技术飞速发展的今天,新器件、新技术、新方法不断涌现;我们正处在一个日新月异的时代,科技竞争日趋激烈,尤其知识经济已见端倪。知识经济时代教育的核心是培养人的创新素质。创新素质的基本内涵不外乎创新意识、创造思维和创新能力等,对工程技术人才的素质提出了更高的要求。为培养跨世纪的高素质人才,在电工学教学中实施素质教育对师范学院显得尤为重要。根据师范学院的培养目标,在电工教学中注重基础知识和基本技能的同时,启发学生独立思考,活跃学生的思想,注重对学生兴趣、态度、方法和能力等的培养教育;虽然《电工基础》课程难学,是学生较普遍的反映,这其中有多方面的原因,如该课程涉及面广、内容繁杂且实践性强、计算公式较多、概念、定律多且抽象,理解、记忆较难,习题灵活,解题复杂等往往使学生感到枯燥、零乱、难以理解和掌握,这自然也就给教学设置了障碍。

一、《电工学》的特点与作用

在电工基础教学中如何培养学生的创新意识、创造思维、创新能力呢?对此,我在教学中进行了一些有益的尝试。介绍与这门课程有关的学科发展史,如给学生讲述基尔霍夫的几个定律的同时,让他们了解这一位德国物理学家的简单历史以及为人类的发展所做出的贡献部分。培养学生的创新意识,学科发展的历史,本身就是一部创新史。通过这方面的学习,既能使学生了解到具体的创新过程,又可以启迪思维,使学生认识到学科理论是不断进步和发展的。

《电工学》理论教学中有着独特的优势,既能有效地突破难点,达到事半功倍的效果,又能激发学生的学习兴趣,培养学生的创新思维。《电工学》课程体系及结构特点:一般来讲《电工学》主要由电路和电机两大部分组成。而电路又主要包括直流电阻电路和正弦交流电路;电机主要包括变压器和电动机。《电工学》作为一门专业课程,通过该课程的学习,可使学生获得电路、电机与继电——接触器控制,安全用电,电工测量及电子技术的基本理论,基本知识和基本技能。由于它具有概念多、知识面广、综合性强、实践性强等特点,因此在教学中要做到重点突出、深入浅出,使学生尽快掌握,不是一件简单的事。这篇文章就将《电工学》教学中的细节问题谈谈自己的一点想法。

二、《电工学》教学中的全新理念

1.帮助学生提高学习兴趣

在《电工学》课程中有些概念不容易理解,学生学起来比较吃力,学生对这些内容往往兴趣不浓,如何帮助学生掌握这部分内容,往往要在教学中突出概念的理解性,采用比拟法是一种让学生能理解掌握知识的好方法。例如,在分析电压与电位的区别时,学生对参考点的含义不理解,因而将电压、电位经常混淆。在教学中我们可以把电位比拟为高度,把电位差(既电压)比拟为高度差。因为学生对高度和高度差有深刻的感性认识。电位的特点是电路中某点相对于参考点的电压。它是相对值,其大小随着参考点的改变而不同。在教学中可以把讲台的桌面高比拟为电路中某点的电位,这时,我们可以选择不同的参考点(如地面、讲台的桌面、屋顶等)来看讲台的桌面高度,选择的参考点不同,讲台的桌面高度就会出现不同的值,而这一值,既可以是正值(以地面为参考点),也可以是负值(以屋顶为参考点),也可以为零(以讲台的桌面为参考点)。以此来加深学生对电位是相对值这一概念的理解和记忆。电位差的特点是电路中某两点间的电压。它是绝对值,不随参考点的改变而改变。在教学中可以把讲台的高度比拟为电路中某两点间的电位差,此时无论我们选择的参考点怎样改变,讲桌的高度也不会发生变化。通过比较,加深学生对电位是相对值、电位差是绝对值这两个概念的理解,使抽象的概念变得具体、直观。

2.合理掌握理论与实践相结合的理念

《电工学》是一门基础学科,它的对象是理工类专业学生,其内容必须与后续专业课相符合,其基本理论,以必要够用为度。是一门实践性很强的课程,是培养学生创新能力的重要环节,要充分调动和发挥学生的主观能动性。教师还应该加强实践性教学,提高学生的动手能力、思维能力与创造能力。教师可以在传统的教学方法中融入讲授法、讨论法、探索法、实验法等等。减少数理论证,以掌握概念,突出应用培养技能为教学重点。如电路部分重点介绍电路的基本概念、基本定律和基本分析方法;电机与控制及安全用电部分主要讨论变压器与异步电动机的外部特性,控制和使用及安全用电的基本常识;电子技术部分重点介绍电子器件的外部特性与功能及电子电路的定性分析与应用。而电子测量部分介绍常用电工测量仪表的基本原理和应用及实验,可以放到实际的测量中去讲解和应用。另外课程教学的目的不仅仅是教会学生知识,更为重要的是教会学生怎样应用所学的知识,这里所说的“应用”并不仅仅是会用所学的知识去解题,而是要让学生知道所学的知识有什么用处,在生产实践当中的应用如何。要不就会出现虽然学生在学校都学过电工学课,但就业以后,他们不会接日光灯电路、不会换保险丝、不会检查供电线路、不会检查电动机故障、看不懂生产设备的电气控制原理图等。这与素质教育对人才质量的要求相差甚大,首先就是因为缺乏实践的经历而造成了这种差异。在平时的教学内容选择上,应注重将理论知识与实验课相联系起来。例如,在介绍二极管的特性曲线时,只单纯介绍曲线的基本含义,而特性曲线有什么实际应用并不介绍,这种从概念到概念的灌输,使学生对课程的学习感到抽象和无用。只有注意了知识与工程应用的密切联系,在介绍曲线的基本概念后,进一步联系实际,说明二极管特性曲线可由晶体管图示仪来测量获得,利用特性曲线可以观测二极管的主要参数和检测性能的优劣,从中学生体会特性曲线的作用和应用。教学中还应注意通过“应用实例”使学生了解单元电路的功能和应用。选择教学内容,突出“学以致用”理念。

3.联系实践来提高学生的推理能力

在《电工学》的教学中,除了合理选择教学内容外,还应突出教学的实践性,充分强调对实际的指导意义以及思考分析理论在实践中的具体应用。例如,在分析戴维南等效电路的应用时,学生对它的实际指导意义理解不深。例如:应用等效化简方法分析含源线形电路。如图(a)所示电路,试用等效化简电路的方法,求5Ω电阻元件支路的电流I和电压U?

学生可以根据等效化简解题的四个步骤进行求解:

(1)分离;本题是含有电压源和电流源的线形电阻电路,要求应用等效化简的方法,求5Ω电阻支路的电流和电压。分析时将代求支路固定不动,其余部分按“由远而进”逐步进行等效化简,最后成为单回路等效电路。

(2)等效;等效化简必须逐步进行,每一步变换后应做出等效电路图。等效化简是根据串、并联得出一个等效电阻;电压源串联和电流源并联得出等效电压源和等效电流源,且两个等效源都按电压源模型与电流源模型的等效变换的规律来进行。在两类电流等效变换中,正确地确定变换后电源的参考方法是非常重要的,即变换后电流源的参考方向应与原电压源的方向一致;反之,变换后电压源电压的参考方向,应该是其电压升高的方向,与原电流源参考方向一致。

(3)组合;本题中在等效变换时,与10V电压源并联6Ω应拆除,与2A电流源串联的3Ω电阻元件应置零。

(4)求解;最后,按化简后的单回路等效电路,依KVL和元件VAR就可以方便地计算出待求支路的电流I和电压U。

但实际上学生首先要想到的是10V电压源旁并联的6欧姆电阻应将怎样处理?以及2A电流源旁串联的3欧姆电阻又将怎样处理?有的学生感到茫然,有的学生就根本无法入手,其实这个可用动态抽象的电路去想象——问题的解决应该想到理想状态下的电压源与电流源的特性,因为在理想状态下我们可以把6欧姆拆掉与3欧姆置零,如果这两个电阻解决掉了,下面的问题就比较容易解决了。将图(a)中6Ω电阻拆除和将3Ω电阻置零,得出如图(b)所示等效电路;又将图(b)中10V电压源模型支路等效变换为电流源模型支路等效变换为电流源支路,得出如图(c)所示等效电路;再将图(c)中两串联电压源合并为一3A电压源,得出如图(d)所示等效电路;又将3A电流源模型支路等效为6V电压源模型支路,得出如图(e)说示等效电路;再将图(e)中两串联电压源合并为一10V电压源,得出如图(f)所示等效电路;又将图(f)中10V电压源模型等效变化为5A电流源模型,得出如图(g)中两并联的2Ω电阻元件合并为一个1Ω电阻元件,最后将5A电流源模型等效变换为5V电压源模型,得出如图(h)中1Ω与4Ω串联电阻合并为一个5Ω电阻元件,得出最简单的单回路等效电路如图(i)所示。

从而引导学生联系实际,挖掘学生的想象力不仅能加深学生对概念的理解,而且同时能调动学生的学习积极性,让他们感到学有所用。

4.合理安排教学内容

《电工学》的教学内容中有些概念十分相似,很容易混淆。如果按部就班地顺着章节讲述,会造成内容前后脱节,让学生抓不住要领。如果打破章节顺序,把类似的概念放在一起相互比较,集中讲解则可起到事半功倍的效果。例如,在“电磁与电磁感应”教学时,左、右手定则和右手螺旋定则均不在同一节,而且这几个定则都是在介绍其它概念时配合应用的,比较分散,提法又很相近,致使很多学生经常混淆这三个定则的用法。如果采用类比区别、集中教学的方法,就能解决这个问题。首先把这三个定则同时列出,并区分它们的适用场合,即右手螺旋定则用于判断通电导线周围的磁场方向,左手定则用于判断通电导线在磁场中的受力方向,而右手定则用于判断导线切割磁力线后产生的感应电动势的方向。其次,再针对不同的使用场合具体地分析大拇指所指的方向代表什么,食指的方向代表什么,手心手背又有什么作用等等。这样,学生对三个定则的概念和运用场合印象就非常深刻了。

三、结束语

在《电工学》教学过程中有很多有趣和耐人寻味的细节问题,只要我们多观察、多思考、多联想、多实践就能使这门专业课生动、富有吸引力,使更多的学生喜欢它。

参考文献:

[1]秦曾煌.电工学简明教程 第二版 高等教育出版社

[2]李建新,张威虎.电工学教学中实施素质教育浅探[J]; 广西师院学报(自然科学版); 2000年04期

[3]罗建学.关于电工学教学方法的研究与探索 [J];上海水产大学学报; 1996年04期