期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 材料加工技术

材料加工技术精品(七篇)

时间:2022-01-31 20:02:57

材料加工技术

材料加工技术篇(1)

关键词: 难加工材料 切削加工技术 问题 刀具材料 刀具形状

近年来,机械产品多功能、高功能化的发展势头十分强劲,要求零件必须实现小型化、微细化。为了满足这些要求,所用材料必须具有高硬度、高韧性和高耐磨性的特点,而具有这些特性的材料,其加工难度也特别大,因此又出现了新的难加工材料。难加工材料就是这样随着时代的发展及专业领域的不同而出现,其特有的加工技术也随着时代及各专业领域的研究开发而不断向前发展。另一方面,随着信息化社会的到来,难加工材料切削技术信息也可通过因特网互相交流,因此,今后有关难加工材料切削加工的数据等信息将会更加全面,加工效率也必然会进一步提高。难加工材料的界定及具体品种,随时代及专业领域而各有不同。

一、切削领域中的难加工材料

在切削加工中,通常出现的刀具磨损,有如下两种形态:(1)由于机械作用而出现的磨损,如崩刃或磨粒磨损等;(2)由于热及化学作用而出现的磨损,如粘结、扩散、腐蚀等磨损,以及由切削刃软化、溶融而产生的破断、热疲劳、热龟裂等。切削难加工材料时,在很短时间内即出现上述刀具磨损,这是由于被加工材料中存在较多促使刀具磨损的因素。例如,多数难加工材料均具有热传导率较低的特点,切削时产生的热量很难扩散,致使刀具刃尖温度很高,切削刃受热影响极为明显。这种影响的结果会使刀具材料中的粘结剂在高温下粘结强度下降,WC(碳化钨)等粒子易于分离出去,从而加速刀具磨损。另外,难加工材料中的成分和刀具材料中的某些成分在切削高温条件下产生反应,出现成分析出、脱落,或生成其他化合物,这将加速形成崩刃等刀具磨损现象。在切削高硬度、高韧性加工材料时,切削刃的温度很高,也会出现与切削难加工材料时类似的刀具磨损。如切削高硬度钢时,与切削一般钢材相比,切削力更大,刀具刚性不足将会引起崩刃等现象,使刀具寿命不稳定,而且会缩短刀具寿命,尤其是加工生成短切屑的工件材料时,会在切削刃附近产生月牙洼磨损,往往在短时间内即出现刀具破损。在切削超耐热合金时,由于材料的高温硬度很高,切削时的应力大量集中在刃尖处,这将导致切削刃产生塑性变形;同时,由于加工硬化而引起的边界磨损也比较严重。由于这些特点,所以要求用户在切削难加工材料时,必须慎重选择刀具品种和切削条件,以达到理想的加工效果。

二、难加工材料在切削加工中应注意的问题

切削加工大致分为车削、铣削及以中心齿为主的切削(钻头、立铣刀的端面切削等),这些切削加工的切削热对刃尖的影响也各不相同。车削是一种连续切削,刃尖承受的切削力无明显变化,切削热连续作用于切削刃上;铣削则是一种间断切削,切削力是断续作用于刃尖,切削时将发生振动,刃尖所受的热影响,是切削时的加热和非切削时的冷却交替进行,总的受热量比车削时少。铣削时的切削热是一种断续加热现象,刀齿在非切削时即被冷却,这将有利于刀具寿命的延长。日本理化研究所对车削和铣削的刀具寿命作了对比试验,铣削所用刀具为球头立铣刀,车削为一般车刀,两者在相同的被加工材料和切削条件(由于切削方式不同,切削深度、进给量、切削速度等只能做到大体一致)及同一环境条件下进行切削对比试验,结果表明,铣削加工对延长刀具寿命更为有利。利用带有中心刃(即切削速度=0m/min的部位)的钻头、球头立铣刀等刀具进行切削时,经常出现靠近中心刃处工具寿命低下的情况,但仍比车削加工时强。在切削难加工材料时,切削刃受热影响较大,常常会降低刀具寿命,切削方式如为铣削,则刀具寿命会相对长一些。但难加工材料不能自始至终全部采用铣削加工,中间总会有需要进行车削或钻削加工的时候,因此,应针对不同切削方式,采取相应的技术措施,提高加工效率。

三、切削难加工材料用的刀具材料

立方氮化硼CBN(Cubic Boron Nitride)的高温硬度是现有刀具材料中最高的,最适合用于难加工材料的切削加工。新型涂层硬质合金是以超细晶粒合金作基体,选用高温硬度良好的涂层材料加以涂层处理,这种材料具有优异的耐磨性,也是可用于难加工材料切削的优良刀具材料之一。难加工材料中的钛、钛合金由于化学活性高,热传导率低,可选用金刚石刀具进行切削加工。CBN烧结体刀具适用于高硬度钢及铸铁等材料的切削加工,CBN成分含量越高,刀具寿命也越长,切削用量也可相应提高。据报道,目前已开发出不使用粘结剂的CBN烧结体。金刚石烧结体刀具适用于铝合金、纯铜等材料的切削加工。金刚石刀具刃口锋利,热传导率高,刃尖滞留的热量较少,可将积屑瘤等粘附物的发生控制在最低限度之内。在切削纯钛和钛合金时,选用单晶金刚石刀具切削比较稳定,可延长刀具寿命。涂层硬质合金刀具几乎适用于各种难加工材料的切削加工,但涂层的性能(单一涂层和复合涂层)差异很大,因此,应根据不同的加工对象,选用适宜的涂层刀具材料。据报道,最近已开发出金刚石涂层硬质合金和DLC(Diamond Like Carbon)涂层硬质合金,使涂层刀具的应用范围进一步扩大,并已适用于高速切削加工领域。

四、切削难加工材料的刀具形状

在切削难加工材料时,刀具形状的最佳化可充分发挥刀具材料的性能。选择与难加工材料特点相适应的前角、后角、切入角等刀具几何形状和对刃尖进行适当处理,对提高切削精度和延长刀具寿命有很大的影响,因此,在刀具形状方面决不能掉以轻心。但是,随着高速铣削技术的推广应用,近来已逐渐采用小切深以减轻刀齿负荷,采用逆铣并提高进给速度,因此,对切削刃形状的设计思路也有所改变。对难加工材料进行钻削加工时,增大钻尖角,进行十字形修磨,是降低扭矩和切削热的有效途径,它可将切削与切削面的接触面积控制在最小范围之内,这对延长刀具寿命和提高切削条件十分有利。钻头在钻孔加工时,切削热极易滞留在切削刃附近,而且排屑也很困难,在切削难加工材料时,这些问题更为突出,必须给予足够的关注。

为了便于排屑,通常在钻头切削刃后侧设有冷却液喷出口,可供给充足的水溶性冷却液或雾状冷却剂等,使排屑变得更为顺畅,这种方式对切削刃的冷却效果也很理想。近年来,已开发出一些性能良好的涂层物质,这些物质涂镀在钻头表面后,用其加工3―5D的浅孔时,可采用干式钻削方式。孔的精加工历来采用镗削方式,不过近来已逐渐由传统的连续切削方式改变为采用等高线切削这类间断切削方式,这种方式对提高排屑性能和延长工具寿命均更为有利。因此,这种间断切削用的镗削刀具设计出来后,立即被应用于汽车零件的CNC切削加工。在螺纹孔加工方面,目前也采用螺旋切削插补方式,切螺纹用的立铣刀已大量投放市场。如上所述,这种由原来连续切削向间断切削的转换,是随着对CNC切削理解的加深而进行的,这是一个渐进的过程。采用此种切削方式切削难加工材料时,可保持切削的平稳性,且有利于延长工具寿命。

如上所述,难加工材料的最佳切削方法是不断改进的,新的难加工材料不断出现,对新材料的加工总是不断困扰着工程技术人员。当前,新型加工中心、切削工具、夹具及CNC切削等技术的发展非常迅速,而且在切削加工之外,CNC磨削、CNC电加工等技术也得到了空前的发展,难加工材料的加工技术选择范围已大为扩展。当然,有关难加工材料加工信息的收集与对该技术的深入理解,还不尽如人意,正因为如此,面对难加工材料的不断涌现,人们总是感到对加工技术有些力不从心。例如,前述车削加工由连续切削向间断切削转换,便有利于延长工具寿命,新型涂层硬质合金刀具的使用,使难加工材料切削技术水平得到进一步提高。在难加工材料的切削加工中应特别重视工具寿命的稳定,不仅工件材料要和刀具性能妥善配备,而且对加工尺寸、加工表面粗糙度、形状精度等的要求也极严格,因此,不仅应特别注意刀具的选用,对工件的夹持方式等相关技术也不能掉以轻心。

今后,难加工材料零件的加工将采取CAD/CAM、CNC切削加工等计算机控制的生产方式,因此,数据库的建构、工具设计与制作等工具管理系统的完善,都极为重要。难加工材料切削加工中,适用的刀具、夹具、工序安排、工具轨迹的确定等有关切削条件的数据,均应作为基础数据加以积累,使零件生产方式沿着以IT化为基础的方向发展,这样,难加工材料的切削加工技术才能较快地步入一个新的阶段。

参考文献:

材料加工技术篇(2)

关键词:金属材料;环境友好加工;清洁生产

1 概述

金属材料具有优良的使用性能和工艺性能,我国的人均金属材料占有量依然很低,金属材料在一段相当长的时期将占据材料工业的主导地位[1]。随着可持续发展思想、理念及其实践的逐步形成与不断发展,在金属材料零部件的成型、加工、使用、拆卸、回收再利用等环节,符合人与自然和谐发展的基本要求,加强污染防止与治理、减少废物、替代有害物质、注重清洁生产技术正在成为支持可持续发展的有力战略措施[2]。传统的金属材料内成型与控制技术包括液态成型技术、固态成型技术以及液―固成型技术。金属材料环境友好成型加工技术既包括按环境友好金属材料的基本思想和设计原则开发的新一代金属材料,也包括对传统金属材料的环境友好化改造,也就是说,在传统金属材料基础上,通过对金属材材料制造工艺的不断调整,成型加工技术的不断改造,逐渐实现传统材料的环境友好成型加工技术[3]。金属材料环境友好成型加工技术要求在金属材料产品生产过程中具有对能源消耗少、对环境污染小、对生产成本要求低的特点,也具有循环再生利用高的工艺基础和技术优势。只有这样,才能将金属材料环境友好成型加工技术与现代工业大规模生产形结合,在金属材料及金属产品的设计阶段,就要纵观金属材料产品整个生命周期过程,充分考虑到每个成型加工环节对节省资源、能源、保护环境、废弃后容易再生循环的要求,同时具有良好的功能特性和舒适性,达到环境友好材料的目的[4],从而提高金属材料在生产和使用中的资源及能源的利用效率,降低成本,提高质量,增大可靠性,延长设备使用寿命[5]。所以,金属材料环境友好成型加工技术是面向环境的金属材料成型加工及应用研究,是金属材料产业中人与自然和协调发展的理性选择,是金属材料产业可持续发展的必由之路。

2 金属材料成型加工过程的环境负荷

随着我国社会经济的高速发展,金属材料成型加工的总量也在不断增大,对资源和能源的消耗也不断增加,由此造成的资源和能源短缺现象也日益严重。金属材料矿产资源是不可更新的自然资源,传统的成型加工过程对金属材料大量消耗,必然会使人类面临金属材料资源逐渐减少以至枯竭的威胁。我国钢铁工业能源消耗巨大,金属材料生命周期的各个阶段均会造成环境负载。由于金属材料在采矿冶炼、成型加工、产品制备、设备使用及废弃过程中产生大量的废水、废气、固体废弃物等,对生态环境造成了很大的破坏,致使全球环境污染问题变得更加严峻,加重了地球的环境负担。因此,对金属材料的成型加工、生产和使用而言,对自然资源的消耗是源头,对生态环境的污染是末尾。就钢铁材料冶金生产而言,钢铁的生产和使用与资源消耗和环境负荷有着密不可分的关系。由于钢铁材料以型材供应为主,钢铁材料的能耗居材料产业能耗之首;就废物排放而言,排放的废水、废气量大。我国有色金属材料工业,由于矿产资源品位很低,有色金属材料进行提取和加工耗能较大。每年生产的有色金属产品造成大量的尾矿和废渣等工业固体废弃物。在有色金属材料生产过程中,向大气中排放的二氧化硫、氟化氢等废气,是工业有毒废气的主要源头之一。所以要减轻金属材料成型加工过程的环境负荷,在金属材料成型加工设计阶段,就把金属材料的使用性能与和环境保护结合起来,使金属材料在具有优异性能同时,也充分满足资源的有限性和自然环境容量的有限性。

3 金属材料环境友好成型加工技术

一是降低钢铁生产中的吨钢能耗比,采用先进的金属材料成型加工工艺及设备,逐步淘汰落后的轧钢工艺装备。提高废钢铁在现代炼钢中的比重,推广高效节能、环境友好的的电能炼钢技术。在电炉中采用辅助能源装置和余热回收循环利用技术,提高连续铸造、连续退火、直接轧钢等连续化生产的比重。应健全金属材料成型加工工艺废旧钢回收管理机制,将废钢铁回收、加工、分离技术和有害元素的去除技术与金属材料环境友好成型加工技术结合起来。进一步提高金属材料成型加工过程的成材率,应用近终形连铸技术,使连铸坯的尺寸接近设计的最终钢材断面尺寸,省去了开坯工艺、初轧工艺,甚至可以免去整个热轧工序过程。先进的连铸技术可控制冷却速率,金属凝固速度提高,形核率增大,可得到细小晶粒组织,减少或消除中心偏析等缺陷,获得良好的钢材性能。目前,近终形连铸的钢铁短流程的工艺特点是无焦碳、不轧制,全部实现热态连续生产过程。二是开发金属材料环境友好成型加工产品,在工业生产中,将低资源消耗、低能源消耗、低污染的金属材料产品,根据其生命周期的长短分为流动性产品和贮存性产品。易拉罐等流动性产品的生命周期短,要求在产品整个生命周期投入尽可能少的资源消耗和能源用量。不但要选择在这个阶段的资源消耗少、能源消耗低的材料,还要易于循环再生。桥梁结构材料等贮存性产品生命周期长,在降低制造阶段的资源消耗和低能源消耗时,更重要的是采用金属材料环境友好成型加工技术,通过桥梁结构材料的高功能化、长寿命化、提高桥梁结构材料的可靠性和可维修性,满足低污染、低的资源消耗、低的能源消耗要求。三是金属基复合材料的二次成型加工技术,金属基复合材料具有可设计性好的优异性能,普遍应用于航海、航空、航天、军事等各个领域[5]。在金属基复合材料的成型加工生产中,为了降低复合材料生产成本,提高复合材料性能,往往是先将金属基复合材料制成初级坯料后,再采用二次成型加工技术进行成形,制成可应用的复合材料零件、或者型材等[6]。随着金属基复合材料精密成型加工技术的发展,精密洁净、表面光洁、尺寸精度高的金属基复合材料产品需求量逐年增大,精确化和强韧化的金属基复合材料产品市场越来越大。

参考文献

[1]王瑾.基于材料的绿色产品设计与管理研究[J].科技创新导报,2009(32):7.

[2]刘业翔.有色金属冶金基础研究的现状及对今后的建议[J].中国有色金属学报,2004,14(S1):21-24.

[3]解念锁,王艳,武立志.高锌基合金的应用现状及前景[J].热加工工艺,2010,39(14):50-53.

[4]王瑾,赵亮.高铝锌基合金的资源优势及其应用[J].铸造技术,2012,33(4):293-295.

材料加工技术篇(3)

关键词:金属基;复合材料;加工技术

复合材料不仅具备了高性能、耐高温等优点,而且由于其结构具有可设计性、长寿命与减重等特征,因而在航空航天领域之中的应用变得愈来愈广泛。复合材料是如今复材零件使用中周期偏长、成本偏高,而且风险也相当大的一道工序。在我国创建复合材料的产业链过程中尚具有比较大的问题。有关配套加工技术还不够成熟,因而在复合材料加工上的技术研究上投入的人、财、物力也具有不足之处,与西方国家先进的材料加工技术研究比较起来尚有比较大的距离。正是由于复合材料加工技术尤其是金属基复合材料加工技术在诸多方面得到了非常多的运用,所以加大材料加工技术的探究,显得极为重要。

一、复合材料加工技术概述

复合材料是一种多相材料。这里所说的多相,主要是指具有两种或以上的化学性能的相关材料。复合材料则是把多相材料通过诸多加工方法进行加工而合成。复合材料具有的两相分别为增强相与基体相。复合材料主要存在两种加工技术,也就是常规加工方法与特种加工方法。常规加工法和金属加工法是一样的,加工手段相对较为简单,而工艺也比较成熟。但是,一旦加工复杂工件之时就会对刀具造成极大的磨损,其加工的质量不够好,且在加工中形成的粉末极易对人体造成极大的影响。后者相对来说比较容易加以监控,而在加工的过程中,切削刀具和被加工的工件接触量非常小以至于为零,这就十分有利于自动化加工。然而,由于复合材料所具有的复杂性,导致特种加工之运用也会遭受限制,因此,一般来说,常规性加工的运用比较多。

二、金属基复合材料加工技术分析

所谓金属基复合材料,主要是指以金属及合金为基础,使用陶瓷颗粒和纤维等为强化材料复合起来的一种高质量的材料。因为这类材料具备了强度比较高、耐热与耐磨、稳定性高等良好的性能,从而让这类材料已经成为诸多实践领域之中最具有吸引力的一类材料。该材料大量运用在航空和军事等诸多领域。在金属基复合材料的生产过程之中,为切实降低材料的生产成本与提升性能,通常是先把该材料制作为铸锭与初级板材之后,再通过二次加工成形以制做出能够直接运用的零件等。由于精密加工技术的不断发展,对精密化、洁净化、精度较高的材料需求量不断增加,精准化与高韧度的金属基复合材料市场份额变得愈来愈大。所以,对这种复合材料的加工技术进行深入研究,对于推动机械加工技术的推广运用具备了十分突出的实际意义。

三、金属基复合材料加工的具体技术手段

一是切削加工技术手段。金属基复合材料加工技术是一种常用的技术手段。通过认识与把握材料切削加工的常见规律,准确选择刀具与切削的用量,这样一来才能确保加工质量以及相当高的成效。使用硬质合金以及高速钢等为主要的切削刀具,探究了碳化硅颗粒提高铝基复合材料之中的碳化硅含量和尺寸等参数对于切削加工性能所造成的影响。有研究证明碳化硅的颗粒尺寸一旦愈大、含量愈多,刀具所产生的磨损度也更加快。碳化硅的颗粒一旦比较粗大,其加工工件的外表也就会相当粗糙,而且随着颗粒含量持续增加而不断增加,复合材料对于刀具造成的磨损也会越大。使用聚晶金刚石刀具,可以对颗粒增强对复合材料的制备性能进行深入研究。在达到某种切削速度之时,材料对于刀具所造成的损耗是最小的,而且工件外表的粗糙度比较好。在运用常见加工设备之时,侧重于刀具结构的改进与创新,这是提升工作效率的更具有可行性的方式。

二是线切割加工技术手段。传统意义上的刀具只适合于加工体粒径比较小而且含量比较少的那些复合材料。当体粒径不断增加而且含量不断增多之后,高速钢与硬质合金等普通刀具的磨损相当快,即便于选择了高硬度刀具加以切削,其使用寿命也难以让使用者满意。因为这一情况,把特种加工法运用到此类材料之中就非常有必要。当前运用电火花线来切割加工颗粒以强化复合材料的研究已经有了大量的报道,而切割的速度以及切割之后的外表粗糙度则是十分重要的加工参数。通过探究电参数对于电火花线进行切割加工,可以对复合材料切割快慢以及外表粗糙度造成一定的影响。使用扫描电镜来分析复合材料线所切割的加工外表的样貌。脉冲的间隔对于外表粗糙度的影响并不是很大,在其达到了某种程度之时,表面上的粗糙度往往不会受到影响。通过选择比较大的峰值电流以及比较短的脉冲宽度,可以对复合材料实施比较理想的电火花线进行切割和加工。这类材料的线切割加工必须要科学地选择电加工的参数,电极间的电压一定要高出间隙以击穿电压,合理地确定电极与工件彼此间所具有的距离,合理地选择电介液绝缘力而且对间隙污染实施合理评估与清除。

三是磨削加工手段。对金属基复合材料实施磨削加工,主要是指运用磨具所具有的切削力,除了工件外表的那些多余层,可以让工件的外表质量能够达到预定要求的一些加工手段。如今,经常见到的金属基复合材料磨削加工手段主要包括了外圆磨削、内圆磨削以及成形面磨削等。这类材料所具有的磨削特点受到了增强相以及其所用的砂轮类型造成的影响,提高材料所具有的磨削方式,而软性金属堵塞砂轮则是砂轮丧失效力的一个重要因素,而磨削加工过程中所出F的主要问题就是砂轮的堵塞、磨削区出现冷却。所以说,在进行实验的条件之下,磨削颗粒增强型的复合材料之中,碳化硅砂轮的表现相当突出,其在磨削力、粗糙度等各个方面均超出了CBN以及金刚石磨料砂轮等材料。利用陶瓷基SiC砂轮以及树脂结合剂金刚石砂轮等对增强型复合材料所实施的磨削证明了SiC砂轮可用于粗磨之中。在粗磨过程中,工件磨削表面上会产生基体金属涂敷等问题,从而切实地降低表面具有的粗糙度。金刚石砂轮十分适合于进行精磨。在精磨过程中,基体材料并无显著的涂敷状况。利用细粒度金刚石砂轮,可以对1um深的磨削区实施材料的延性化磨削,其表面和亚表面并无裂纹或者缺陷出现,能够促进增强相之延性。所以说,磨削是金属基复合材料加工当中极有发展前景的加工方式之一,能实现无损化加工。

四是钻削和振动切削加工手段。碳化硅铝基复合材料的性能有别于普通钢铁材料,一般是使用整体或者涂层金刚石钻头实施孔加工。钻削加工当中出现的刀具磨损以及加工表面质量则是判断其可加工性能的重要指标。对铝合金复合材料刀具所产生的磨损以及表面质量开展试验性研究。在钻削铝合金复合材料的过程之中,钻头磨损如果发生于后刀面,产生磨损的原因则是磨料的磨损。运用扫描电镜可发现钻头后和切削速度方向保持一致的磨损沟,而钻头的横刃与外缘处也存在着磨损。刀具耐用度首推YG8钻头,TiN涂层以及深冷钻头质量较次,而HSS钻头则是最差的。当前,国内外对于金属基复合材料振动切削与加工的研究相对较少。超声振动切削作为特种加工技术手段之一,具备了减小切削力与降低表面粗糙程度、提升加工精度并且延长刀具寿命等特点。通过对铝基复合材料所进行的振动切削开展研究,把振动切削复合材料的所具有的切屑形态、变形系数以及剪切角切削形貌与粗糙度、残余应力等开展对比与研究,可以发现振动切削铝基复合材料具备了降低切屑变形、降低表面损伤程度与粗糙度、加大表面压应力等功能,这样一来就为金属基复合材料实施精密化切削探索出了一条崭新的发展途径。

四、结束语

综上所述,复合材料加工技术均有各自不同的特色,其中金属基复合材料属于具备组分材料难以拥有的全新优质性能的一种先进材料。因为复合材料的制造成本相对来说比较高,所以在其加工的过程之中应当尽可能地提升材料的利用率,切实降低能源所产生的消耗,推动我国清洁材料的生产。目前阶段,应当致力于发展各类二次成形之后的零件不再需要进行加工或少加工即可得到成品的技术,从而不断推动金属基复合材料的精密化、清洁化与高效化生产。

参考文献:

[1]沃丁柱. 复合材料大全[M]. 北京:化学工业出版社,2000.

[2]程秀全. 航空工程材料[M]. 北京:国防工业出版社,2009.

材料加工技术篇(4)

[关键词]高分子材料 成型加工 技术

近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。

一、高分子材料成型加工技术发展概况

近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。

据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

二、现今高分子材料成型加工技术的创新研究

(一)聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 转贴于

(二)以动态反应加工设备为基础的新材料制备新技术

1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

三、高分子材料成型加工技术的发展趋势

近年来,各个新型成型装备国家工程研究中心在出色完成了部级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。

综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。

参考文献:

[1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999.

[2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435.

材料加工技术篇(5)

关键词:成本控制;防水套管;消耗量;AutoCAD;定额消耗

中图分类号:TU71 文献标识码:A 文章编号:1006-8937(2014)2-0011-02

目前施工过程中,型材的消耗量很难实现精确的控制,在防水套管的加工过程中,钢板下料后,边角余料较多,若劳务施工人员技术实力及成本控制意识薄弱,加工过程中缺乏监管,材料损耗极可能高于定额损耗量。通过引入AutoCAD工具,加强成本控制,材料损耗量将控制在定额损耗量以内。

1 AutoCAD成本控制技术综述

AutoCAD成本控制技术,是运用CAD的强大的图形功能,对施工用料进行平面排布,多方案比较、合理布局,消除施工过程中材料下料随意性的影响,实现材料消耗量的预控能力,并有效指导施工,控制成本。

本文以柔性防水套管制作为实例,利用AutoCAD控制工具,对钢板下料尺寸进行优化排布,并与定额消耗量比对,最大限度降低型材的消耗量,节约成本。

2 工程实例

2.1 工程概况及材料清单

成都东客站工程位于成都市东郊沙河堡地区,建筑面积178 809 m2,总高度40 m,地下三层,地上二层,国内六大枢纽客站之一、西部地区最大的综合交通枢纽、西部地区最大的铁路客运站。

建筑物外墙及消防水池侧墙设有柔性防水套管及刚性防水套管:DN100,4个;DN150,25个;DN200,14个;DN250,3个;DN350,4个。

2.2 图集与实际用量对比分析

柔性防水套管由法兰套管、法兰压盖、密封圈、螺栓及螺母组成,全统定额内关于柔性防水套管的材料项主要为钢管及钢板,而钢板主要用于法兰及翼环的加工。现仅从图集及实际的角度分析法兰套管及法兰压盖中的钢板用量(钢管用量予以扣除)。

根据图集02S4041,计算出各种材料的重量,与图集标明的重量进行对比。

柔性防水套管由法兰套管和法兰压盖组成,法兰套管由法兰、挡圈、翼环及钢管组成,法兰压盖由法兰及短管组成。计算法兰重量时需扣除螺栓孔所占区域,上述型号柔性防水套管材料实体用量与图集用量对比如表1所示。

从表1中,我们可以看到法兰套管及法兰压盖中的钢板用量,实体量与图集量相差较小,偏差幅度在0.03%~1.91%之间,经分析,数据偏差应属于计算过程中的舍入及累计误差,由此得出实体量的计算规则与图集的计算规则应是一致的。

接下来将基于实体量、实体消耗量、定额用量对不同的钢板加工方案的损耗率进行分析,并与定额损耗率进行对比,选择损耗率最低的最优方案。

2.3 定额用量及实际用量分析

柔性防水套管中钢板实体用量如表2所示。

参照全统定额2,并与钢板实体量与定额量进行对比,结果如表3所示。

从表3可以看出,除DN200及DN250的定额损耗料在80%左右以外,其余的定额损耗率相对较低。

2.4 利用AutoCAD施工下料方案

2.4.1 施工下料方案实施步骤

在确定各种钢板厚度下的法兰及翼环数量之后,首先在CAD中定义各种法兰及翼环的块,块由双圆组成;其次在CAD中建立不同厚度下允许宽度的长方形;然后在长方形区域内放置块;最后计算长方形的长度,即可汇总不同厚度钢板的消耗量(面积及重量),从而得出该方案下的损耗率。

2.4.2 前提条件

①钢板宽度。根据国家标准GB/T709,钢板宽度允许值与其厚度有关,查标准的表1:钢板δ11 mm~22 mm的允许宽度为1 000、1 100、1250、1400、……、2 500 mm。本文使用三种宽度:1 000 mm、1 100 mm、1 250 mm。

②节约原则。根据国家标准GB/T709,在确定厚度及宽度后,钢板有最小及最大长度,最大长度一般大于6 000 mm,本文为考虑节约原则,对长度不做最小限制,但不会超出最大长度。

2.4.3 候选方案

①整圆环方案。整圆环加工较为简单,即直接在钢板上放置法兰或翼环,不考虑切割法兰及翼环区域后下脚料的利用,这种方法基本不考虑排布,操作简单,虽然减少了翼环与套管之间的焊接工作量,但是钢板的损耗率很大。法兰φ(375-268)×12排布如图1所示。

②整圆环改进方案。在整圆环的基础上,将切割大圆环后剩余的圆形区域用作小圆环加工之用,允许钢板厚度超过图纸要求。这种方法需综合考虑,尽量将小圆环套入大圆环之内,但该方案受制于法兰及翼环的不同规格下数量的限制,与第一种方案相比,在一定程度上节约了材料。法兰φ(375-268)×12及法兰φ(255-148)×12排布图如图2所示。

③半圆环方案。在钢板上放置半个法兰及翼环,进行钢板切割后,将两个半圆环焊接组装在一起,同时允许钢板厚度超过图集要求。这种方法将增加焊接工作量,但是若控制较好,钢板消耗量将急剧减少。法兰φ(315-205)×12排布如图3所示。

④组合方案。将整圆环改进方案与半圆环方案结合至一起,摸索出进一步降低损耗率的排布方案。

2.5 方案比较、分析

将四种方案所需钢板的面积及重量汇总如表4所示。

通过对各种方案进行对比,组合加工方案最节省材料,且与半环加工方案的损耗率在定额损耗率以内,定额损耗率为57.09%,整环加工方案损耗率为111.07%,约为定额损耗率的2倍,整环改进方案虽然较大幅度的降低了损耗率,但仍然高于定额损耗率,这说明了圆环的加工不能仅采用整环加工方案,而必须采取半圆环加工或与整环加工的组合方案。

3 结 语

通过成本控制,从细节做起,深入挖掘定额消耗量,借助各种办公辅助工具,减少材料损耗量,将成本降到尽可能低的水平,施工过程中严格按照施工方案实施,有利于成本计划的实现。

材料加工技术篇(6)

【关键词】高分子材料;成型加工技术;创新

现代社会中,科学技术成为了推动经济发展,促进社会进步的重要力量,也正是由于科技是第一生产力的这一理念,各个国家的科技都达到了前所未有的发展速度。高分子技术应运而生,随着人类对高分子技术的深入了解,在应用过程中遇到的很多问题有待探讨,本文中就高分子材料成型加工技术的发展与创新进行了深入的讨论,也希望能够为我国的高分子技术贡献一份力量。

一、简述高分子材料成型加工术的发展历程

在对一项科学技术进行深入探讨之前,很有必要对其的产生、发展到应用的过程有所了解。由于新型高分子材料的发现较早,但是由于观念上的落后以及设备上的落后,导致高分子材料从发现到大规模的应用于工业流程中所耗费的时间较为漫长。近年来,随着关于高分子技术的一系列难题攻破,到更多、更加优良的高分子材料被发现,高分子技术开始进入飞速发展的时代。20世纪90年代塑料的平均增长率有了很大的提升,随之而来的塑料产量也有很大幅度的提升。不管是在塑料的产量上有了大幅度的提升,在塑料的种类上,材质上,应用范围上都有了很大的优化与发展。举个例子来说,之前制造一批汽车可能需要三百吨钢铁,而现在可能只需要三百吨的塑料就能达到相同的效果,甚至更好的效果。在钢材日益减少的现在,这些高分子材料的发明给了人类在发展道路上无限种可能。在汽车行业中,由传统纯钢铁制造的汽车可能已经无法满足现代人类的需要了,而对于高分子材料制造而成的汽车,不仅在强度上不输于钢铁,在造价,环保方面更是胜于钢铁一筹。而在其他方面也会有很多改变,规模上要更小一些,周期要相对更短一些,能量的消耗要更低一些,回收率要更高一些,对空气的污染程度和对资源的消耗要更小一些。

二、创新型高分子材料成型加工技术

1.聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。目前国外已经对这一个项目进行了深入的研究,并且已经研制出了连续反应和混炼的杆螺杆挤出机,这一项研究的产生,有效地解决了双螺杆挤出问题,还有这其他类似的反应器所不具有的优点。

在这些设备的发展过程中,技术是至关重要的一个环节,在技术上必须要有所突破。指交换法聚碳酸酝(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,而在现在世界上所使用的反应加工设备上来看,大多数都是利用传统的混合、混炼技术,有些国外的企业也只是对传统的反应器进行了小范围的优化。但是根本上都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题。另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。这一项技术实现了聚合物单体或预聚物混合混炼过程中的理论的突破,有了新的理论作为指导,新型的加工反应器才能够制作出来。新的技术从理论上解决了聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这此优点是传统技术与设备无法比拟或是根本没有的。

2.新材料制备动态反应加工设备技术的革新

这一项技术的革新主要是指信息存储光盘直接合成反应成型技术的发明,这项技术具有当代新技术所需要的大多数优点,由于采取了全然不同的理论指导和流程,这项技术具有周期短,操作建议,对环境污染小,节约资源的优点。正是由于这些优点的存在,这项技术打破了原有传统技术的局限性,避免了很多问题的出现。而且随着光盘存储技术的发展,这项技术还有无限的提升空间。它的主要工作机理是把光盘级的PC树脂化,将中间存储和盘基成型融合在一个流程当中,再借鉴动态连续反应成型技术对交换连续化生产技术进行研究和发展。

3、复合材料物理场强化制备技术

此技术在强振动剪切力场作用下对无机粒子表而特性及其功能设计,整个流程都是在设计好的连续的加工环境中进行,省去了其他化学催化剂或者改性剂的参与,有效地实现了资源的节约。利用聚合物使无机粒子进行原位表面性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料热塑性弹性体动态全硫化制各技术:此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化。解决共混加工过程共混物相态反转问题。

三、展望高分子材料成型加工技术未来的发展方向

近年来,在世界上的高分子材料成型技术的发展热潮的影响下,我国的各省各地也加快了高分子材料成型技术的发展,相关部门也加大了政策上的支持。这一做法是完全符合我国改革开放以来的经济发展路线,因此这一技术已经具备了发展的一切有利因素。

我国的各个城市陆续展开这项技术的推广,已经有超过一半的地区在推广和使用这一技术,这一技术所创造的经济利益也是不容忽视的,很多地区已经将这一技术变成一个产业,工业制成品大量出口到欧洲和亚洲的很多国家和地区,在国际贸易方面有非常显的成效,不但提高了出口的多样性,而且拉动了社会效益和经济效益的增长。在未来的时间里,这项技术还具有非常大的发展空间,新型高分子材料成型技术还可以应用在更多的领域,相信会有一天高分子材料会成为我们日常生活中不可缺少的东西。希望以后有更多的人才投入到这项技术中去,这样我国的高分子成型材料加工技术才能够赶超发达国家,为我国的外贸的发展。

四、结语

综合上文所陈述的,我国要想在高分子材料的道路上走的更远,必须牢记科技史第一生产力的这一原则。并且只有随着高分子材料的不断深入应用,我国才能够更好地建设资源节约型环境友好型社会,才能让世界看到中国的发展不是以牺牲环境,大量消耗资源为代价的。推动高分子加工合成技术势在必行。

参考文献

材料加工技术篇(7)

关键词:高职;高分子材料化学基础;内容;改革

《高分子材料化学基础》是高分子材料加工技术专业一门必修的专业基础课,是以高中(包括中专、技校、职高)化学基础为起点,以高分子化学知识为核心内容,融入高分子化学所必要的无机化学、有机化学、物理化学知识,构建本专业基本的化学知识体系,培养本专业所需化学实验操作基本技能,为学习后续的《塑料材料》、《高分子材料成型加工基础》、《塑料测试技术》、《塑料混配技术》、《塑料成型技术》等课程打基础。显然该课程是高分子材料加工技术重要的专业基础课。但从目前该课程的内容体系来看,学科体系明显,内容体系仍是无机化学、有机化学、物理化学及高分子化学知识体系的机械组合,其结果是课程内容多而杂,理论深而涩,给该课程的教学带来困难而且教学效果欠佳,可以认为目前该课程体系无法适应高职教育的要求,所以很有必要对该门课程的内容进行改革。

一、课程教学内容改革的依据

本门课程教学内容改革的依据主要考虑如下三点:第一是考虑高分子材料加工技术毕业生主要就业岗位对化学知识、技能及态度的需要,保证毕业生在就业岗位上具有够用的化学基础知识与从事化学实验室工作的技能;第二是考虑毕业生职业生涯发展的需要,要让学生掌握能够支持其进一步提高其专业水平所需的化学知识,为他们的职业发展提供后劲;第三是考虑目前高职生源的高中化学知识的掌握程度以及学习能力的实际情况。

为了掌握高分子材料加工技术专业毕业生的主要就业岗位对化学基础知识、技能及态度的要求,我们对湖南塑料行业校企联盟企业进行了走访调查,调查的主要企业有湖南路路通塑业有限公司、湖南神塑科技有限公司、南车集团时代工程塑料有限公司、湖南科天新材料有限公司、湖南省塑料研究所、湖南益达塑业有限公司、株洲三鑫塑胶科技有限公司、株洲创业塑料有限公司,另外还对25家塑料加工企业通过电子邮件发送调查表进行了调查,28家外省企业进行了电话访问调查,调查塑料加工企业达到61家。调查结果表明我校高分子材料加工技术专业毕业生就业主要有四大技术工作岗位,分别是塑料挤出技术员岗位、塑料注射技术员岗位、塑料配方技术员岗位、塑料测试技术员岗位。我们根据这四个主要技术岗位所需要的化学基础知识进行了问卷调查,发出问卷调查表207份,回收调查表198份。《高分子材料化学基础》教学内容需求调查表如表1所示。

从调查表中我们可以看出,《高分子材料化学基础》七个单元的内容对我校毕业生主要就业岗位都是需要的,其中以塑料配方技术员对《高分子材料化学基础》知识要求最高,统计需要数据达到1247次,其它三个就业的主要岗位对《高分子材料化学基础》内容要求相关不大,均超过了1100次,就业的其它岗位对本门课程的要求相对不高,只有934次。由此我们可以得出,《高分子材料化学基础》对本专业主要就业技术岗位来说非常重要,但对在其它岗位上就业的毕业生重要性相对降低。就各单元来说,以“碳链高聚物及其单体”单元最为重要,调查表中统计次数达964次,调查企业对象认为最不重要的内容是“高聚物合成”单元,只有573次,其次不重要的是“高聚物化学反应”单元,为707次,其它单元的统计次数多在800次左右,这几个单元的内容是可以认为是很重要的。

通过本次调查,我们知道了《高分子材料化学基础》哪些内容对毕业生就业岗位是最重要及很重要的,哪些内容相对不重要,为我们对《高分子材料化学基础》课程教学内容的选取找到了可靠的依据。

对于教学内容的选取我们也不能完全采取实用主义的办法,也就是说不是采用学生在企业的就业岗位用到那些知识我们就教授那些知识,高等职业教育属于国民教育序列中的高等教育,还需要考虑学生职业生涯的发展,也就是说为学生提供能够支撑其后续发展所必需的化学基础知识。采取的措施是在学生高中化学知识的基础上,将高等教育层次的化学基本的原理、理论融入各教学单元中,提高学生化学基本知识与技能,达到高分子材料加工技术专业大专层次所必需的化学基础。

同时我们还要考虑目前高职生源的实际情况,目前高职生源一般来说对高中化学课程掌握的情况不理想,学习能力也有待提高,所以我们选取《高分子材料化学基础》内容时也不能脱离生源基础的实际情况,没有必要将过深的化学理论纳入教学内容,不然学生无法掌握教学内容,反而造成不利于提高教学质量的影响,如结构化学的内容、化学反应机理的动力学分析等内容不必作为《高分子材料化学基础》的内容,以往的教学实践也证明过深的教学内容对学生学习本门课程是不利的。容易造成学生失去学习的信心与兴趣,从而从整体上影响课程教学效果。

二、教学内容的整合

如前所述,目前《高分子材料化学基础》的内容体系是无机化学、有机化学、物理化学、高分子化学等多门化学课的机械组合,每门课的教学课时在以往的教学中都在100个学时以上,即总课时在400学时以上,要在96学时的《高分子材料化学基础》这门课教授完原来400学时以上的内容,显然不对教学内容进行整合是不可能教授完相关内容,所以必须对高分子材料加工技术专业化学基础的教学内容进行整合,整合的依据就有前面所述的三个考虑。在课程内容的整合过程中,必须防止以前出现的几大化学内容简单的机械的组合,为此要正确把握好这几门化学基础课中相关内容的整合和优化,按照高分子材料加工技术专业人才培养目标对知识、技能及态度的要求,科学地进行“综合”,严格地把握好对相关课程内容“取”与“舍”的尺度。课程内容整合是为了改变以往按单一学科系统分别设置课程,各课程自成一体,缺乏联系,重理论而轻实践的现象和课程与课程间的内容重复,为此我们重新设计了《高分子材料化学基础》的内容结构体系,课程内容体系如表3所示。

从《高分子材料化学基础》教学内容新体系可以看出,新的内容体系打破了原来的几大化学课程内容机械组合的学科体系,考虑课程的职业性,是根据本专业毕业生就业岗位对本门课程知识、技能及态度的需要来设计内容,没有学科体系的影响。将无机化学、有机化学、物理化学、高分子化学这四门课的内容根据职业岗位的需要进行了取舍,整合为一门课程,即《高分子材料化学基础》。需要调整课程结构,重新优化课程内容,处理好相关内容的衔接。高分子材料化学基础以高分子材料为主线,无机化学部分容入各教学单元中,有机化学与高分子化学知识密切结合,物理化学内容也容入相关教学单元,舍去过深理论性教学内容,教学内容结合实际,提高学生学习本门课程的兴趣,从而提高教学效果。课后最后一个单元是综合训练,教学内容有高分子溶液的配制、常用高分子材料的鉴别及聚乙烯醇涂料的制备实验等,这些教学内容结合生产及生活实际,很好地实现了课程教学目标,教学实践证明,学生在学习这些内容时兴趣昂然,取得了较好的教学效果。

三、课程整合注意问题及效果