期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 除草技术论文

除草技术论文精品(七篇)

时间:2022-02-19 03:28:12

除草技术论文

除草技术论文篇(1)

论文摘要夏播大豆人工除草难度大、耗工耗时、除草不彻底,而采用化学除草,省工省时、除草彻底。可于苗期、芽前化学除草,要严格技术操作,以达到理想的化学除草效果。

明光市夏播大豆常年播种面积6666.7hm2左右,丘陵山区和平原地区都有种植。因夏播大豆常遇连绵阴雨,人工除草难度大、耗工耗时、劳动强度高、除草不彻底,效果差,一般田块因草害减产10%~20%,部分田块甚至绝收改种。笔者在夏播大豆田推广化学除草技术,取得省工、省时、减轻劳动强度,降低成本的良好效果。现介绍如下。

1苗期除草

1.1禾本科杂草田块

用药的关键时期要掌握在大豆2~4片复叶、禾本科杂草三至五叶期,要在杂草生长旺盛,有利于药效发挥的条件下及时施药,在杂草二叶一心断奶期施药更好。施药过早杂草尚未出齐,达不到应有的除草效果;施药过晚,杂草过大,增强了抗药能力,在常用剂量的情况下达不到理想的除草效果。施用药剂应以防除禾本科杂草为主,不需要考虑药剂的混配问题,单一药剂就能达到理想的除草效果。药剂种类有:①12.5%盖草能乳油;600~1200mL/hm2,在雨水充足、田间湿度大时用下限;在干旱情况下用上限,对水375~450kg/hm2喷雾。②35%稳杀得乳油为750~1500mL/hm2,15%精稳杀得乳油为750~1050mL/hm2,使用方法同盖草能。③10%禾草克乳油900~1500mL/hm2,使用方法同盖草能。

1.2单子叶和双子叶(阔叶)杂草混生田块

这样的田块要想达到理想的除草效果,除草剂不能单一使用,要两者兼顾,既能防除单子叶杂草又能防除双子叶杂草。目前所使用的除草剂中,两种都能兼顾的品种还比较少,因此就要考虑到除草剂的混配问题。混配并不是简单的凑合。要选择对田间杂草种类防除效果最佳的药剂相配合,配合后不因混配而降低防效才能达到好的除草效果。因大豆也是双子叶植物,它和双子叶杂草往往有很多相似之处,要考虑到除草剂对大豆的选择性程度来决定,以免大豆受药害。根据多年来的经验,大豆田防除单子叶和双子叶杂草的除草剂有:①单一使用,分期进行。用25%虎威水剂1050~1950mL/hm2于大豆第1复叶期对水450kg/hm2喷雾,防除阔叶杂草;在禾本科杂草基本出齐时,可使用稳杀得、禾草克、盖草能等的任意1种750mL/hm2对水450kg/hm2喷雾,防除禾本科杂草。②混用。把2种除草剂混合一次性喷雾。据试验,以25%虎威750mL/hm2与15%精稳杀得750mL/hm2混用,在田间杂草三至五叶期进行喷雾,除草效果非常好,无论是禾草科杂草还是阔叶杂草,防效均在96%以上。

2芽前除草

芽前除草,即大豆播种后出苗前进行土壤处理,控制杂草出土。土壤处理的技术措施主要有以下几个方面:

2.1精细整地

苗前进行化除,对整地的要求极为严格。整地质量的好坏直接影响除草剂的药效发挥。土细墒平的田块,不仅有利于一播全苗,而且易喷施除草剂,在常规的剂量下就能达到一定的除草效果;如果耕作粗放,墒面高低不平,土块较大,这样就增加了土地的表面积,在常规的剂量下就降低了除草剂的浓度,影响除草效果。同时,土块较大,除草剂很难全面接触土块,加之经过雨水淋润后土块破碎,土中的杂草种子仍会生长。

2.2严把土地水分关

苗前土地处理时,土表的水分含量是除草剂药效发挥的关键。如果土地处于干旱的情况下,除草剂的化合物则被牢固地吸附在土粒表面与土壤胶体形成结合态,很难发挥其除草作用。因此,要想达到较好的除草效果,就必须加大用水量。如果表土含水量适中,除草剂的有效分子在土粒的吸附与解吸附之间,很容易被杂草的根、芽鞘吸收,且不会因水多而流失,只要杂草生根、发芽,就会接触和吸收到除草剂而中毒死亡。同时,适宜的土壤水分条件,有利于杂草的萌发和生长,新陈代谢的活动逐步加快,更有利于杂草对除草剂的吸收。因此,在苗前进行土壤处理,施药后必须要考虑土地含水量的多少,在一般情况下,表土壤含水量应保持在35%~40%为宜。

除草技术论文篇(2)

关键词 磺酰脲类除草剂残留 前处理技术 发展趋势

随着社会进步以及人们绿色环保理念的提高,磺酰脲类除草剂因高效、广谱、低毒和高选择性等特点,已成为当今世界使用量最大的一类除草剂[1,2] 。自美国杜邦公司上世纪80年代开发出第一个磺酰脲类除草剂——氯磺隆以来,磺酰脲类除草剂已有30多种产品问世,常见的有苄嘧磺隆、甲磺隆、氯磺隆、氯嘧磺隆、胺苯磺隆、苯磺隆、醚苯磺隆等[3]。这些磺酰脲类除草剂的基本结构由活性基团、疏水基团(芳基)和磺酰脲桥组成,其品种随着活性基团和疏水基团的变化而变化(图1)。

图1 磺酰脲类除草剂的基本结构

但是,随着磺酰脲类除草剂使用范围的逐步扩大,其在农作物和环境中的残留以及对人类健康的危害也日益显现,因此,对作物和环境中磺酰脲类除草剂残留的检测也提出更高的要求。目前,磺酰脲类除草剂残留检测技术主要集中在两大方面:一是前处理技术研究,二是快速检测技术研究。关于磺酰脲类除草剂残留检测技术研究的综述文章较多[4~7],从分析误差看,前处理技术是检测的重要环节,前处理技术既重要又薄弱,因此本文就磺酰脲类除草剂残留的样品前处理技术做一综述。

随着磺酰脲类除草剂残留检测技术向着简便、现场、快捷、成本低、自动化方向发展,其前处理技术也正向着省时、省力、低廉、减少有机溶剂、减少环境污染、微型化和自动化的方向发展。本文将磺酰脲类除草剂残留前处理技术分为两类:一类是传统前处理技术,另一类是新型前处理技术。

1 传统前处理技术

磺酰脲类除草剂残留传统前处理技术常用的有:液液萃取技术(liquid-liquid extraction,LLE)和震荡提取技术等,这些技术在实际操作中非常实用,虽然存在一些不足:操作时间长、选择性差、提取与净化效率低、需要使用大量有毒溶剂等,但目前在实验室工作中仍被广泛使用。

1.1 液液萃取技术

液液萃取技术又称溶剂萃取,即用不相混溶(或稍相混溶)的溶剂分离和提取液体混合物中分析组分的技术。此技术简单,不需特殊仪器设备,是最常用、最经典的有机物提取技术,关键是选择合适萃取溶剂。张淑英等[8]萃取土壤中豆磺隆选择二氯甲烷作为萃取溶剂,平均回收率达到75.5%~97.18%。黄梅等[9]使用液液萃取技术提取稻田水体中苄嘧磺隆与甲磺隆,之后用高效液相色谱法(HPLC)进行检测,结果显示方法的精确度和准确度较好。另外,毛楠文等[10,11]也使用此技术对磺酰脲类除草剂进行研究。此技术不足之处是易在溶剂界面出现乳化现象,萃取物不能直接进行HPLC、GC分析。

1.2 震荡提取技术

震荡提取技术也是一种常用磺酰脲类除草剂等农药残留的前处理技术,包括超声震荡提取、仪器震荡提取等。例如,毛楠文等[10]利用超声震荡等技术提取土壤中磺酰脲类和苯脲类除草剂,甲醇作为提取剂,平均加标回收率达到71.72%~118.0%。 崔云[11]总结震荡提取等技术提取土壤中不同种类磺酰脲类除草剂残留,并进行HPLC、GC等仪器分析,总结见表1。

2 新型前处理技术

磺酰脲类除草剂残留的新型样品前处理技术主要包括固相萃取技术(Solid Phase Extraction,SPE)、超临界流体萃取技术(Supercritical Fluid Extraction, SFE)、免疫亲和色谱技术(Immunoaffinity Chromatography,IAC)、分子印迹聚合物富集技术(Molecularly Imprinted Polymer, MIP)、液相微萃取技术(Liquid Phase Microextraction,LPME)、微波辅助萃取技术(Microwave-assistant Solvent Extraction, MASE)及支持性液膜(Sport Liquid Membrane, SLM)萃取技术、连续性流体液膜萃取技术(Continuous-Flow Liquid Membrane Extraction, CFLME)、离子交换膜萃取技术(Ion Exchange Membrane Extraction Method)和在线土壤柱净化(Online Soil Column Extraction, OSCE)等其他前处理技术。其中,SPE是这些新型前处理技术使用最广泛的一种。

2.1 固相萃取技术

SPE起始于20世纪70年代并应用于液相色谱中,是利用固体吸附剂吸附液体样品中目标化合物,再利用洗脱液或加热解吸附分离样品基体和干扰化合物并富集目标化合物。

SPE基本操作步骤见图2。分萃取柱预处理、上样、洗去干扰杂质、洗脱及收集分析物4步。岳霞丽等[12]使用美国Supelco公司3mLENVI-18规格固相萃取柱测定水体中苄嘧磺隆,检测限达到0.01mg/L。叶凤娇等[13]比较SupelcleanTMLC-18 SPE Tube(500mg, 3mL)和Oasis HLB SPE Tube(60mg, 3mL)2种不同规格固相萃取小柱的净化吸附和浓缩效果,并选择Oasis HLB SPE Tube测定12种磺酰脲类除草剂残留。将烟嘧磺隆等12种磺酰脲类除草剂样品用85%磷酸溶液调整pH值至2~2.5之后过柱,各组分回收率达到90%以上。在洗脱及收集分析物步骤,用含0.1mol/L甲酸的甲醇-二氯甲烷(1:9,v/v)溶液洗脱磺酰脲类除草剂,用两次小体积洗脱代替一次大体积洗脱, 回收率更高[7],或者用CH2Cl2可洗脱苄嘧磺隆[12]。

另外,Carabias-Maninez等[14]用SPE提取水样中酸性磺酰脲类除草剂残留,尝试选择不同吸附剂和洗脱剂,回收率70%~95%。Furlong等[15]利用SPE同时提取浓缩磺酰脲类和磺胺类农药残留并用HPLC-MS进行检测。Galletti等[16]对LLE、SPE 2种前处理技术进行比较,土壤和水中分离提取的绿磺隆、甲磺隆、噻磺隆、氯嘧磺隆回收率后者明显高于后者,噻磺隆更明显。

近年来,固相萃取在复合模式固相萃取、固相微萃取(SPME)、基质分散固相萃取(MSPD)[17,18]和新型固相萃取吸附剂4个方面展开新应用。

SPE前处理技术因其简单,溶剂用量少,不会发生乳化现象,可以净化很小体积样品(50~100μL),水样萃取尤其方便,易于计算机控制而得到广泛应用。不足之处是提取率偏低,多数要求酸性条件。因此,对于在酸性条件下易分解的磺酰脲类除草剂残留检测需要及时分析或进行酸碱平衡。

2.2 超临界流体萃取技术

超临界流体是物质的一种特殊流体状态,气液平衡的物质升温升压时,温度和压力达到某一点,气液两相界面消失成为一均相体系,即超临界流体。SFE是利用超临界流体密度大、粘度低、扩散系数大、兼有气体的渗透性和液体分配作用的性质,将样品分析物溶解并分离,同时完成萃取和分离2步操作的一种技术。超临界流体萃取技术20世纪70年代后开始用于工业有机化合物萃取,90年代用于色谱样品前处理,现已用于磺酰脲类除草剂等农药样品分析物的提取[19]。

近年来,SFE的使用已相当广泛。例如,史艳伟[20]采用SFE技术萃取土壤中苄嘧磺隆,不仅对SFE萃取压力、温度、时间等因素做具体分析,而且研究高岭土、蒙脱石和胡敏酸含量等对苄嘧磺隆萃取率的影响。郭江峰[21]在其博士论文中用超临界甲醇提取土壤中14C-绿磺隆结合残留,获得85%以上提取率。另外,Bernal等[22]利用有机溶剂、SFE和SPE 3种方法提取土壤中绿磺隆和苯磺隆。HPLC检测显示,SFE-CO2在绿磺隆和苯磺隆土壤残留测定中提取更加优越,回收率更高,达到80%~90%。Berdeaux[23]用SFE-CO2从土壤中萃取磺酰脲类除草剂绿磺隆和甲磺隆(甲醇或水作为改性剂),回收率均大于80%,结果与SPE技术相似或稍好。Kang等[24]用SFE技术萃取2种土壤类型中的吡嘧磺隆,以25%甲醇为改性剂,温度80℃,压力300atm,萃取时间30min,添加浓度0.40mg/kg,萃取率均达到99%。另外,Breglof等[25]用SFE技术与同位素跟踪法相结合研究甲磺隆、甲嘧磺隆和烟嘧磺隆残留,以土壤为基质,以2%甲醇为改性剂,回收率达到75%~89%(烟嘧磺隆除外,回收率为1%~4%)。

目前常用的超临界流体是CO2,廉价易得,化学性质稳定,无毒、无味、无色,易与萃取物分离,萃取、浓缩、纯化同步完成。SFE前处理技术在磺酰脲类除草剂残留提取中克服常规提取法的缺点[26],具有分离效率高、操作周期短(每个样品从制样到完成约40min)、传质速度快、溶解能力强、选择性高、无环境污染等特点。随着SFE技术与越来越多的快速检测技术联用,其在磺酰脲类除草剂残留的研究分析中具有较大潜力,尤其在多残留分析中,能够显著提高分析效率。

2.3 免疫亲和色谱技术

IAC是一种将免疫反应与色谱分析方法相结合的分析技术,是基于免疫反应的基本原理,利用色谱的差速迁移理论,实现样品分离的一种分离净化技术。分析时把抗体固定在适当载体上,样品中分析组分因与吸附剂上抗体发生的抗原抗体反应被保留在柱上,再用适当溶剂洗脱下来,达到净化和富集目的。特点是具有高度选择性。技术关键是选择合适的载体、抗体和淋洗液。例如,邵秀金[27]采用IAC和直接竞争ELISA法相结合对绿磺隆进行分析检测,选择pH7.2磷酸缓冲液作为吸附和平衡介质,80%甲醇作淋洗液,结果显示:IAC动态柱绿磺隆最高容量达到3.5μg/mL gel;样品中绿磺隆含量250倍;空白土壤样品添加0.1μg/g绿磺隆,平均回收率达到94.09%。另外,Ghildyal等也利用IAC结合酶联免疫法对土壤中醚苯磺隆进行分析检测[28]。

2.4 分子印迹聚合体富集技术

MIP是近年来迅速发展起来的一种分子识别技术,是利用MIP特定的模板分子“空穴”来选择性吸附聚合物,从而建立的选择性分离或检测技术。MIP对磺酰脲类除草剂具有很好的粘合能力。例如,Bastide[29]等用MIP富集提取绿磺隆、噻吩磺隆、氟磺隆、氯嘧磺隆、氟胺磺隆5种磺酰脲类除草剂残留,用4-乙烯基嘧啶或2-乙烯基嘧啶作为功能单体,乙烯基乙二醇二甲基丙烯酸酯作为交链,甲磺隆作为模板,结果显示MIP在极性有机溶剂中具有很好的识别能力,键和容量达到0.08~0.1mg/g,这种方法可以从水中富集75%以上的磺酰脲类除草剂残留。Zhu等[30]使用MIP键合甲磺隆,键合容量高,能够测定ng级的甲磺隆。汤凯洁等[31]采用苄嘧磺隆分子印迹固相萃取柱(MISPE)对加标大米中的苄嘧磺隆、甲磺隆、苯磺隆和烟嘧磺隆4种磺酰脲类除草剂残留进行净化和富集预处理,几种物质能直接被萃取柱中的印迹位点保留,杂质几乎不保留,表现出良好的识别性能。

2.5 液相微萃取技术

LPME是1996年Jeannot和Cantwell等提出的一种新型前处理技术[32]。LPME相当于微型化液液萃取技术,因样品溶液中目标分析物用小体积萃取剂萃取而得名。例如,吴秋华[18]将LPME与HPLC联用,分析水样中甲磺隆、氯磺隆、苄嘧磺隆和氯嘧磺4种磺酰脲类除草剂残留,检测限达到0.2~0.3ng/g,并且将基质分散固相萃取结合分散液相微萃取与HPLC联用分析土壤中上述4种磺酰脲类除草剂,检测限达到0.5~1.2ng/g。

2.6 微波辅助萃取技术

MASE是匈牙利学者Ganzler等提出的一种新型少溶剂样品前处理技术。MASE利用微波能强化溶剂萃取效率的特性,使固体或半固体样品中某些有机物成分与基体有效分离,并保持分析物的化合物状态[33]。MASE萃取时间短,消耗溶剂少,具有良好选择性,可同时进行多样品萃取,环保清洁,回收完全,越来越成为替代传统方法的新前处理技术。但使用时应对萃取溶剂优化,确保萃取过程和溶剂中分析物的稳定性[34]。现阶段MASE已广泛应用于磺酰脲类除草剂等农药残留前处理中[35,36]。

2.7 其他前处理技术

有支持性液膜萃取技术、CFLME、离子交换膜萃取技术、OSCE等。支持性液膜萃取技术,又叫膜法提取,是一种以液膜为分离介质,以浓度差为推动力的膜分离技术,萃取的化合物范围较窄,只能萃取形成离子的化合物,流速比较慢。例如,Nilve[37]用膜法提取测定水样中的磺酰脲类除草剂残留。CFLME是将LLE和SLM连接起来的一种技术,首先分析物萃取进入有机相(LLE),然后转入液膜支持设备形成的有机微孔液膜表面,最后通过液膜受体被捕获(SLM)。这一技术被用来萃取水中的胺苯磺隆和甲磺隆,胺苯磺隆回收率达到88%~100%,甲磺隆达到83%~95%[38]。CFLME技术和支持性液膜萃取技术均适合在线检测水中痕量磺酰脲类除草剂,方便快捷。不足之处是受体容量易受酸影响,而水样和土样中一般都有酸存在。离子交换膜萃取技术是一种采用离子交换膜作隔膜的萃取技术,通过离子交换膜(具有选择透过性的膜状功能高分子电解质)的选择透过性来实现对分离物的萃取技术。离子交换膜萃取技术对生物测定有良好的评估,萃取过程成本低,能耗少,效率高,无污染、可回收有用物质,与常规的分离萃取技术结合使用更经济。已在磺酰脲类除草剂残留的检测中得到应用[39]。 OSCE适合土壤样品中痕量污染物的萃取,方法有效、简单、快速。Lagana等[40]用OSCE萃取土壤中绿磺隆、苄嘧磺隆、烟嘧磺隆等6种磺酰脲类除草剂,其回收率达到63%~99%,比超声波萃取和MASE高,精确度最好。

3 小结

目前,在磺酰脲类除草剂残留前处理技术中,LLE和SPE仍占据重要位置,新型前处理技术并不能完全代替传统前处理技术,很多情况下样品前处理过程是在常规的传统前处理技术基础上与微型化、自动化、仪器化的新型前处理技术结合共同完成的。

磺酰脲类除草剂的痕量残留及其独特的理化性质,给该类农药残留的分析检测造成较大困难。为确保检测方法的灵敏性和准确性,前处理过程及技术显得尤为重要。近年来,随着SFE、MIP、CFLME及OSCE等新型前处理技术在实际工作中的应用和发展,仪器分析技术(如液-质联用、气-质联用等)、免疫分析技术(如荧光免疫技术、酶联免疫技术等)及生物传感器法、活体检测法、酶抑制法等磺酰脲类除草剂残留新型检测技术方法的不断涌现和快速发展,经济环保、微型化、自动化、仪器化的前处理技术及液-质联用等新型检测方法的发展已成为其首选和重要发展方向,多残留检测、在线实时检测、自动化检测等已成为国内外共同关注的焦点。

参考文献

[1] 邓金保.磺酰脲类除草剂综述[J]. 世界农药, 2003, 25(3):24-29,32.

[2] 张敏恒.磺酰脲类除草剂的发展现状、市场与未来趋势[J]. 农药, 2010,49(4):235-240, 245.

[3] 张一宾.磺酰脲类除草剂的世界市场、品种及主要中间体[C]. 上海:2009年中国磺酰脲类除草剂360°产业论坛, 2009.

[4] 魏东斌,张爱茜,韩塑睽,等. 磺酰脲类除草剂研究进展[J]. 环境科学发展, 1999, 7(5).31-42.

[5] 张蓉,岳永德,花日茂,等. 磺酰脲类除草剂残留分析技术研究进展[J]. 农药,2005, 44(9):389-390.

[6] 吕晓玲,佘永新,王荣艳,等. 磺酰脲类除草剂残留检测技术及其研究进展[J]. 分析测试学报, 2009, 7(28):875-880.

[7] 欧晓明. 磺酰脲类除草剂残留检测分析研究新进展[J]. 精细化工中间体, 2006, 1(36):1-6.

[8] 张淑英,苏少泉,杨长志. 土壤中豆磺隆残留的气相色谱测定[J]. 农药,2000,39(9):23-24.

[9] 黄梅,刘志娟,蔡志敏.高效液相色谱法检测稻田水体中苄嘧磺隆与甲磺隆及乙草胺残留量[J]. 湖南农业大学学报(自然科学版), 2005, 31(2):213-215.

[10] 毛楠文, 李方实. 高效液相色谱法同时测定土壤中残留的苯脲类和磺酰脲类除草剂[J]. 农业环境科学学报, 2008,27(6):2509-2512.

[11] 崔云,吴季茂,将可.磺酰脲除草剂的残留分析[J].上海环境科学, 1998,10(17):22-25,42.

[12] 岳霞丽,张新萍,董元彦. 固相萃取-高效液相色谱法测定水体中苄嘧磺隆的残留量[J]. 光谱实验室, 2006,2(23):321-323.

[13] 叶凤娇,孔德洋,单正军,等. 固相萃取-高效液相色谱法同时测定水中12种磺酰脲类除草剂[J]. 环境监测管理与技术, 2011, 2(23):36-40.

[14] Carabias M R, Rodriguez G E, Herrero H E. Simultaneous determination of phenyl and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array mass spectrometric detection[J]. Anal Chim Acta. 2004,517:71-79.

[15] Furlong E T, Burkhardt M R, Gates P M, et al. Routine determination of sulfonylurea, imidazolinone and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry[J]. Sci Total Environ, 2000,248:135-146.

[16] Galletti G C, Bonetti A, Dinelli G. High performance liquid chromatographic determination of sulfonylureas in soil and water[J]. J Chromatogr A, 1995,692:27-37.

[17] Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion[J]. Journal of Chromatography A, 1989,475:353-361.

[18] 吴秋华.液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用[D]. 石家庄: 河北农业大学博士论文, 2011.

[19]徐宝才,岳永德,花日茂.超临界流体萃取技术在农药残留分析上的应用(综述)[J]. 安徽农业大学学报(社会科学版),1999,26.

[20] 史艳伟. 超临界CO2流体萃取土壤中苄嘧磺隆的研究[D]. 武汉:华中农业大学硕士论文, 2009.

[21] 郭江峰. 14C-绿磺隆(Chlorsulfuron)在土壤的结合残留特性研究[D]. 博士学位论文, 武汉: 华中农业大学图书馆,1997.

[22] Bernal J L, Jimenez J J, Herguedas A, et al. Determination of chlorsulfuron and tribenuron-methyl residues in agricultural soils[J].J Chromatogr A,1997, 778:119-125.

[23] Berdeaux O, Alencastro L F, Grandjean D, et al. Supercritical fluid extraction of sulfonylurea herbicides in soil samples[J].Int J Envion Anal Chem,1994,56(2):109-117.

[24] Kang C A, Kim M R, Shen J Y, et al. Supercritical Fluid Extraction for Liquid Chromatographic Determination of Pyrazosulfuron-Ethyl in Soils[J]. Bull Environ Contam Toxicol, 2006, 76(5): 745-751.

[25] Breglof T, Koskinen C. K, Kylin H. Supercritical fluid extraction of metsulfuron-methyl, sulfometuron-methyl and nicosulfuron from soils[J]. Int J Envion Anal Chem,1998, 70(1-4): 37-45.

[26] 戴建昌,张兴,段苓. 超临界萃取技术在农药残留分析中的应用研究进展[J]. 农药学学报,2002,4(3):6-13.

[27] 邵秀金. 绿磺隆残留免疫分析化学研究[D]. 扬州: 扬州大学硕士论文,2002.

[28] Ghildyal R, Kariofillis M. Determination of triasulfuron in soil:affinity chromatography as a soil extract cleanup procedure[J]. J Biophys Methods,1995, 30: 207-215.

[29] Bastide J, Cambon J P, Breton F, et al. The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides[J]. Anal Acta, 2005, 542: 97-103.

[30] Zhu Q Z, Haupt K, Knopp D, et al. Molecularly imprinted polyer for metsulfuron methyl and its bingding characteristic for sulfonylurea herbicides[J]. Anal Chem Acta. 2002, 468: 217-227.

[31] 汤凯洁,顾小红,陶冠军,等.分子印迹固相萃取-液相色谱质谱联用对4种磺酰脲类除草剂残留的测定[J]. 分析测试学报, 2009(12)28:140-144.

[32] Jeannot M.A,Cantwell F F. Solvent microextraction into a single drop[J]. Analytical chemistry, 1996, 68: 2236-2240.

[33] 武汉大学主编.分析化学[M]. 第四版. 北京:高等教育出版社,2000,303-304.

[34] Li Y T, Campbell D A, Bennett P K. Acceptance criteria for ultratrace HPLC-tandem mass spectrometry quantitative and quality determination of sulfonylurea herbicides in soil[J]. Anal Chem, 1996, 68:3397-3404.

[35] Font N, Hernandez F, Hogendoorn E A, et al. Microwave-assisted solvent extraction and reversed-phase liquid chromatography-UV detection for screening soils for sulfonylurea herbicides[J]. J Chromatogr A,1998,798:179-186.

[36] Hogendoom E A, Huls R, Dijkman E, et al. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils[J]. J Chromatogr A, 2001,9 38: 23-33.

[37] Nilve G, Knutsson M, Joensson J A. Liquid chromatographic of sulfonylurea herbicide in natural waters after automated sample pretreatment using supported liquid membranes[J]. J Chromatogr, 1994, 688 (1-2):75-82.

[38] 张蓉. 几种磺酰脲类除草剂高效薄层析残留测定技术及应用[D]. 硕士学位论文, 武汉:华中农业大学图书馆,2003.

除草技术论文篇(3)

关键词:化学除草;机械除草;水污染;有机种植

中图分类号:S511 文献标识码:A DOI:10.11974/nyyjs.20161033071

稻田杂草是影响水稻秧苗生长的重要因素,稻田杂草与水稻争夺生长空间,肥料养份、水、热、光照等资源,影响水稻的生长发育,是造成水稻产量下降和品质降低的重要原因之一[1-2],因此在水稻生产过程中有效控制稻田杂草是确保水稻健康生长,实现高产、优质必不可少的关键环节,纵观国内外水稻除草方式共分为3大类。

1 人工除草

在传统农业耕作时期水稻的除草和玉米、大豆等其它农作物一样都是靠人工劳动作业进行除草,这个时期在我国乃至世界各个国家都经历了相当长的时期,人工除草分2个阶段:杂草次生根没有生成,杂草较小比较容易漏掉;杂草次生根已经生成这个阶段除草相对费力,无论那个阶段人工除草劳动强度都很大。但从人工除草作业整个过程来看,人工除草技术要求不高,除草效果较好,具有经济、环保、疏松土壤等优点,但除草不易彻底,效率低且劳动强度大已不适应现代农业发展。

2 化学药剂除草

从20世纪80年代开始,随着科学技术的发展,化学除草剂发明后被广泛应用于农业生产中,化学药剂除草具有高效、省时、省力的特点,农民开始大量的使用化学药剂[3-4]。这种除草方式也是目前水稻种植业大量采用的除草方式,化学药剂除草作业分为3种作业形式。

2.1 人工作业

化学药剂刚被应用于农业生产时只是靠人工背负传统的喷雾器进行作业,该种作业方式主要特点是灵活,不受地块条件限制,但其缺点劳动强度大,人与药液接触较近,容易造成作业人员皮肤过敏,甚至中毒。

2.2 机械作业

随着化学除草药剂的广泛应用,用于喷洒化学药剂的作业机器也得到了充分的发展,这就大大减轻了农民的劳动强度,同时也提高了工作效率,但现有的喷药机器其科技含量较低,只是处于初级阶段,不论水稻田间杂草多少喷洒药量都是一样,再加上农民为了提高除草率加大药液浓度,这样就造成了农药的过渡使用。

水稻在种植过程中需要有充足的水源进行灌溉,在吉林省种植水稻区域多数为江河附近及水库周边,因此水稻灌溉后的水经河流又重新流入下游水库,这样水中药液残留引起的水环境污染问题越来越严重,长期下去对吉林省饮用水必然会造成一定污染从而影响人们的健康生活。同时由于过渡使用农药导致土壤板结硬化,地力下降造成农产品品质下降。因此作为机械喷洒药需要提高其喷药的精准及智能控制系统,实现根据田间杂草情况不同而时行喷药量的改变。

2.3 航空作业

航空植保作业是近2a来新兴发展起来作业模式,主要是采用无人机进行化学除草药剂喷洒和病虫害防治,但由于无人机在作业时旋翼旋转形成的风力使早期稻苗和杂草随风摆动,同时在水稻反青后杂草植株小,叶面窄小,致使药液雾滴很难在表面附着,因此航空作业模式并不适合水稻前期除草作业。同时由于无人机飞控技术发展相对滞后,目前吉林省无人机操作培训机构尚未形成。同时由于无人机价格较贵,一但出现飞控安全问题不但面临无人机坠毁同时也会对他人人身安全造成威胁。这些因素都将导致无人机用于水稻喷洒农药在近期内很难得到快速发展。

3 机械除草

随着人们生活水平的提高和对环境污染关注度的提高,同时近年来对保护性耕作的重视,机械除草的生产方式被提出来并开始在水稻生产中得以应用。机械除草主要是通过笼辊式、齿辊式、耙齿式等除草部件将土壤搅动,翻转并连同杂草翻出地表,将其覆盖完成除草作业,但目前机械除草还处开发展阶段,行间除草率可达80%以上,便株间除草率较低,同时还会发生损伤秧苗现象。虽然机械除草技术还不成熟,但机械除草在消灭杂草的同时保持了土壤结构稳定性和通透性,使土壤疏松,提高了水分渗入率,加快了土壤营养物质的分解。采用机械式除草保持了原有人工除草的绿色生产的需要也同时提高了劳动效率,顺应了绿色农业的发展要求。

水田机械除草虽然取得了一定的成就,但为了提高其除草率,减少秧苗损伤,应向智能化和多技术联合方向发展。

参考文献

[1]牛春亮.稻田株间除草机构除草过程中伤秧影响的试验研究[J].农机化研究,2016(11):190-197.

[2]马旭,齐龙.水稻田间机械除草装备与技术研究现状及发展趋势[J].农业工程学报,2011(6):162-166.

除草技术论文篇(4)

论文摘要 我国化学除草存在问题是农田杂草群落演替加快,难治杂草危害加大了化学除草工作难度,除草剂的选择、复配、使用时期等造成了除草剂药害发生频繁,长残留除草剂危害严重以及除草剂喷洒器械落后。建议加强农药和药械的使用与管理、除草剂使用技术研究和普及,加强长残留除草剂科学使用和管理、加强施药器械的研制、生产、管理和使用技术的研究。除草剂产品开发要适合北方各方面条件,重视除草剂的安全性,促进我国化学除草的发展。

1除草剂药害问题及对策

1.1使用不合理

由于误用、滥用、混用不当、使用过量的除草剂、不适时施药造成药害等;使用长残留除草剂造成残留药害;施药器械和田间喷洒作业不标准、喷雾器械清洗不彻底、飘移等造成药害;使用假劣除草剂造成药害;经销商、厂家误导造成药害等。

1.2对策

严格执行除草剂注册登记、田间药效试验、除草剂田间药效试验安全性评价等制度。农业生产需要除草剂安全性评价必须全面和准确,要特别注意在不良环境条件下的试验,苗前除草剂要进行不同土壤有机质、质地、pH值、低温高湿、拱土期施药、混土施药等试验;苗后除草剂要进行高温低湿、低温高湿、最好有2d低于10℃的气温试验、喷液量试验;作物不同生育阶段和品种试验;加不同类型的喷雾助剂及剂量试验。要特别重视长残效除草剂对后茬敏感作物安全性评价试验,改进施药技术避免或减轻药害;对安全性差的除草剂不予登记注册,加大对伪劣除草剂的查处力度,大力普及除草剂使用技术等。

2除草剂混用和混配制剂的问题及对策

2.1除草剂混用和混配制剂的问题

(1)除草剂混配和混配制剂安全性问题严重。除草剂混配和混配制剂重视成本、忽视安全性和药效,一些混配不合理,已给生产造成严重损失。

(2)除草剂混配和混配制剂药效差的问题。除草剂混配与混配制剂不合理,大豆田比较突出。一般有3种情况:一是混配后药效差;二是由于增效作用而造成药害;三是不能与当地条件、杂草种类相匹配。

2.2对策

除草剂的混用及混配制剂的开发首先应考虑安全性,应特别重视对后茬作物的安全性,长残留除草剂应严格限制使用或淘汰。除草剂混配制剂的开发应对安全性、药效、可混性、混配比例及使用技术做认真、详细的试验研究,特别是安全性试验,应对不同质地、有机质含量、不同施药时期、喷液量、温度、湿度、加喷雾助剂及对后茬作物安全性等进行研究。

3长残留除草剂使用现状、问题及对策

3.1长残留除草剂剂使用现状

2004年我国长残留除草剂农田使用面积近1 733.3万公顷,占农田化学除草总面积的30%。主要长残效除草剂品种有莠去津、甲磺隆、氯磺隆、咪唑乙烟酸、氟磺胺草醚、氯嘧磺隆、异噁草松、唑嘧磺草胺、西玛津、胺苯磺隆、甲氧咪草烟、二氯喹啉酸等。长残留除草剂使用面积最大的是我国北方,其中大豆使用长残留除草剂占首位,使用面积占我国北方大豆化学除草面积的50%,在内蒙古的东北部呼伦贝尔市等地,近10年来在大豆、小麦、油菜田多年连续使用长残除留草剂,占总播种面积的80%以上。

3.2长残留除草剂带来的问题

长残留除草剂的优点是除草效果好、杀草谱宽、用药量少、使用方便、用药成本低;其缺点是在土壤中残留时间长,一般可达2~3年,长的可达4年以上,在连作或轮作农田中使用极易造成后茬作物药害、减产,甚至绝产。长残留除草剂对后茬作物的药害连年发生,日趋严重,已给农业生产造成严重损失,并严重影响了农业种植业结构调整。

(1)种植比例不合理。我国北方农村种植规模大,尤其是大豆的面积较大,而大豆又多采用长残效除草剂,由此造成多种作物倒茬轮作,特别是近年来种植业结构调整,经济作物种植面积扩大,多数经济作物对苗前的长残效除草剂敏感而造成药害,大大限制了用户对除草剂和后茬作物种植的选择机会。

(2)短期行为。农村土地无准确的技术档案,由于近期内土地转包较多,在使用除草剂时多数采取短期行为,不考虑轮作倒茬问题,使用长残效除草剂。

(3)施药机械落后,农艺性能差。施药机械尚无使用技术规范可遵循,除草剂重喷、漏喷严重,小四轮带喷雾机多数压力不足,无搅拌装置;喷嘴型号不对,苗后喷水量过大,同型号喷嘴间流量差异大,有的差1~2倍。

(4)农民文化水平低。有的农民看不懂除草剂说明书,缺少对除草剂使用技术的培训,对除草剂使用技术掌握得少或不懂,不合理使用除草剂,甚至乱用除草剂,只顾眼前,不管长远。

(5)受自然条件限制。如高温、干旱、大风等影响,未能改进施药技术。选用除草剂及除草剂混用或混配制剂不合理,药效差就盲目增加除草剂用量。

3.3对策

(1)调整除草剂品种结构。鉴于我国除草剂生产发展迅速、供过于求的现状,调整除草剂品种结构时机已经成熟,应对有替代品种的长残留除草剂进行淘汰;对无替代品种的长残留除草剂划区限制使用范围、用量和次数。

(2)加强管理和研究。加强对长残留除草剂登记管理和使用技术的研究、试验示范,加强使用技术研究,使用标准的喷药机械和按喷药机械使用技术规范施药,推广植物油型除草剂喷雾助剂,降低用药量。依法使用长残留除草剂。除草剂生产者要认真进行长残留除草剂登记试验,规范标签和使用说明书,详细说明种植敏感作物的间隔期。使用者要改进使用技术,作好土地技术档案记载。

(3)加强化学除草使用技术的普及与提高。

4喷雾器械存在问题及对策

4.1喷雾器械质量问题严重

除草剂要通过喷药机械来实现除草效果,喷雾机械的性能至关重要。我国北方目前种植规模较大的农民装备了与小四轮配套的小型喷杆式喷雾机,其中农民自己制造的占相当比例,多数压力不足,喷嘴质量差,达不到喷洒除草剂的农艺要求。还有相当一部分使用背负式手动喷雾器,这些手动喷雾器结构简单、价格底廉、材质差、易损坏、压力低、跑冒滴漏严重、农艺性能差,不适合喷洒除草剂。

大型喷杆式喷雾机仅在黑龙江、新疆等垦区使用,而且多为20世纪80年代初期从国外引进和仿造,机型落后,设备老化。

4.2喷洒技术落后

2002年我国已完成喷雾器械使用技术规范的制定,至今未曾公布实施,喷洒除草剂处于无章可循状态。除机械外,在技术上还存在整地质量差、对水量过大过小、行走快慢、喷洒不均、压力不够等诸多方面的问题。

4.3对策

(1)喷雾器械要像农药一样立法,依法注册管理,以保证喷雾器械质量,淘汰质量差的或自制喷雾器械及配件。

(2)喷雾器械的落后严重影响了化学除草的发展,国家应加快引进和研制适于国情的新喷雾器械,并给予喷雾器械财政补贴。

(3)尽早公布实施喷雾器械使用技术规范,使喷洒除草剂有章可循。大力推广喷雾器械使用技术规范,提高施药水平。喷杆式喷雾器械重点淘汰国产喷嘴、过滤器,更换进口喷嘴和过滤器,推广快速组装喷头体、喷雾器雾滴均匀度测试板。

5难治杂草种类问题与对策

5.1难治杂草种类及问题

由于忽视机械灭草措施、不合理耕作轮作、不合理使用除草剂等原因,农田杂草种类减少,难治杂草增多,主要在多年使用除草剂的大田作物,如大豆田鸭跖草、刺儿菜、大刺儿菜、问荆、苣荬菜等;水稻田匐茎剪股颖、稻李氏禾、扁秆藨草、日本藨草、藨草、慈姑、空心莲子菜、双穗雀稗等;麦田鸭跖草、刺儿菜、大刺儿菜、问荆、苣荬菜、播娘蒿、婆婆纳、猪殃殃、牛繁缕、硬草、看麦娘、鼬瓣花、卷茎蓼、田旋花等;油菜田婆婆纳、繁缕、看麦娘、大巢菜。

除草效果不好是由于选择除草剂不对、用量偏低、混配不合理、使用时期不对、喷洒器械不标准、施药技术不规范,自然条件影响未能采取相应措施等因素影响,并不是由于杂草对除草剂抗性造成的。

5.2对策

(1)非化学除草措施。加强机械灭草措施,深耕深翻,播前整地灭草及中耕。

(2)注意安全性。选择安全性好的除草剂,合理混配,苗前选用异噁草松+唑嘧磺草胺、精异丙甲草胺、异丙草胺或混配制剂大豆欢;苗后选用异噁草松+灭草松+精吡氟禾草灵、高效吡氟甲禾灵、精噁唑禾草灵、精喹禾灵、异噁草松+氟磺胺草醚+精吡氟禾草灵、高效吡氟甲禾灵、精噁唑禾灵或精喹禾灵。

(3)适宜的喷液量。苗前喷液量人工背负式手动喷雾器225~300L/hm2,拖拉机喷雾机180~200L/hm2;苗后喷液量人工背负式手动喷雾器100~150L/hm2,拖拉机喷雾机100 L/hm2以下。

(4)正确选用喷雾器械。苗前人工背负式手动喷雾器和拖拉机喷雾机选用11003、11004型扇形喷嘴,配50筛目过滤器;苗后人工背负式手动喷雾器选用11001型扇形喷嘴,配100筛目过滤器;拖拉机喷雾机选用80015型扇形喷嘴,配100筛目过滤器。

(5)喷雾压力。苗前人工背负式手动喷雾器2个大气压,拖拉机喷雾机选用2~3个大气压;苗后人工背负式手动喷雾器选用2~3个大气压,拖拉机喷雾机选用3~5个大气压。

(6)行走速度。拖拉机车速68km/h,人工3~4km/h。

(7)喷头高度。拖拉机喷雾机喷杆高度和人工背负式手动喷雾器喷头高度40~60cm。

(8)施药时期。播前施药要采用混土施药法;播后苗前施药,最好播后3d之内施药;苗后施药在大豆真叶期至一片复叶期,鸭跖草三叶期以前,刺儿菜、苣荬菜八叶期前,一般阔叶杂草二至四叶期。睛天上午8时前,下午6时后,最好夜间无露水时施药。

(9)添加助剂。施药时药液中加入植物油型喷雾助剂,用量为喷液量1%。

6除草剂产品开发问题与对策

6.1除草剂开发要把安全性放到首位

近20年来,我国除草剂生产有了长足的发展,上市除草剂品种近100个,在这方面还存在盲目性、追新和粗制滥造等问题。除草剂开发应考虑我国实际情况,农民种植规

模、农作物轮作方式、喷洒器械性能质量、使用技术水平等,开发的除草剂不但要能除草,更要对作物安全,对下茬作物也安全。

6.2重视老品种的开发,不要盲目追新

一些除草剂老品种经多年使用,技术成熟,安全性较好,一般用量较大,农民熟悉,国外公司已把市场打开,不需花费更多的财力、物力去开发市场,并不涉及专利问题。目前有一种倾向就是盲目追新,国外有的马上仿造,除草剂发展和更新较快,化合物的活性越来越高,用量越来越少,但对喷洒器械和使用技术要求严格,一些国外新投入市场的新品种,使用技术尚不成熟,有些问题尚未暴露出来,如当年的氯磺隆、甲磺隆、胺苯磺隆等,一些厂家争相上马,后发现因残留危害后作问题而不得不下马。磺草酮成本高不宜生产。一些长残留除草到如咪唑乙烟酸、氯嘧磺隆、甲氧咪草烟、唑咪磺草酮等不宜再发展。

6.3应重视老品种混配制剂的开发

近几年来,国产除草剂混配制剂急剧增加,目前已超过1 100个,主要问题是注重了成本低,而忽视了安全性和药效,大多粗制滥造,混配不合理、精品不多。老品种除草剂的混配开发要选安全性好的除草剂,注重科学性,认真搞好混配配方筛选及田间药效试验。

7参考文献

[1] 农牧渔业部农垦局农业处.中国农垦农田杂草及防除[M].北京:农业出版社,1987.

[2] 苏少泉,宋顺祖.中国农田杂草化学防除[M].北京:中国农业出版社,1996.

[3] 孙鼐昌.面向21世纪中国农田杂草可持续治理[M].南宁:广西民族出版社,1999.

[4] 王险峰.喷雾机的性能标准及田间操作规程[J].现代化农业,2002(9):14-16.

[5] 王险峰,关成宏.除草剂喷雾助剂的理论和实践[J].现代化农业,2002(1):11-13.

除草技术论文篇(5)

论文摘要玉米田化学除草可根据玉米的生长期分为3个阶段:玉米播后苗前进行封闭处理、玉米苗后早期进行茎叶处理、玉米中期封行以前定向处理,根据田间杂草分布、栽培技术及天气情况,选择合适的除草剂品种是解决玉米田杂草危害的关键。

近些年来,随着除草剂品种的增多及化学防除技术在农业生产中的推广应用,化学除草已广泛应用于玉米生长的各个时期。而根据田间杂草分布、栽培技术及天气情况,选择合适的除草剂品种是解决玉米田杂草危害的关键,不但会降低农户的劳动强度与时间,而且会降低耕种成本,达到增产的目的。玉米田化学除草可根据玉米的生长期分为3个阶段。

1玉米播后苗前进行封闭处理

在这一阶段主要是小麦收割后或地表进行整理完毕,杂草出土较少或未出土,已经进行玉米播种后可采用封闭处理。应用的除草剂以酰胺类、均三氮苯类除草剂为主,比如乙草胺、异丙草胺与阿特拉津的混剂。目前市场上表现较好的除草剂有惜玉、棒米笑等,其作用机理是通过地表喷雾,让药液在地表表面形成1层厚1cm的药土层,在杂草出土时碰到药土层,经幼芽或幼茎吸收,达到杀死杂草的目的。因此,应用以上产品进行杂草防除时要求在较长一段时间内不要破坏地表,喷药时应倒退行走,做到喷洒均匀;否则可能影响药效。

玉米田苗前除草受天气、土质、地表情况、使用技术及用量等因素影响较大,经常药效表现不稳定。但是玉米做封闭处理对于玉米的生长起关键作用,作物前期与杂草争肥争水的能力弱,需要一个相对良好的环境才能得到有效成长,同时更大程度上限制了杂草的出土,为后期杂草防除效果提供有力保障。但有些杂草在玉米播后苗前已有小部分出土,此时可以配合天闪(200g/L水剂)进行综合除草(即封杀结合),可以控制出土和未出土的杂草,但需要注意的是天闪应在玉米播种后立即使用。

2玉米苗后早期进行茎叶处理

如果由于农时或天气原因等影响了前期用药,或者因为天气、麦茬等原因造成封闭不好,在玉米苗后早期出土的一些杂草,也能够进行化学防除,从而控制早期的田间杂草,比如烟嘧磺隆系列产品。具体品种有玉农乐、金玉老、玉米见草杀、玉之盾等,同时根据田间杂草情况也可与盾隆(氯氟吡氧乙酸)等产品混用扩大杂草谱,防治阔叶杂草。

由于玉米田间杂草品种的不同,以及各品种的农药针对的标靶杂草不同,所以需要选择合适的除草剂品种。

如烟嘧磺隆对香附子与禾本科杂草效果理想,而对阔叶杂草效果较差;盾隆对阔叶杂草效果好,对禾本科杂草效果差,要根据田间杂草情况选择合适产品来进行杂草防除。

在玉米苗后茎叶处理全田喷雾时,首先要注意的是用药安全。进行苗后用药因用药不当会出现药害现象,如白化、矮化、卷心等症状出现(首先需分辨是否是因病虫害引起的)。发生药害的原因一般有以下几点:一是增大用药量;二是在高湿、高温环境下用药;三是与其他产品混用;四是用药时间不对或玉米品种受限制。以烟嘧磺隆为例,施用时期为玉米苗后二至七叶期,不能用于甜玉米、制种田玉米等,不能与有机磷类农药混用,用药前后7d内不能使用有机磷类农药等,所以在使用玉米苗后产品时,在向经销商询问的同时,应用时更需要阅读产品标签的内容,以确保能正确用药。相对苗前封闭性除草来说,苗后用药受环境影响较小,是未来玉米田除草的方向。

在农业生产实践中,苗后除草剂的使用可以采用顺垄喷雾,这是一个比较成熟的使用技术。在国内很多地方都有比较成功的范例。主要的好处有以下几点:首先玉米田苗后顺垄喷雾能最大限度地降低除草剂对较为幼嫩的玉米叶片的伤害;其次除草靶标是生长在田间的杂草,田间漫喷,玉米的着药面积更大,不仅浪费药液,更重要的可能会降低防除效果,顺垄施药能够解决这个问题,从而提升除草效果。

3玉米中期封行以前定向处理

因前期用药不理想或雨水过多新生杂草又产生危害,此时仍可以使用天闪或玉米见草杀、金玉老等产品进行定向喷雾,这时玉米已经较高(60~80cm高),采用行间定向喷雾,既可保护作物,又能除掉所有杂草,天闪(200g/L水剂)属灭生性除草剂,在应用中需注意不要将产品喷到作物上,在使用时应加喷雾防除罩。影响天闪药效的主要原因是产品在配制时用水的清洁度问题。为了提高药效需要用纯净的水配药,不要使用河水、井水等含杂质较多的水,应使用自来水,在阳光充足的条件下,天闪见效迅速,几个小时即可看到杂草死亡。

4参考文献

除草技术论文篇(6)

关键词 茶园;有害生物;综合防治;贵州都匀

中图分类号 S435.711 文献标识码 A 文章编号 1007-5739(2014)15-0139-01

中国十大名茶之一的都匀毛尖茶,是都匀市的主要经济作物,现有茶园面积1.49万hm2,可采茶园逾0.63万hm2。由于茶叶种植面积大,近年来有害生物呈加重发生态势。摸清其有害生物种类及发生特点,开展有害生物综合防治技术研究十分必要。为有效控制茶园病虫草鼠害的发生危害,提高茶园有害生物综合防治技术水平,保障茶叶质量安全,促进都匀市茶叶生产健康发展,笔者于2010―2013年在贵州省都匀市对茶园有害生物种类进行了调查研究,提出了相应的综合防治技术。

1 调查内容与方法

1.1 调查概况

调查地点设在贵州省都匀市毛尖镇茶叶种植区,调查总面积10 hm2。调查时间为2010年3月至2013年10月。

1.2 调查方法

1.2.1 病虫调查方法。在茶叶生长期间每隔10~15 d调查1次,采取对根际和根际土壤取样调查及干、枝、叶、花上收集的方法进行普查,采集的病虫害标本带回实验室鉴定,调查过程中观察记载病虫危害茶叶植株部位及危害症状。同时,在茶叶种植园内安装佳多牌频振式杀虫灯,每10 d调查1次,对诱集昆虫带回实验室鉴定。

1.2.2 杂草调查方法。采用唐洪元等[1]提出的五级目测法进行,调查时记载杂草发生种类和危害程度。

1.2.3 害鼠调查方法。采用夹夜法,调查工具为木板鼠夹,花生仁作诱饵,对捕获的鼠类进行种类鉴定。

2 结果与分析

2.1 发生病虫主要种类

通过在贵州省都匀市毛尖镇茶叶种植区调查,在茶园发生的主要病虫害有19种,其中,病害有7种,即茶白星病、茶饼病、茶轮斑病、茶炭疽病、茶云纹叶枯病、茶叶斑病、茶白绢病等;主要害虫有12种,即茶小绿叶蝉、茶蓟马、茶蚜、黑粉刺虱、茶毛虫、云尺蠖、油桐尺蠖、小白尺蠖、茶蓑蛾、大蓑蛾、小地老虎、铜绿金龟子等。

2.2 发生杂草主要种类

茶园发生主要杂草种类有马唐、狗尾草、蟋蟀草、狗牙根、辣蓼、白茅、棒头草、看麦粮、早熟禾、繁缕、莎草、马兰、毛茛、野塘蒿、刺儿菜、黄花蒿、通泉草、车前草、蟋蟀草、马齿笕等20余种,占杂草发生量的90%以上。

2.3 发生害鼠主要种类

茶园发生害鼠主要种类有黑线姬鼠、褐家鼠、黄胸鼠、小家鼠4种,以黑线姬鼠、褐家鼠为优势鼠种,占总鼠数的80%以上,捕获率在3%~8%。

3 结论与讨论

根据茶园有害生物种类及发生危害特点,提出以农业防治为基础,物理防治为重点,抓住防治关键时期,选择生物农药,适时采用化学防治的防治策略。

3.1 农业防治

在春茶萌芽前及时进行修剪,清除田间病虫枝叶,及时进行人工除草,清洁田园,施足底肥。在茶青采摘的季节,及时进行采摘茶青,增产增效,创造一个利于茶叶生长、不利于病虫发生的生态环境,从而减轻茶叶病虫的发生和危害。

3.2 物理防治

杀虫灯诱杀害虫的一种高科技绿色无公害杀虫技术,具有无环境污染,对人、畜安全、使用方便、诱杀效果显著等优点。因此,在茶园应大力推广太阳能杀虫灯控虫技术和黄板诱杀害虫技术,可大大减少田间害虫危害。太阳能杀虫灯按照每3.3 hm2茶园安装1盏进行诱杀害虫;黄板按照茶园悬挂25 cm×20 cm黄板375块/hm2为宜。茶园除草可以通过物理除草、覆膜等办法对杂草进行抑制。

3.3 化学防治

要加强病虫鼠害监测,搞好病虫鼠害调查,掌握病虫鼠害发生动态,抓住防治关键时期开展防治病虫鼠害工作。在病虫防治时,禁止使用甲胺磷、三氯杀螨醇、氰戊菊酯等高毒、高残留农药和对天敌杀伤力较强的农药,推广使用阿维菌素、吡虫啉、苏云金杆菌等高效、低毒、低残毒的生物农药,严格把握施药剂量及鲜叶采摘安全间隔期。茶园除草应该选择在冬季休茶时,对土壤进行处理杀死草籽,减少杂草,可选用草甘膦、克芜踪等除草剂,除草效果可达90%左右。鼠害防治推广使用毒饵站灭鼠技术[3],选择使用高效、低毒、无二次中毒的抗凝血杀鼠剂,如溴敌隆、溴鼠灵等,可有效地控制鼠类的发生危害[4]。

4 参考文献

[1] 唐洪元,王学鹗.上海郊区农田主要杂草生长发育研究(Ⅱ)[J].杂草学报,1989,3(4):14-19.

[2] 金星,杨再学,刘晋,等.贵州省毒饵站灭鼠技术的研究与应用[J].贵州农业科学,2009,37(9):107-112.

除草技术论文篇(7)

论文摘要异株克生是广泛存在的自然现象,它既存在于不同杂草种群之间,也存在于杂草与作物之间,还存在于杂草同种不同个体或作物与作物之间。阐述了异株克生现象的原理,总结了异株发生现象在杂草防治和农业上应用的途径和意义,并针对异株发生现象的弊端,提出了应对措施。

异株克生这一概念最先由奥地利科学家Molish(1937)提出。异株克生(Allelopathy)是植物(供体)向农业生态环境中释放的化学物质对其他植物(受体)产生的毒害作用,即一种植物对另一种植物萌芽、生长及发育所产生的有害影响。供体释放的化学物质称作异株克生化合物(Allelopathins,Allelo-chemicals),化合物直接毒害受体时称作真克生;而供体释放的化学物质或供体的残体通过微生物等分解产生的物质毒害受体时,称作功能性克生。

Grummer(1955)提出将异株克生分为4类:①抗生作用,微生物产生抗生素对其他微生物发生作用;②植物杀菌素,更高级的植物分泌杀菌素对微生物发生影响;③凋萎影响,微生物分泌凋萎物质对比其更高级的植物产生影响;④高等植物的相互影响,高等植物产生化学物质对其他高等植物产生影响。

1984年,Rice在《Allelopa-thy》中将其较完整的定义为:植物或微生物的代谢分泌物对环境中其他植物或微生物的有利或不利的作用。起异株克生作用的物质称为异株克生物质。到目前为止,植物体内已发现的这类物质包括:有机酸类、醛类、芳香族酸、简单不饱和内酯、香豆素、醌类、类黄酮、生物碱、长链脂肪酸、乙醇等。这些物质,有的是单独起克生作用,有的则需经土壤微生物作用后才有异株克生效果。

异株克生作用是自然界存在的一种普遍现象,它既存在于不同杂草种群之间,如小飞蓬产生C10聚乙炔甲酯抑制豚草种子发芽;也存在于杂草与作物之间,如野燕麦的根系分泌出莨菪碱(Scopo-lamine)及香草酸等抑制小麦的生长发育,小麦的根系分泌物抑制白茅的生长;还存在于杂草同种不同个体或作物与作物之间,如小飞蓬根腐烂产生的他感作用抑制其幼苗的生长,腐烂的小麦残体抑制玉米的生长。老桃园残留桃树皮中扁桃苷的降解产物氰化物对新种植的桃树有毒害作用。玉米、黑麦、烟草植株分解过程中能产生抗真菌化合物,这些作物的残体在土壤中接近杂草种子时,便可防止种子腐烂,使其保持生命力。

异株克生化合物在杂草治理中起着重要作用。有研究表明:在耕地再生的假高粱与向日葵含有的抑制物质能抑制许多其他杂草发芽。因此,应该使用合理的作物布局与作物轮作、选育抗病、抗草的作物品种与种植制度。

1异株克生作用在杂草防治和农业中的应用

1.1作物与杂草之间的克生

有研究表明:对禾谷类作物水提物的研究发现(1989),大麦、燕麦、小麦提取液至少含有5种芳香族酸和一些胺类,它们能使森林杂草覆盖地上部干重分别降低10%、40%和68%。埃及科学家Hassan于1993~1996年开展了水稻与稗草的异株克生关系的研究,发现约有30份材料可以控制田间稗草50%~90%的生长。Putnam(1990)认为燕麦残体可以释放对杂草有克生作用的化学物质DIMBOA(2,4-二羟基-1,4-(2H)苯丙恶嗪-3)及其代谢产物BOA((3H)-苯丙恶唑啉酮),而土壤真菌可将BOA转化成另外一种物质,对杂草的毒性比前者高10多倍。我国李善林等报道(1994),小麦能通过颖壳中的苯甲酸的克生作用抑制白茅的生育。而杂草对作物的影响不仅表现在与作物争夺水、肥、光等生活因子,其产生的异株克生物质也是影响作物生育的一个重要原因。Holm(1984)发现将马唐种子与水以1∶16.7(w/v)提取24h,提取物可明显抑制花生、大豆等作物的发芽,Qasem的研究表明(1993),藜属(C.murale)的地上部水提物原液可抑制大麦、小麦、茄子、甘蓝、胡萝卜、辣椒的发芽,反枝苋地上部水提物原液可抑制茄子、甘蓝等蔬菜的发芽及生长。

1.2作物与作物之间的克生

我国马永青等研究麦秸覆盖对玉米生长的影响时发现(1993),麦秸与水按1∶10(w/v)提取24h的提取液对玉米发芽有明显克生影响,玉米胚芽生长也受抑制。麦秸覆盖土壤对下茬玉米发芽率、株高、重量及叶面积均有不同程度的影响,这一影响可能是作物释放的异株克生物质可在土壤中残留,从而影响下茬作物的生长。在国外有人将成熟向日葵切碎,以32t/hm2鲜重混入土壤表面,结果可使棉花的发芽率降低至86.0%。

1.3杂草与杂草之间的克生

对杂草之间异株克生作用的研究报道较少。Hagin(1989)发现,偃麦草体内可分离出5-羟基吲哚乙酸和5-羟基色氨酸,这些物质对其他杂草生长产生抑制作用。Martin(1994)等的试验表明,狗尾草和马唐可使多花黑麦草种子发芽率降低50%以上。杂草之间除了抑制作用以外,还具有促进作用。Kazinczi发现(1991),苘麻的水提液及酒精提取物可促进反枝苋种子发芽。

2异株克生化合物在杂草治理中的应用

2.1异株发生现象利用的途径

(1)直接利用具有克生作用的植物体或微生物体作为除草剂,但这种方法效果并不理想。

(2)采用植物化学的研究手段,对具有克生活性的次生代谢物提取、分离、鉴定,进而人工合成或化学修饰,既可以直接利用,也可能成为新化学农药的先导化合物。稻田除草剂艾割就是国外从桉树的次生代谢物中提取分离仿生的先导化合物,桉树含有1,8-桉树脑。Mnller等发现其是鼠尾草等植物的主要克生植物,为此,人们开发了新除草剂Cinmethylin。但是在国内除草剂方面还局限于提取、分离、鉴定阶段,尚未能形成成熟的产品。

(3)利用生物技术进行异株克生基因的转移,将代谢途径或某一关键步骤导入目标作物中,可提高作物的异株克生潜能;或者利用转基因技术,将优秀的克生资源克隆到作物和覆盖作物体内并表达,使其具有抑制杂草的能力,达到除草目的,在这方面的研究目前都只局限在探索和尝试阶段。

2.2异株发生现象利用的价值与意义

种植业伊始,作物一直受杂草的危害,人类长期为其所困。科学技术发展到今天,除草技术已有长足进步,但全世界的农业生产始终未能摆脱杂草的巨大危害。异株克生作用作为研究发现新克生作用物质及除草剂先导化合物的一条重要途径,它对植物种间关系理论的研究具有极大的推动作用,在生产上具有多方面的应用价值。从抗除草剂机理方面看,这一研究方向有着丰富的资源和广阔的空间。目前可以想象的包括代谢过程的异株克生物质、来自微生物的异株克生物质、来自其他植物的异株克生物质,都可能作为利用的资源。在创制新农药品种的过程中,也可以借鉴异株克生物质的成果,有目的地开发作物己经具备抗性的化合物,提高新农药研制的效率,推动农药工业的发展。近年来,应用先进的分子生物学技术,人们己分离出许多的异株克生物质,如各种器官或组织异株克生化合物生物合成途径的关键技术等。此外,利用异株克生现象能克服常规育种的盲目性和耗时等缺点,加强了人类对作物定向改造和设计的能力;从根本上解决了除草剂的选择性问题,最大限度地发挥现有除草剂的经济效益。异株克生作用和生物除草剂的改良,减轻了环境对化学除草剂的负荷,可能开发出更优秀的产品。异株克生作用的出现有力地促进了综合防治(IPM)理论的发展。异株克生作用的大面积推广在提高粮食产量、简化农业生产环节、节约能源和水、降低除草剂的研制与开发成本等诸多方面将产生巨大的环境、经济和社会效益。

3异株克生现象的弊端

3.1异株克生化合物对环境的影响

异株克生化合物作为一种农药使用时,同样也有其作为农药的一些不利的特征。首先,其具有一定的挥发性,施用后会被周围的植物吸收或经露水浓缩后被吸收,可能对敏感非靶标植物产生药害;其次,其同样具有淋溶性,通过降雨、灌溉、喷雾等使之进入土壤、河流和地下水等。3.2对植物生理与生化影响

异株克生化合物来源于植物的根、茎、叶、花、果实及种子。由于它对植物的生理生化方面的研究较少,它在植物的养分吸收、细胞分裂、光合作用、呼吸作用、酶活性和蛋白质合成等方面的影响还有待进一步研究。

3.3浓度变化的不规律性

其作为农药使用时,定量施用后,并不一定象除草剂那样随时间的延长浓度呈一定规律的降低,而是处于植物(供体)—土壤—植物(受体)的变化系统中,作用对象和浓度在不断调整,对植物影响的系统研究仍是空白。

3.4异株克生化合物的提取、分离、鉴定和检测技术不成熟

由于异株克生化合物种类繁多,含量甚微,在一个复杂混合群体,如何提取、分离、鉴定和检测的问题同样有待进一步研究。同时还必须考虑静态和动态有效性。

3.5移动方式的多样性

经物理化学过程而降解、吸附;经土壤微生物的呼吸作用或代谢过程而失去毒性;在外界因素作用下发生化学结构或构象的变化。

3.6安全性

与其他农药产品一样,异株克生物质同样受到安全性质疑。在开发和使用异株克生物质中也确实存在一些安全性问题。异株克生物质可能引发的生态安全性问题有以下几方面:①由于异株克生物质的使用,能否导致杂草抗性的增强;②对野生植物群落和天敌的潜在影响;③使用异株克生物质后,作物的品质及毒性等问题具有不可预知性;④能否产生交互抗性;⑤施用异株克生物质后,其残留浓度对人、畜是否安全。

4对异株克生现象弊端的应对措施

(1)在把用异株克生化合物作为农药前,先调查周围的非靶标植物是否对其具有敏感性。因此,同一种异株克生化合物农药并非适用于任何地方。

(2)针对不同的环境和不同的植物,调整不同的异株克生化合物浓度。进一步研究植物(供体)—土壤—植物(受体)系统的变化。

(3)提高异株克生化合物的提取、分离、鉴定和检测技术,使之能广泛应用到农业中去。

总之,植物之间存在的异株克生效应是非常普遍的。尽管其中的许多机理尚未揭示清楚,但已经取得了不少研究成果,这些成果的运用定会产生出极大的经济和生态效益,为杂草的防治研究提供新的发展趋势,并将对我国乃至全世界农业的发展起着推动作用,为科学务农提供科学依据。

5参考文献

[1]陈杰,吴志伟.用幼苗生测法测定黑麦中他感化学物质的不同活性[J].浙江化工,2002(1):1-4.

[2]房义福,刘元铅,徐迎春,等.植物天然活性物质对有害生物的防御作用及其开发利用前景[J].山东林业科技,1997,(S1):77-79.

[3]郭永霞,孔祥清.转基因技术在杂草防除中的应用及展望[J].黑龙江八一农垦大学学报,2004,16(4):3-26

[4]黄冬如.异株克生现象在杂草防治中的应用及展望[J].广西植保,2008(21):16-18.

[5]李宝平,苏仙绒.试谈植物相生相克效应的应用[J].运城高专学报,1994(4):23-24.

[6]李立新,崔岩,李怀.浅谈森林植物间的异株克生现象[J].防护林科技,2004(5):73-74.

[7]李善林,李孙荣.小麦克生物质的提取及其对白茅的杀除效力研究[C]∥第五次杂草科学学术会议论文集.昆明:云南农业大学出版社,1994.

[8]李善林,由振国,李孙荣.小麦提取液对反枝苋、繁缕生长的化感效应研究[J].中国生物防治,1996,12(2):23-28

[9]李绍文.生态生物化学[M].北京:北京大学出版社,2001.

[10]李香菊,李秉华.植物异株克生及其在杂草防除中的应用[J].河北农业科学,1998,2(4):5-8.

[11]马永清,韩庆华.不同玉米品种对麦秸覆盖引起的生化他感作用的差异性分析[J].生态农业研究,1993(4):113-172.

[12]宋君.杂草间的他感作用[J].生态学杂志,1990,9(6):43-47.

友情链接