期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 金属基复合材料

金属基复合材料精品(七篇)

时间:2022-08-09 22:18:57

金属基复合材料

金属基复合材料篇(1)

【关键词】金属基复合材料;制备工艺;问题

制备金属基复合材料是一项十分复杂且重要的工作,制备工艺包括很多方面,而颗粒增强金属基复合材料作为整个制备工艺中最重要的一种方法,其制备工艺水平和质量将直接影响着整个金属基复合材料制备工艺的质量,关系着后期复合材料的使用周期和使用寿命,甚至会影响机械性能。因此,探讨、分析颗粒增强金属基复合材料制备工艺具有重要的作用和意义,只有材料研究工作人员重视工作、研究工作中颗粒在金属基复合材料制备中的应用,最终,才能提高整个金属基复合材料制备工艺的水平和质量。

一、基体和颗粒增强相的选择

基体和增强相的选择是影响制备金属基复合材料重要因素之一,在制备时,需要两者有良好的湿润性,只有满足相应的要求,才能将其进行良好的结合,促进成品综合性能的提高。

(一)基体的影响

按照基体的不同,将颗粒增强金属基复合材料分为:铜基、钛基、锌基以及铝基等复合材料。通常金属基体必须具备一定的成型性和流动性,只有这样才能将其与增强颗粒进行有效的复合。但是,由于金属基体的熔点高,因此容易发生界面反应和氧化反应,而这些材料很容易对复合材料的制备造成不利影响。

(二)增强颗粒的影响

当前制备金属基复合材料中,我们需要解决的问题主要是如何能够在金属基体中将颗粒增强相均匀分布其中,同时还要保证两者能够良好的结合。本文主要分析的是陶瓷颗粒增强相,选择陶瓷颗粒增强相不仅要考虑颗粒增强相的制备工艺和应用条件,同时,还要考虑成本多少等因素。影响制备工艺的因素主要有两个:颗粒尺寸和颗粒形状。其中颗粒自身的尺寸越小其表面能就越大,因此,颗粒的粘黏性就越大。颗粒的形状为圆形时,颗粒周边的应变分布不仅较为均匀而且应变较小。

(三)润湿性

增强体颗粒和金属基体之间的润湿性,能够起到增强相颗粒进入金属基体、改善复合材料的综合性能以及细化晶粒的作用。如果增强体颗粒和金属基体之间的润湿性没有得到改善,那么上述介绍的作用也就不复存在了。改善两者之间的润湿性可以通过添加合金元素、对增强颗粒表面进行处理等方式。

二、颗粒增强金属基复合材料的制备工艺

颗粒增强金属复合材料发展到现在大约已经有30年,从发展到现在,材料研究人员一直对金属基复合材料的控制界面反应途径、界面反应规律以及高效的制备方法等方面进行了大量的研究,并且取得了很多重要的成果,从而在很大程度上促进了金属基复合材料的发展和应用。颗粒增强金属基复合材料制备方式有很多种,主要如下:

(一)搅拌铸造法

搅拌铸造法主要是在基体金属液中加入适量的增强体,然后通过将搅拌器进行高速旋转从而促使基体金属液相和固相充分混合均匀,待其搅拌均匀后浇入铸造模型中。如何将增强体均匀分布于基体中并且还要良好的与界面结合是该方法中最为关键的环节。搅拌铸造法主要分为两种:一种是真空搅拌铸造法,另一种是非真空搅拌铸造法。

我国部分研究人员在真空搅拌铸造法的基础上成功制备出,诸如20vo%l SiC颗粒增强A356基复合材料等。并且根据浇筑方式、搅拌时间以及真空度等方面通过相应的研究,探讨了通过降低搅拌铸造法制造铝基复合材料的孔隙率的措施。搅拌铸造法具有相当多的优点:设备简单、能够大规模生产以及成本较低等。但是同时也存在一定的缺陷,例如界面反应、均匀分布性、陶瓷颗粒的偏距等问题。除此之外,非真空搅拌铸造过程中,由于会吸入大量的气体,从而导致内部产生气孔。

(二)挤压铸造法

挤压铸造法在制备金属基复合材料中应用的非常广泛,该方法主要是将作为预制块的增强体放入模具中,然后进基体合金溶液浇入模具中,随后在模板上施加相应的压力从而制成成品。复合材料和基体相比,其抗拉强度和弹性模量都有显著的提升。挤压铸造法有以下几个方面的优点:增强相的体积分数范围可以根据需要进行调整、冷却速度快、易于大批量生产、生产周期短等。同时,挤压铸造法中还存在一定的问题:制造形状复杂的制件难度较大等。

(三)半固态搅熔复合法

半固态搅熔复合法主要是通过将处于半固态情况下的金属合金进行搅拌,将金属合金液以及强项颗粒充分的融入金属溶液中,从而达到颗粒增强的目的。我国部分研究人员通过利用该种方法成功制备出了Al2O3/A复合材料等。

(四)熔体浸渗法

熔体浸渗法主要是在直接金属氧化法制备工艺的基础上提出的。熔渗法主要是在相应的温度条件下,将金属或是合金熔体能够自发渗入预制块体中。压力浸渗以及无压浸渗是熔体浸渗的两种方式,压力浸渗主要是金属熔体通过机械装置或者惰性气体产生的压力,将其渗入到预制块中,该方法制备出的金属基复合材料的体积分数可达到50%。无压浸渗主要是指在制备过程中不需要任何的压力,通过大气并结合助渗剂,将合金液体能够渗入到增强粒子之间,从而实现形成复合材料的目的。无压渗透制备出的体积分数要高于压力渗透制备出的体积分数。熔体浸渗法和搅拌铸造法相比,可以制备出的体积分数较大的复合材料。但是,同样也存在一定的缺陷,例如界面反应、晶粒尺寸粗大、预制块的变形等问题。

(五)粉末冶金法

粉末冶金法主要分为以下几个步骤:1、将增强粉末和基体粉末充分混合。2、将其混合后,采取球磨压实。3、采用不同的制备工艺将其在干燥的状态下进行烧结。这三个步骤是影响最后制备的复合材料微观组织和使用性能主要的因素。相关研究表明,已经有研究人员通过对粉末冶金法的应用,成功地制备出了一种纳米SiC颗粒增强铝基复合材料。并通过相关研究实践证实,复合材料和纯铝相比,其布氏硬度整体提高了20%。该方法的主要优点就是所有种类的增强相都可以使用、可以将所有的合金作为基体材料并且还可以制备出大体积分数的复合材料且没有界面反应。但是,该方法同样也存在一定的问题,主要是形状容易受到限制、制备的时间较长、制备工艺相对复杂以及成本耗费量大等。

结束语

综上所述,本文主要分析了颗粒增强金属基复合材料制备工艺。颗粒增强金属基复合材料经过长时间的发展,取得了很多重大成果。该种材料不仅易于二次加工,而且耐磨性强,同时,价格也相对便宜且制备工艺较为简单。笔者希望更多的专业人士能投入到该课题研究中,针对文中存在的不足,提出指正建议,为提高我国颗粒增强金属基复合材料制备工艺的提高做出重要的贡献。

参考文献

[1]贺毅强.颗粒增强金属基复合材料的研究进展[J].热加工工艺,2012,02:133-136.

[2]刘建华,沈胜利.颗粒增强金属基复合材料制备工艺的综述[J].热加工工艺,2011,10:106-108+112.

[3]任莹,路学成,许爱芬.颗粒增强金属基复合材料简介[J].热处理,2011,05:15-19.

[4]刘宗德,董世运,白树林.颗粒增强金属基复合材料涂层的制备及其特性与应用[J].复合材料学报,2013,01:1-13.

金属基复合材料篇(2)

在材料科学与工程专业的本科教学工作中,本科学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过原位反应自生法制备复合材料。原位反应自生法是制备金属基复合材料,金属陶瓷复合材料,以及金属间化合物/陶瓷基复合材料的主要方法。原位反应自生法是在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。这种方法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。原位反应自生法制备复合材料由于具有可以达到净近尺寸成形的优势,所以能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过原位反应合成技术。此外还可以将原位反应自生法制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解原位反应自生法制备复合材料的工艺过程。所以原位反应自生法制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文首先讲述原位反应自生法制备复合材料的原理和制备工艺过程,并讲述原位反应自生法制备复合材料在材料科学与工程专业教学实践中的研究和讨论。并对原位反应自生法制备复合材料的未来发展趋势进行分析和预测。

二、原位反应自生法制备复合材料的原理和制备工艺过程

为了克服传统方法制备的复合材料存在增强体颗粒尺寸粗大,热力学不稳定以及界面结合强度低等缺点,出现了原位合成技术,即在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。原位自生法是通过原料粉末中的某些化学反应生成所需要的反应产物并通过热压烧结工艺制备出复合材料试样。原位反应自生法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。目前报道的原位合成技术主要有原位反应热压烧结技术,原位复合技术,定向氧化技术,熔体浸渍技术,反应结合技术及自蔓延高温合成技术等。定向氧化合成技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。原位自生法是通过反应物之间的反应生成所需要的反应产物并通过热压烧结工艺实现致密化。原位合成法是利用化学反应在原位生成补强组元-晶须或长径比较大的晶粒来补强基体材料的制备工艺。原位合成法主要具有如下优点:简化工艺,降低材料成本,实现特殊显微结构设计和获得特殊材料性能,具有很好的热力学稳定性。金属间化合物/陶瓷基复合材料的制备方法主要有原位复合技术和定向氧化技术以及原位反应热压烧结工艺。可以采用原位反应热压烧结工艺制备金属间化合物/陶瓷基复合材料。原位复合技术是由于金属间化合物反应的形成热相对较低,因而采用自蔓延燃烧时系统不易达到较高的绝热温度,故一般采用原位复合技术制备和合成复合材料。原位复合技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。传统的方法是将粉末压坯在恒定速率下加热到可使反应自发的产生并在整个混合物中处处发生反应。定向氧化技术是定向金属氧化工艺可用于制备金属基复合材料。原位反应热压烧结工艺是将原位反应和热压烧结工艺相结合制备致密的复合材料。

三、原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用

原位反应自生法主要用于制备金属陶瓷,金属间化合物,金属间化合物/陶瓷复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过原位反应自生法。原位反应自生法同粉末冶金技术和液相烧结技术一样都是材料制备技术。原位反应自生法同样是热加工工艺,原位反应自生法涉及到反应物高温化学反应制备产物的过程。在材料科学与工程专业课程的课堂教学中,在有些专业课程中原位反应自生法只是作为了解,对于原位反应自生法制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的实践教学课程中增加一些关于原位反应自生法制备复合材料的实验课程。通过原位反应自生法制备复合材料的实践教学活动可以使学生认识和了解原位反应自生法制备复合材料的原理,制备工艺过程以及对经过原位反应自生工艺后得到的金属基复合材料烧结制品的物相组成,显微结构和性能进行研究,使学生通过对复合材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排采用原位反应自生工艺制备金属基复合材料和金属陶瓷复合材料的教学内容。例如采用原位反应自生工艺可以制备金属陶瓷复合材料,先将金属陶瓷粉末通过压力成型工艺制成坯体,并通过原位反应自生工艺和高温烧结工艺制备金属陶瓷复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。采用原位反应合成工艺可以制备金属间化合物/陶瓷基复合材料,通常先将金属间化合物粉末和陶瓷粉末通过压力成型过程在一定压力下压制成具有一定形状和致密度的预制件,通过原位反应自生法和高温烧结工艺形成金属间化合物/陶瓷基复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。有时将原位反应自生法和热压烧结工艺相结合制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到原位反应自生法制备金属陶瓷复合材料的制备工艺过程,提高学生对专业课程学习的认识和了解。使学生通过实验教学认识和了解了原位反应自生工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对得到产物的物相组成和显微结构进行分析和测试。原位自生法可以制备金属基复合材料,金属陶瓷复合材料等。采用原位反应自生法可以制备颗粒增强的金属基或陶瓷基复合材料。

原位反应自生工艺制备复合材料涉及到反应物在高温下发生化学反应生成反应产物的过程,原位反应合成技术操作过程比较简单,对设备要求较低,只需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的实验课程教学内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对原位反应自生法得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助。为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、原位反应自生法制备复合材料的未来发展趋势和应用

原位反应自生法制备复合材料在材料科学与工程领域有着广泛的研究和应用。原位反应自生技术由于制备工艺简单,成本较低,对设备要求较低,只需要高温烧结炉,所以被广泛的应用到金属基复合材料,金属陶瓷复合材料,金属间化合物/陶瓷基复合材料等的合成与制备中。利用原位反应自生法可以开发新型的金属基复合材料和金属陶瓷复合材料以及金属间化合物/陶瓷基复合材料。采用原位反应自生技术可以开发出很多种类型的金属基复合材料和金属陶瓷复合材料。所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。原位反应自生技术在材料科学与工程专业教学与实践中也得到广泛的推广和应用,原位合成技术已经成为材料科学与工程专业实践教学课程进行的实验内容。所以本文作者认为应该在材料科学与工程专业的教学实践中增加一些采用原位反应自生技术制备复合材料的实验课程。

金属基复合材料篇(3)

一、金属间化合物材料的概述和应用

金属间化合物是指以金属元素或类金属元素为主组成的二元或多元系合金中出现的中间相。金属间化合物主要指金属与金属间,金属与类金属之间按一定剂量比所形成的化合物,金属间化合物有的已是或将是重要的新型功能材料和结构材料。金属间化合物的历史由来已久,金属间化合物的研究已经成为材料科学研究的热点之一。人们发现许多金属间化合物的强度并不是随温度的升高而单调地下降,相反是先升高后降低。因为这一特性,掀起了新一轮金属间化合物的研究热潮,使金属间化合物具备了成为新型高温结构材料的基础。现在已研究出许多方法和措施,用来改善和提高金属间化合物的塑性,为将金属间化合物材料开发成为有实用价值的结构材料打下基础。金属间化合物是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物强度高,抗氧化性能好和抗硫化腐蚀性能优良,优于不锈钢和钴基,镍基合金等传统的高温合金,而且具有较高的韧性,因此金属间化合物被公认为是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物材料作为近20年内才发展起来的新材料,相对于传统金属材料具有特殊的优点和规律,广泛用于制备金属间化合物基复合材料。金属间化合物相对于金属材料为脆性材料,相对于其他材料则具有一定的韧性,并且具有相当高的塑性。某些金属间化合物还具有反常的强度-温度关系,在一定的温度范围内,强度随着温度的升高而升高,这对高温结构材料的开发和应用给予很大的希望。此外许多金属间化合物材料具有良好的抗氧化性能,耐腐蚀性能和耐磨损性能,如Ni-Al金属间化合物和Fe-Al金属间化合物材料。因此采用金属间化合物和其他材料相复合制备复合材料可以提高金属间化合物材料的力学性能。

金属间化合物具有一系列的优异性能是最具有吸引力的新一代高温结构材料和表面涂层材料。金属间化合物的种类非常多,近年来国内外主要研究集中于Ni-Al金属间化合物,Ti-Al金属间化合物,Fe-Al金属间化合物等含Al金属间化合物的研究。目前金属间化合物材料已经研究和开发的较为广泛。许多金属间化合物材料已经用于铸造,锻压和高温熔炼等。金属间化合物材料具有高温强度好,高温抗蠕变性能强,抗腐蚀性能好,抗氧化性能好等优点,且在一定的温度范围内金属间化合物的屈服强度随着温度的升高而升高。但是金属间化合物材料作为使用的结构材料,还存在硬度低,断裂韧性差以及高温强度低等缺点。将金属间化合物与其他材料进行复合制备金属间化合物基复合材料,以制备出兼具有二者优点的复合材料是当前的重要研究和发展方向。金属间化合物材料具有较高的加工硬化率和较特殊的高温性能,因而被认为是下一代高温结构材料和高温耐磨损材料之一,特别是在改善金属间化合物材料的塑性后,更是受到了广泛的重视和研究。为了进一步提高金属间化合物材料的综合性能,很多研究工作者在金属间化合物材料中加入强化相制备金属间化合物复合材料,即形成金属间化合物基复合材料。可以向金属间化合物中加入碳化物硬质相制备耐磨损的金属间化合物基复合材料。金属间化合物材料具有许多优秀的性能而被广泛的应用到工程领域中。

二、金属间化合物在材料科学与工程专业教学实践中的研究和应用

金属间化合物材料由于具有许多优异的性能而被广泛的应用在工程领域中,所以应该在材料科学与工程专业的课堂教学和实践教学中增加一些金属间化合物的知识和内容。金属间化合物材料主要包括Al系金属间化合物材料,主要有Fe-Al金属间化合物,Ni-Al金属间化合物,Ti-Al金属间化合物等,还有其他的如Cu-Al合金,Cu-Zn合金以及Ni-Ti合金体系等金属间化合物材料。由于一般常用的金属间化合物是由两种金属元素形成的化合物并具有典型的二元相图,所以可以通过认识和了解金属间化合物学习和掌握二元相图的知识内容。此外金属间化合物材料的制备工艺方法也有很多,主要有金属熔炼法,高温自蔓延反应合成法,机械合金化法,反应烧结法,粉末冶金工艺等多种方法。其中反应熔炼法是将不同种金属元素放到熔炼炉中进行熔化形成金属合金熔体使其均匀混合并冷却形成金属间化合物材料。高温自蔓延反应合成方法是通过反应放出大量的热量维持反应继续进行最终形成所需要的金属合金材料。机械合金化工艺过程是利用高能球磨机把两种纯金属粉末放入球磨罐中并加入适量的添加剂进行球磨,粉末的制备由机械合金化过程完成,块体的制备则由烧结过程实现,机械合金化工艺是一种固态反应的过程。机械合金化技术是近年来发展起来的一种材料制备方法,机械合金化工艺通过对粉末反复的破碎,焊合来达到合金化的目的,由于合金化过程中引入大量的应变,缺陷以及纳米级的微结构,机械合金化制备的材料具有一些与传统方法制备材料不同的特性。通过机械合金化工艺就可以制备出金属间化合物粉末。粉末冶金技术是制备金属间化合物材料比较常用的一种方法。以单质或合金粉末为原料,一般是先用塑性加工的方法把粉末制备成所需要的复合材料制件,然后在烧结同时实现了制件的成型。反应烧结法是将不同种金属元素粉末通过热压烧结工艺或者常压烧结工艺形成金属间化合物块体材料。金属间化合物材料的制备通常采用粉末冶金工艺进行制备。

由于金属间化合物材料原料成本较低,制备工艺不复杂,所以对于金属间化合物材料的制备和性能的研究工作可以引入到材料科学与工程专业的实验教学工作中。可以在实验教学的课程中增加金属间化合物材料的制备和性能的研究内容,例如通过反应熔炼法,机械合金化方法和粉末冶金法等制备金属间化合物材料,并对金属间化合物材料的结构和性能进行研究。通过以上实验教学过程可以锻炼学生的实践能力和分析能力,还可以加深学生对材料科学与工程专业知识内容的认识和了解。在上述实验方法中,其中机械合金化工艺是比较实用并且能够在实验室里进行的。机械合金化工艺是将两种不同的金属粉末混合并经过高能球磨过程制成金属间化合物粉末,并通过烧结过程制备金属间化合物块材。机械合金化工艺可以在实验室里进行,可以安排学生通过机械合金化工艺制备金属间化合物材料。此外在本科学生的专业课程设计和毕业设计期间也可以安排学生进行金属间化合物材料的制备和性能的研究工作。通过对金属间化合物材料的制备和性能的研究工作,使得学生充分的认识和了解金属间化合物材料的性能特点,并加深学生对所学习的材料科学与工程专业课程知识内容的认识和了解,使得学生对材料科学与工程专业的课程内容有一定的掌握和熟悉,并通过实验教学过程提高了学生的实践能力和分析问题解决问题的能力,扩展了学生的知识面。所以本文作者认为应该在材料科学与工程专业的实践教学过程中增加一些关于金属间化合物材料的实验课程,并以金属间化合物材料的制备和性能的研究内容作为实验教学课程,这将有助于提高学生的实践能力并扩展了学生的知识面,这为本科学生以后学习材料科学与工程专业的知识内容打下坚实的实验基础。

三、金属间化合物材料未来的研究方向和发展趋势

金属基复合材料篇(4)

关键词:颗粒增强;镁;复合材料;合金;SiC;TiB2 ;MgSi2

中图分类号:TB22 文献标识码:A

镁合金作为最轻的金属结构材料,具有高的比强度和比刚度、优良的铸造性能和机械加工性能,被誉为21世纪的绿色结构材料,有着广泛的应用前景。但是与铝合金相比,镁合金由于高温下强度下降使其应用受到一定的限制。

为了改善镁合金强度低、力学性能差的缺点,常向镁合金中加入连续或非连续(短纤维、晶须等)纤维增强镁基复合材料增强镁基复合材料。但其中纤维或晶须作为增强体价格昂贵、制备工艺复杂、存在晶须断裂等问题使纤维/晶须增强镁基复合材料的实际应用受到很大限制。为了满足进一步推广应用的要求,开始研究颗粒增强镁基复合材料,其具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、等特点, 是目前最有可能实现低成本、规模化商业生产的镁基复合材料。

1.镁基复合材料组成

镁基复合材料主要由基体及增强相组成。基体所用镁合金系主要有Mg-AI-Zn系、Mg-Zn-Zr系、Mg-Li系、Mg-Mn系等。而对于镁基复合材常用增强体主要有碳纤维、碳化硅、氧化铝及碳化硼颗粒等。

2.专利申请概况

2.1 申请人类型分析

本文从中国专利文摘数据库CPRSABS和世界专利文摘库SIPOABS、德温特世界专利库DWPI中选取分类号和关键词进行检索,并对检索结果进行了分析。从专利的申请人类型来看,高校及科研院所拥有较大优势,占全部专利申请量的51%;其次为公司及企业,占全部专利申请量的44%,个人以及其他拥有的份额较少,仅占5%。其中,国外申请人以企业或公司为主,国内申请人以高校及研究院为主。

2.2 专利申请量分析

通过对全球范围内颗粒增强镁基复合材料专利申请量的分析发现,在颗粒增强镁基复合材料的整个发展过程中,国外技术的发展主要集中于2010年以前,而国内则是从2000年开始,由高校牵头开始研究颗粒增强镁基复合材料。

3.颗粒增强镁基复合材料专利现状分析

根据镁基复合材料的使用性能、基体镁合金的种类和成分来选择所需的颗粒增强相。要求增强相与基体物理、化学相容性好,应尽量避免增强相与基体合金之间的有害界面反应,并使其与基体润湿性良好,载荷承受能力强等。根据种类的不同其主要包括硅化物、碳化物、氧化物、氮化物、金属以及准晶等。

3.1 硅化物颗粒

硅化物颗粒主要包括Mg2Si,CrSi2以及TiSi2等。在使用硅化物颗粒增强镁基复合材料时,增强相硅化物颗粒主要是通过原位反应生成。在1994年,日本专利JPH0841564 A首先通过原位反应生成Mg2Si颗粒增强相,与碳化硅颗粒一起增强镁合金。但是在镁合金中反应生成的Mg2Si相极易长大变成粗大的汉字状,影响材料的力学性能。随后,上海交通大学(CN1789446 A、CN101148723 A)、江苏大学(CN101381829 A)、南昌大学(CN101748300 A、CN102776396 A)、南昌航空航天大学(CN104131190 A)等各大高校开始采用不同的方式细化镁合金复合材料中的Mg2Si相,例如利用脉冲磁场、超声波、超声变幅杆以及在合金中一定量的锑元素合金等,改善增强相的强化效果。

3.2 碳化物颗粒

常用碳化物添加颗粒主要包括SiC,TiC。1986年,AMAX公司(US4657065 A)首先采用碳化硅颗粒和/纤维和碳化钛颗粒作为增强相。 随后,碳化物作为最常规的增强相添加到镁合金中用于制备颗粒增强镁基复合材料(JPH01156448 A、JPH02129322 A、JPH02145233 A、JPH01279721 A、JPH05209205 A、JPH05202443 A、WO9315238 A1、CN1396284A、CN1470662A、CN1441073A等),并且为了适用于不同的领域、不同的制备工艺以及与其余增强相的润湿性,JPH01156448 A、JP2003183748 A 、CN1667149 A、CN1666833A采用在碳化硼、碳化硅表面涂覆镀层强化碳化物颗粒,改善碳化硅和镁基体之间的润湿,促进烧结;CN1676645 A、CN1837392 A、TW200914167 A、TW200912012 A、CN103667841、CN103667839、CN103667840、CN103695744则采用纳米态的碳化硅作为增强相,集纳米材料和复合材料的优点于一身。

3.3 氧化物颗粒

氧化物添加颗粒主要包括SiO2、MgO、Al2O3、Fe2O3、MnO2、ZrO2等。由于氧化物的成本较低,氧化物在1984年最先作为增强相用于制备颗粒增强镁基复合材料(JPS60243245 A),并在随后的技术发展中得到了广泛的应用,例如专利JPS6350615 A、JPH01261266 A,JPH05202443 A;CN1837392 A、TW200914167 A充分发挥纳米材料的特征,将碳化物和氧化物以纳米形态添加到镁合金中,制备出的镁基复合材料集纳米材料和复合材料的优点于一身;哈尔滨工业大学(CN103589891A)则改变氧化物的形式,将Al2O3以空心球的方式添加到镁合金。

3.4 金属颗粒

金属颗粒首次被用作增强相颗粒是在2001年,神户制钢株式会所尝试将金属锆作为增强相制备出锆增强的镁基复合材料;在国内, 2006年上海交通大学(CN1718792A)才将钛金属颗粒作为增强相;随后,江苏大学(CN101067188 A)、北京航空航天大学(CN101538672 A)、南昌大学(CN104313371 A,CN104313372 A)先后研究了将含稀土元素的金属间化合物颗粒作为颗粒增强相;中科学院金属研究所在2006年(CN101186996A)首次尝试将Nb颗粒添加到非晶态的镁合金中;并在随后研究了(CN102108454 A)将金属颗粒与非金属颗粒一起作为增强相;以及(CN102108460 A)将Co基、Zr基、Ni-Al基等形状记忆合金颗粒添加到镁基合金中,使得制备的复合材料具有形状记忆效应性能。

3.5 准晶颗粒

准晶由于具有各向同性及准周期晶格结构,使得位错滑移困难,而具有高硬度和高强度。因此,研究人员遂利用其作为增强相。首先是在2003年时,上海交通大学(CN1524974A A)将AlxCuyFez合金准晶粉添加到到镁基合金中。随后,太原理工大学(CN1644738 A、CN102206782 A)、北京工业大学(CN102618766 A)、华东交通大学(CN102618766 A)、西安理工大学(CN103421995 A)等高校都开始研究不同成分和形态的准晶颗粒增强相,制备出具有细小尺寸、近似球状的准晶增强的镁基复合材料。

3.6 其他

除了上述几种常见的增强颗粒以外,单质B(JP29893488A、JP29826588A、JP5313789A)、C(JP28139188A)、尖晶石(JP5313789A)、石墨(CN1676245 A、CN103820670 A)、碳纳米管(TW200914167 A、CN101376276 A、CN101376170 A、CN101386926 A)、Ca-P陶瓷颗(CN103834840 A)、石墨烯(CN104233028 A)等也曾作为增强颗粒被添加到镁合金中或者在镁合金中原位生成。

结语

通过以上对颗粒增强镁基复合材料国内外专利的研究分析发现,颗粒增强镁基复合材料的基础性研究已经比较成熟,在国外已经被应用于具体大规模生产实践中。而最近十几年,中国已经成为颗粒增强镁基复合材料专利申请的主要申请国。国内的各大高校和研究所在先前研究实践基础上,不断丰富颗粒增强镁基复合材料的增强颗粒种类、探索工艺简单、成本低廉的制备工艺,为颗粒增强镁基复合材料的进一步发展和广泛应用提供了技术支持。

参考文献

金属基复合材料篇(5)

关键词 蒙脱石;纳米复合材料;非金属粘土矿物

中图分类号:TQ327.7 文献标识码:A 文章编号:1671-7597(2013)15-0017-01

纳米是长度单位(Nanometer,nm),原称“毫微米”,1 nm=10-9 m,即十亿分之一米,一只乒乓球放在地球上就相当于将一纳米直径的小球放在一只乒乓球上。纳米粒子通常是指尺寸在1 nm~100 nm之间的粒子。纳米效应为实际应用开拓了广泛的新领域。利用纳米粒子的熔点低,可采取粉末冶金的新工艺。调节颗粒的尺寸,可制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。纳米银与普通银的性质完全不同,普通银为导体,而粒径小于20 nm的纳米银却是绝缘体。金属铂是银白色金属,俗称白金;而纳米级金属铂是黑色的,俗称为铂黑。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。

纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米技术被公认为21世纪最具有发展前途的科学之一,纳米材料也被人们誉为21世纪最有前途的材料。由于纳米材料本身所具有的特殊性能,使其能够广泛应用于化工、纺织、军事、医学等各个领域。本文阐述了蒙脱石/高聚物纳米复合材料的研究进展,并对其发展前景加以展望,期望对其深层次的加工应用有所帮助。

1 纳米材料的分类

纳米材料有多种分类方式,按其维数可分为:零维的纳米颗粒和原子团簇,一维的纳米线、纳米棒和纳米管,二维的纳米膜、纳米涂层和超晶格等;按化学成分可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃以及纳米高分子等;按材料物性可分为:纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁磁体材料,纳米超导体材料,以及纳米热电材料等;按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,以及纳米储能材料等;按照材料的几何形状特征,可以把纳米材料分为:①纳米颗粒与粉体;②碳纳米管与一维纳米线;③纳米带材;④纳米薄膜;⑤中孔材料(如多孔碳、分子筛);⑥纳米结构材料;⑦有机分子材料。

2 纳米矿物资源的研究意义

纳米矿物材料具有优良的物理性能和化学性能,这是一般矿物材料所无法比拟的。如聚合物/粘土矿物纳米复合材料具有独特的分子结构特征和表观协同效应,既表现出粘土矿物优良的力学性能又体现了聚合物优异的阻隔性能。非金属纳米矿物材料的科学研究价值和应用前景主要体现在以下几方面。

1)非金属纳米矿物是替代人工合成纳米材料的绝佳资源。

2)非金属纳米矿物成因的研究成果可为人工合成纳米材料提供有益的借鉴。

3)非金属纳米矿物资源的研究有助于深化人们对纳米材料的认识。

4)非金属纳米矿物资源的研究具有重要的地质学和经济学意义。

3 蒙脱石/聚合物纳米复合材料发展现状

3.1 聚合物基纳米复合材料

把纳米材料用于添加改性塑料,可以开发出各种新型的功能复合材料。聚合物基纳米复合材料通常可分为3类:有机/有机型纳米复合材料、有机/无机混杂物型纳米复合材料、有机/无机粒子型纳米复合材料。

3.2 蒙脱石/聚合物纳米复合材料的制备

能够在纳米复合材料中得到应用的蒙脱石属于层状硅酸盐矿物,它是非金属粘土矿物膨润土的主要成分。用蒙脱石填充高聚物可以制得蒙脱石/聚合物纳米复合材料,其合成方法——插层复合法根据复合方式的不同可以分为插层聚合法和聚合物插层法两大类。按照聚合反应类型的不同,插层聚合又可以分为插层缩聚和插层加聚两种类型;聚合物插层法也可以分为溶液插层和熔融插层两种。

此外,聚合物基纳米复合材料的其它制备方法还有直接分散法、溶胶-凝胶法、原位生成法等等。这些方法的综合运用为新型纳米复合材料的开发及应用开辟了广阔的前景。

4 蒙脱石/聚苯乙烯纳米复合材料开发前景

陈燕丹等用含双键的酰胺-胺化合物作为插层剂制得改性的有机蒙脱石,与苯乙烯具有较好的相容性,使得二者界面相互作用大大提高。在此基础上聚苯乙烯于熔融状态下可以插层进入有机蒙脱石,形成蒙脱石/聚苯乙烯纳米复合材料,其力学性能和热性能与纯聚苯乙烯及常规填充聚苯乙烯相比都有提高。林蔚等以十六烷基三甲基溴化铵改性钠基蒙脱石与聚苯乙烯熔融插层,制备了无机-有机纳米复合材料,通过分析得到其力学性能、耐热性、阻燃性及抗溶性均匀所提高。黎华明等将间规聚苯乙烯和尼龙6/改性蒙脱石纳米复合物共混制得的复合材料经DSC、DMA、WAXD等测试可知蒙脱石对聚合物基体的增强效果明显。

说明蒙脱石的加入能引入氢键和强极性作用,使分子链的柔性降低,聚合物分子堆砌密度增大,玻璃化转变温度升高,材料断面形貌得到改善,提高了复合材料的综合性能,达到增强增韧的目的,从而显示出对聚合物基粘土纳米复合材料研究的重要科学意义。今后期望能够继续提高复合材料的抗冲击性和耐热性能,制得高性能的蒙脱石/聚苯乙烯纳米复合材料,进一步开拓其应用领域。

参考文献

[1]李青山.乙烯基共聚物/蒙脱石纳米复合材料研究[D].东华大学,2004:1-9.

[2]曹明礼,等.非金属纳米矿物材料[M].北京:化学工业出版社,2006:40-46.

[3]漆宗能,等.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002:5-12.

[4]陈燕丹,等.新型嵌入改性膨润土/聚苯乙烯杂化纳米材料[J].福建师范大学学报,2000,16(3):60-64.

[5]李同年,等.聚苯乙烯-蒙脱土插层复合材料的制备与性能[J].塑料工业,2000,28(2):33-35.

金属基复合材料篇(6)

关键词:机械;发动机;材料;挑战;趋势

中图分类号:V2:文献标识码:A:文章编号:1673-9671-(2012)022-0198-01

1未来航空飞行器对材料的要求与挑战

随着社会的不断发展,航空飞行器正日新月异,作为飞行器的核心航空发动机在现代航空飞行器的发展中扮演的角色也越来越重要。性能的提高,必然会要求发动机能够具有更加优良的机械性能,比如能够耐高温、高压、更加轻质化等等。因此,从某种意义上说,未来发动机材料直接决定了发动机的性能,本文对未来航空发动机的材料面临的挑战与发展趋向的研究具有非常重要的现实意义。

根据未来航空飞行器发展的趋势来看,节能、环保、高效率、高性能已经成为了未来的航空飞行器对发动机的主要要求。然而在现有的技术条件下,虽然我们通过改变发动机的结构能够起到一定的节能、环保、提高燃烧效率的作用,但是,在现有发动机技术的前提下,若能改善发动机材质,则能够更好的满足未来的航空飞行器对于发动机的性能、环保和节能的各方面的要求。这也是对发动机材料提出的一个全新的挑战。

2航空发动机关键零部件材料的技术发展趋向

1)航空发动机压气机。目前普遍作为压气机盘和叶片材料的钛合金耐高温能力最高为600℃。随着压气机进压比及的增加,压气机的出口温度也随之增加,现在的压气机的后几级一般采用耐热钢和镍基合金材料,但是这样的材料在随着压气机总压比的增大过程中,已经越来越难以满足实际的需求,因为随着发动机推重比的提升,压气机的出口温度也会越来越高,当发动机的推重比达到20的时候,压气机的出口温度看达到800℃。为了解决这一新出现的问题,国外正在研究通过增加难熔金属的比例和有效的控制晶粒的尺寸,从而形成一种粉末冶金镍合金盘,这种新型的盘合金可以有效的提升压气机出口温度的耐温能力,这种效果的直接效果是提升40℃~70℃的耐温性能。同时还在研究的有用于压气机叶片的聚合物基复合材料,这种材料可以有效的降低压气机叶片的重量。为了达到更好的效果,现在正在致力于研究一种整体叶片,这样的叶片是通过采用低密度的钛金属基复合材料和Y-钛铝金属间化合物组合而成的,通过这样的整体叶片制成的压气机,在重量上可以有效的减轻40%,同时采用这样的材料能很好的提高压气机的抗疲劳强度。

2)航空发动机的燃烧室。航空发动机中温度较高的部件应该是航空发动机的燃烧室,一般情况下燃烧室的温度可以达到2 000℃,通过现有的手段可以使其温度降至1 000℃左右,这就要求制造燃烧室的材料有很高的抗冷热的疲劳性能,有很好的抗氧化性,有很高的强度等要求。现在通常采用的材料是钴基和镍基合金材料。但是随着高性能发动机的发展,就必然通过采用高温燃烧的方式来推动发动机的推重比,这就对制造燃烧室的材料提出了新的要求,以往所采用的材料已经不能满足当前的发展的需要。此时随着高温材料的需求,陶瓷基复合材料(CMCs)应运而生,这种材料可以在极高的温度下工作,这就减少了燃烧室中冷却空气的步骤,这种材料是未来制造燃烧室的有效材料。

3)航空发动机涡轮。目前涡轮部件选用的材料基本还是以镍或钴为基础的高温耐热合金。国外高温高强度低密度材料在过去几年取得了重要进展,金属间化合物、复合材料、碳-碳复合材料、陶瓷和陶瓷基复合材料正在研究之中,并且取得了很多成果。涡轮叶片材料的发展经历了从锻造高温合金、多晶铸造高温合金、定向凝固柱晶、单晶和定向共晶高温合金的发展历程,今后将进一步发展金属间化合物、人造纤维的增强高温合金和定向再结晶氧化物弥散的强化合金。涡轮材料近期的规划走势是:定向共晶的合金、超单晶的合金和机械合金化的高温合金。远期的规划走势是人工纤维增强的高温合金、定向再结晶氧化物弥散的强化合金以及新的能承受高温度的材料。未来的航空发动机涡轮进口温度要求为2 000℃,叶片将采用新型高温结构材料。以Si3N4为代表的高温结构陶瓷是最有前途的材料之一。

3两种航空发动机重点材料的应用及发展

1)碳/碳复合材料。C/C基复合材料是到目前为止唯一一个被认定可以作为压气机推重比20以上的耐高温的新型材料,通过采用C/C基复合材料,可以使发动机的进口温度达到1 930℃-2 227℃,这种材料是继涡轮转子叶片之后最受重视的新型高温的材料。这种耐高温材料是21世纪美国的重点发展法相,也是世界先进的工业国家所要追寻的最高目标。

C/C基复合材料,即碳纤维增强碳基本复合材料,它把碳的难熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。由于它具有重量轻、高强度,优越的热稳定性和极好的热传导性,是当今最理想的耐高温材料,特别是在1 000℃~1 300℃的高温环境下,它的强度不仅没有下降,反而有所提高。在1 650℃以下时依然还保持着室温环境下的强度和风度。因此C/C基复合材料在航空制造业中具有很大的发展前途。

2)金属间化合物。高性能、高推重比航空发动机的研制,促进了金属间化合物的开发与应用。如今金属间化合物已经发展成为各种各样的形式,它们一般都是由二元三元或多元素金属元素组成的化合物。金属间化合物因为其具有很高的使用温度和很好的使用强度,有很好的导热率等优势,所要这种化合物在高温结构的应用方面具有很大的潜力。这种材料的最佳状态是在高温状态下,有很好的抗氧化性、很高的抗腐蚀性和很强的蠕变性能,因此成了航空发动机制造耐高温部件的理想材料备选。

目前在航空发动机结构中,致力于研究开发的主要是以钛铝(TiAl、)和镍铝等为重点的金属间化合物。这些钛铝化合物与钛的密度基本相同,但却有更高的耐温性。例如和TiAl的耐温性分别为816℃和982℃。

金属间化合物原子间的结合力强,晶体结构复杂,造成了它的变形困难,在室温下显现出硬而脆的特点。目前经过多年的试验研究,一种具有高温强度和室温塑性与韧性的新型合金已经研制成功,并已装机使用,效果很好。

4结束语

航空飞行器的不断发展以及社会节能环保意识的增强,对发动机材料提出了新的要求。本文分析了航空飞行器对其发动机材料提出的要求和挑战,并且研究了航空发动机压气机、燃烧室、涡轮以及两项重要材料的应用及发展趋势,希望本文的研究能够为航空发动机未来的发展提供一定的参考和借鉴。

参考文献

[1]胡晓煜.21世纪初的航空发动机材料技术[J].国际航空,2006,10.

金属基复合材料篇(7)

关键词:超薄;金属内衬;轻量化;复合材料;压力容器;设计制备;研究

近年来,随着新技术以及新设备的不断发展与应用,工业生产与加工制造中对于携带液体燃料以及高压气体的压力容器提出了高气密、轻质量以及长寿命等更高的设计与制造要求,使得高结构效率的轻量化复合材料压力容器成为一个热点问题。下文将结合这一背景条件,根据带金属内衬复合材料压力容器中内衬的作用以及复合材料结构层进行承担荷载的特征,提出一种含超薄金属内衬轻量化复合材料压力容器的设计与制备技术,具体报道如下。

1.复合材料结构层的刚度优化设计方法分析

进行含超薄金属内衬轻量化复合材料压力容器的设计与制备实现,主要就是以减薄金属内衬的厚度和实现复合材料结构层的刚度优化为主,以实现超薄、轻量化、高强复合材料结构层刚度的设计与制备目的。首先,在进行复合材料结构层的刚度优化设计中,本文主要采用一种基于稳定缠绕理论的结构刚度优化设计方法,对于复合材料结构层的刚度实现优化设计。工业生产与加工制造中,对于复合材料压力容器的结构层刚度优化设计,多是使用网格理论进行复合材料压力容器强度设计实现的,它主要应用经验进行滑线系数取值确定后,通常对于一般湿法缠绕取值多为0.15到0.2之间,而干法缠绕取值多为0.39,然后应用公式对于可缠绕范围进行求解,并给定初始缠绕角,通过在缠绕机上进行大量的工艺试验后,对于初始缠绕角进行排线修改,以找出能够满足缠绕工艺稳定性要求的线型和缠绕角,最终根据这个缠绕角进行设计制备压力容器的刚度校核,以完成对于复合材料压力容器的结构刚度优化设计。

(1)

上述公式(1)中,a表示的是缠绕角,λ表示的是滑线系数,r表示的是芯模母线方程, 、 表示的是芯模母线方程的一阶和二阶导数,其中 。

上文所述的这种基于试错试验的复合材料结构层刚度优化设计方式,在优化设计过程中,难以对实际的稳定缠绕范围进行获取,因此也就无法进行复合材料压力容器结构的刚度优化实现,在实际设计制造中就不能够最大化的实现纤维强度发挥,难以实现复合材料压力容器减重与轻量化的目的。

根据这种设计方法的缺陷与局限性,本文通过进行一种基于稳定缠绕理论的结构刚度优化设计方法的设计构建,来实现对于复合材料压力容器的结构刚度优化设计。基于稳定缠绕理论的结构刚度优化设计,主要通过对缠绕纤维和芯模表面间滑线系数的精确表征,对于真实可靠的滑线系数进行测量求得,同时在获取滑线系数和缠绕角的连续对应关系后,通过上述公式(1)对于可稳定缠绕范围进行准确求得,同时通过对于可稳定缠绕范围内每一缠绕角对应的纤维轨迹厚度、刚度等进行预测计算,以实现在稳定缠绕范围内,对于复合材料压力容器结构刚度的优化设计,使得复合材料结构能够最大效率的发挥纤维强度,提高结构效率,实现复合材料压力容器设计制备中减重与轻量化的目的。

在基于稳定缠绕理论的结构刚度优化设计方法中,对于缠绕纤维以及芯模表面间滑线系数的精确表征以及可稳定缠绕范围的求解实现,主要是根据一般曲面稳定缠绕原理,通过对芯模表面上落纱点的力学分析,在进行一种具有自主知识产权标定模型设计基础上,实现对于缠绕纤维以及芯模表面间滑线系数的精确表征和可稳定缠绕范围求解。值得注意的是,设计建立的具有自主知识产权的标定模型,在固定缠绕角情况下,沿其母线方向任意点的纬度圆半径和该点的滑线系数之间满足线性关系。其中,该模型的母线方程为下式(2)所示。

(2)

在上示公式中,R表示芯模直线段处的半径,C是一个常数。通过该标定模型能够精确对于缠绕纤维和芯模表面间滑线系数值进行表征,能够为稳定缠绕范围以及复合材料压力容器结构刚度优化进行参数提供。

2.大尺寸超薄金属内衬的成型设计方法分析

本文主要以铝合金材料为主,对于大尺寸超薄铝合金内衬的设计成型方法进行分析。在压力容器设计制造中,由于铝合金材料本身具有气密性高以及密度小、介质相容性突出等特征优势,是轻量化复合材料压力容器设计制备中金属内衬的首先材料,并且该材料在压力容器的整个设计制备中占有比例达到1/3以上。此外,应用铝合金作为金属内衬材料进行轻量化复合材料压力容器设计制备中,如果铝合金的内衬厚度每减薄0.1毫米,复合材料压力容器的重量将减轻3%到6%,能够满足材料压力容器设计制备中实现减重的目的。

由于轻量化复合材料压力容器直径的越来越大,实现大尺寸超薄铝合金内衬的成型设计具有较为突出的难度。针对这一情况,通过在封头部分使用旋压工艺,然后与筒身进行焊接成型的设计制备方法,实现大尺寸超薄铝合金内衬的成型设计,制备出了封头和筒身厚度在0.8毫米以下,直径在745毫米以上的系列超薄铝合金内衬,很好的满足和实现了轻量化复合材料压力容器设计与制备。

在进行含超薄金属内衬轻量化复合材料压力容器设计制备中,完成减薄金属内衬厚度与复合材料结构层的刚度优化设计后,要想完整的实现对于含超薄金属内衬轻量化复合材料压力容器的设计制备,还需要进行超波金属内衬和复合材料变形的协调控制,同时对于轻量化复合材料压力容器的设计制备进行自动修复,以保证设计制备质量和效果。

3.结束语

总之,含超薄金属内衬轻量化复合材料压力容器的设计制备实现,能够满足压力容器设计制备的高气密以及轻质量、长寿命的要求,对于推动压力容器设计制备技术水平的发展提升有着积极作用和意义。

参考文献:

[1]王霞,宋文轩.大型煤制甲醇装置压力容器的设计与制造研究[J].化学工业.2010(9).