期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 气象灾害论文

气象灾害论文精品(七篇)

时间:2022-10-11 21:02:23

气象灾害论文

气象灾害论文篇(1)

摘要:分析得出影响天水苹果正常生长的主要农综合评价z业气象灾害是前秋9月大气干旱、冬季12—2月暖冬高温、苹果花期4月下旬高温干旱和春季4月下旬低温危害。各灾害发生频率在53%~70%之间,以前秋9月干旱最多,春季4月下旬低温危害最少;前秋9月大气干旱以中—大灾为主;其他灾害均以轻、中灾最多,大灾居次;各种灾害因子重灾年份最少,仅在6%~15%之间。农业气象灾害综合评估除轻灾评估准确率略低,为89%外,中—重灾评估准确率均达100%,灾害评估效果比较理想,对农业防灾减灾有一定的指导意义。

关键词:气象;灾害;苹果生产;甘肃天水

我国是自然灾害频发国之一,年均灾害损失约510×108~640×108元。其中由气象灾害引起的损失占85%左右,仅干旱、洪涝、风暴潮、冰雹、低温冷害这几种气象灾害造成的粮食损失占所有自然灾害损失的97%左右,直接经济损失占总经济损失的76%以上[1]。天水地处黄土高原与西秦岭山地大陆性干旱半干旱气候区,海拔在750~3120m之间,年均气温7.0~11.1℃,年降水量430~600mm之间,平均日照总时数2000~2400h,无霜期156~188d,极适宜优质苹果生产,是甘肃省主要苹果产业发展基地,所产苹果以个大、色艳、硬度强、糖分高、品质佳、耐储存而深受广大客商和消费者青睐,“花牛苹果”已获得全国知名品牌类注册证明商标,是支撑天水市经济发展的四大支柱产业之一。天水市现有苹果面积约6.5×104hm2,总产量约54×104t。但由于境内山多川少,沟壑纵横,海拔高差大,气候差异显著,属全国气象灾害高发区域,干旱、洪涝、冰雹、低温冷害等气象灾害频繁发生,苹果产量、品质和优质率提高很慢,极大地限制了苹果产业化发展。

近年来,气象灾害评估技术研究已引起众多学者高度关注,但大多局限于单种气象灾害[2-5]的定性化研究。特别是针对多年生果树,在实况灾害资料极度缺乏的情况下,果树气象灾害风险评估的研究报道很少。为此,本文利用统计学方法,确定影响该地苹果生产的主要农业气象灾害因子,并将各农业气象灾害因子划分等级,进行天水主要农业气象灾害对果树作物量化评估影响研究,为有效防御农业气象灾害,最大限度减轻或减免农业损失提供参考。

1资料来源与研究方法

1·1资料来源苹果产量资料取自天水市统计年鉴1978—2007年;相关气象资料取自天水市关山区清水、渭北旱区秦安和河谷区麦积二县一区气象站1978—2007年气象观测资料。

1·2研究方法

1·2·1代表点的选取根据天水气候区划,选取渭北旱区、关山区和河谷川区苹果种植面积较大的秦安县、清水县和麦积区作为代表点。

1·2·2苹果产量资料的处理苹果气候产量资料分解的方法和准确性,会直接影响苹果农业气象灾害的分析评估研究。

在参照仅有的农业气象灾害观测调查资料的基础上,将天水市苹果总产量资料按3、5年滑动平均法、线性法、正交多项式法、指数法等多种函数分解方法[6]提取其趋势产量。统计分析表明:天水市苹果总产趋势产量的提取以指数法效果最佳(图1),趋势产量提取方程为y=8682·2e0·126t(y:趋势产量;t:时间序列,t=1,2,3,…;n=30;r=0·93)。用y′i=(Yi-yi)/yi×100%计算逐年苹果总产量动态相对偏差百分率[6-7](y′:苹果气候产量增减率;Yi:苹果实际产量;yi:逐年苹果趋势产量;i:年份)。

1·2·3影响天水市苹果总产量的主要农业气象灾害因子的提取农业气象灾害对天水苹果生产的影响研究[8]中,通过分区统计分析,得出影响天水渭北旱区、关山区和河谷川区三区苹果正常生长的主要农业气象灾害均为上年秋季9月大气干燥度,冬季12月至2月负积温的光照条件订正值和苹果花期4月下旬平均最高气温的大气相对湿度订正值,春季低温晚霜冻出现频率和危害程度正在逐步减轻。

为了更进一步提取影响天水市苹果总产量的主要农业气象灾害因子,将3个气候区主要灾害因子与天水市苹果总产量动态相对偏差百分率进行逐步回归[9],建立如下影响苹果气候总产量的主要农业气象灾害因子提取方程:式中,y′i为苹果总产量动态相对偏差百分率;K′9秦安为渭北秦安上年秋季9月大气干燥度∑T≤0℃×Q12-2麦积为河谷区麦积冬季12—2月负积温的光照条件订正值;TM4月下旬/U麦积为河谷区麦积苹果花期4月下旬平均最高气温的大气相对湿度订正值;Tn4月下清水为关山区清水苹果花期4月下旬平均最低气温。12—2月暖冬高温虽然不属于气象学上定义的气象灾害因子,但随日益加剧的暖干气候[10],暖冬高温对苹果生长影响极大,仅次于前秋9月干旱灾害。

1·2·4气象灾情等级划分标准将渭北秦安上年秋季9月干旱(用大气干燥度表示)、河谷区麦积暖冬(用冬季12—月负积温的光照条件订正值表示)和花期高温危害(用苹果花期4月下旬平均最高气温的大气相对湿度订正值表示)、关山区清水春季低温危害(用4月下旬最低平均气温表示)4种标准化处理后的主要农业气象灾害标准值作为成灾变异值。再将1978—2007年30年成灾变异值中大于或等于0·1以上的成灾变异值(春季低温为小于或等于-0·1以下的成灾变异值),按变异值的离散程度[11]分成相等的4个组,从小到大将灾情等级依次划分为轻灾、中灾、大灾和重灾4个等级,并采用分级赋值和内插法依次赋以1~3、4~6、7~9、10~12。9月干燥度(秦安)、暖冬(麦积)和花期高温(麦积)成灾变异值小于0·1为无灾;春季低温(清水)成灾变异值Z大于0·1为无灾,无灾年份灾害等级分值ci按0分赋值(表1)。

1·2·5灾情指数的计算及综合评价方法式(1)得出影响天水市苹果总产量的主要农业气象灾害为渭北秦安上年秋季9月大气干旱、河谷区麦积12—2月暖冬和4月下旬花期高温干旱、关山区清水春季4月下旬苹果花期低温危害。

为此,本文将以上4种灾害作为影响天水市苹果总产量的主要农业气象灾害因子。用式(1)计算得出的相应站点灾害因子的贡献率(方程中相应灾害因子系数/4种灾害因子系数绝对值之和×100%)作为相应站各类灾害因子的影响权重(wij:其中渭北秦安9月干旱w1=37%;河谷区麦积暖冬w2=27%,花期高温危害w3=22%;关山区清水春季低温危害w4=14%),并与其对应站点相应灾害类型的等级分值相乘,4种灾害类型进行累加[式(2)]就得到农业气象灾情的灾情指数(Pk),并以此作为农业气象灾害危害评估指标,与苹果气候产量增减率实况分级进行对比分析(苹果气候产量增减率实况亦分为无、轻、中、大、重5级,分级方法同灾害成灾变异值分级)。

Pk=∑4j=1Cij×wij(2)式中,Pk为灾情指数;Cij为4种灾害等级分值(i:1978—2007年各年份,i=1,2,3,…,30;为4种农业气象灾害,j=1,2,3,4;下同);wij为相应灾害因子的影响权重。灾情指数(Pk)越大,表明农业气象灾害对农业生产的影响越大,灾情越重;反之,对农业生产的影响小,灾情越轻。

2综合评价

2·1主要农业气象灾害分布表2是影响天水苹果生产的前秋9月干旱、冬季12—2月高温、花期4月下旬高温干旱气候和春季4月下旬低温发生频率统计。1978—2007年30年中,前秋9月旱灾最多,发生频率70%,主要以中—大灾为主,占旱灾年份的52%;轻灾年份次之,占38%;重灾年份最少,占10%。暖冬和花期高温灾害次之,发生频率分别为63%和67%,均以轻灾为主,分别占灾害年份的47%和45%;中—大灾次之,分别占47%和40%;重灾年份最少,分别占5%和15%。春季低温危害最少,发生频率53%,仍以轻灾居多,占灾害年份的50%;中—大灾次之,占44%;重灾年份最少,占6%。

2·2综合评价将式(2)计算的逐年农业气象灾害综合灾情指数(Pk)分成1、2、3、4、5相等的5个组从小到大将灾情等级依次划分为无灾、轻灾、中灾、大灾和重灾5个等级与苹果总产量动态相对偏差百分率实况分级(表3)进行对比分析。

天水市1978—2007年30年逐年主要农业气象灾害对苹果生产的影响进行综合评估,并与实况(表4)进行对比分析。评估无灾11年,与实况相符10年,评估准确率91%。灾害年份中,评估轻灾9年,与实况相符8年,评估准确率89%。评估中灾5年,大灾5年,重灾1年,均与实况相符,评估准确率均为100%。灾害年份除轻灾评估准确率略低外,中—重灾评估准确率较高,特别是重灾的1991年、大灾的1984年、1987年、1989年、1992年和1997年,苹果均出现较大幅度减产,灾害评估效果比较理想。

3结论与讨论

(1)分析得出影响天水苹果正常生长的主要农业气象灾害是前秋9月大气干旱、冬季12—2月暖冬高温、苹果花期4月下旬高温干旱和春季4月下旬低温危害。各灾害发生频率在53%~70%之间,以前秋9月干旱最多,春季4月下旬低温危害最少;前秋9月大气干旱以中—大灾为主;其他灾害均以轻、中灾最多,大灾居次;各种灾害因子重灾年份最少,仅占6%~15%。

(2)综合评估表明:影响天水市苹果生产的农业气象灾害综合评估除轻灾评估准确率略低(89%)外,中—重灾评估准确率均达100%,灾害评估效果比较理想。

(3)由于苹果灾害实况调查观测资料极少,给苹果灾害的评估研究工作带来了极大不便。

为此,本文主要采用统计学方法,利用苹果产量资料,在参照仅有的农业气象灾害观测调查资料的基础上,将指数法分解后的苹果总产量动态相对偏差百分率,按其离散程度确定为无灾、轻灾、中灾、大灾和重灾5种灾害程度实况类型。影响天水市苹果总产量的主要农业气象灾害因子的提取,也是采用了统计分析方法,进行理论提取。研究结论除轻灾评估准确率略低外,中—重灾评估准确率较高,在缺乏农业气象灾害实况观测调查资料的情况下,可作为气象灾害评估的有效方法,对农业防灾减灾有一定的指导意义。但因苹果灾害实况灾情资料极少,现实生产中仍有待更进一步研究验证。

参考文献(References):

[1]李世奎,霍治国,王道龙,等.中国农业气象灾害风险评估与对策[M].北京:气象出版社,1999:

[2]刘濂,王卫,刘东都,等.河北省3种农作物气象受灾程度分级与灾害损失率分区的研究[J].生态农业研究,1997,5(4):

[3]徐良炎,高歌.近50年台风变化特征及灾害年景评估[J].气象,2005,31(3):41-45.

[4]山义昌.冬小麦风雹灾害的等级划分与灾情评估[J].气象,1998,24(2):49-51.

[5]魏丽,王保生.江西省区域性洪涝灾害模糊综合评判方法的研究[J].中国农业气象,1998,19

气象灾害论文篇(2)

【关键词】农业;气象灾害;风险评估

1 研究进展

风险分析现今已广泛运用于生物、环境、技术应用以及医学等多个领域,且发展极为迅猛。灾害大多承受着自然、社会、技术以及社会等因素的影响。因此,自然灾害风险分析是一种多学科交叉的科学,发展时间较短,以至于几乎没有成熟的成果。国内外学者对于风险分析的研究也多针对经济领域,起步较晚的自然灾害风险研究,起先是侧重于对工程项目的研究应用。通过研究建立了自然灾害系统理论体系,有了损失指标以及定量计算的方法,建立了自然灾害评估框架体系,自然灾害经济损失函数,洪水灾害模型、洪泛区价值模型、洪泛区抗灾模型及损失计算方法,同时还在台风灾害的风险评估,区域水灾的风险评估等方面取得了一些进展。

近年来有学者通过研究,在农业生态地区法的基础上,建立了华南果树生长风险分析模型,这也是国内较早在农业气象灾害中运用风险分析的方法,即便如此,我国在农业气象灾害风险评估方面的技术、理论等仍旧薄弱,对某一农业气象灾害进行相应的风险评估的技术则是一个崭新的研究课题。我国现今对于农业气象灾害的研究大都将灾害发生的实际频率作为研究基础,但是随着资料序列的增长,灾害的出现频率以及致灾强度随着时间的推移,也会产生巨大的变化,因此无法反映出真实的风险状况。尤其现在侧重研究农业气象灾害风险评估的研究报告稀缺。

2 研究方法

2.1 研究区域、灾种,资料收集、处理

本文将针对东北地区玉米冷害、北方地区冬小麦干旱、江淮地区冬小麦涝渍以及华南地区荔枝寒害等地区灾种进行叙述。

本文逐日资料来自东北地区玉米产区、北方地区冬小麦产区、江淮地区冬小麦产区以及华南地区荔枝产区近400个气象点,时段大都为40年。逐日资料缺少的个别日期在处理时通过多年平均值进行替代。相应的年实际产量以及灾情资料来自不同地区对应的统计部门。

2.2 研究思路与方法

2.2.1 研究思路

通过对农业气象灾害发生的可能性进行估计,即农业气象灾害风险分析,也就是对农业产量损失、产品质量下降,最终经济收益损失等事件由于气象灾害而导致发生的可能性大小的分析。现今利用概率论作为自然灾害风险评估的数学分析依据。

农业气象灾害系由孕灾环境、致灾因子、承灾体、灾情四要素构成,同时利用气象、产量、灾情历史资料,分别对东北地区玉米冷害、北方地区冬小麦干旱、江淮地区冬小麦涝渍以及华南地区荔枝寒害进行分析,研究在不同孕灾环境、灾害种类、发生强度下,造成的减产率、承灾体的抗灾性能。

将北方地区冬小麦干旱、江淮地区冬小麦涝渍以及华南地区荔枝寒害进行的风险评估为例,分析其主要致灾因子有:冬春少雨雪且底墒差、冬季强寒潮南下最低温度降到热带果树致害温度以下。其主要灾情为:产量减少、质量下降。依据致灾因子的强度、频率对冬小麦、荔枝灾损率以及抗灾性能进行分析,建立不同的灾损价值模型和抗灾性能模型。与此同时,还应构建北方地区冬小麦干旱和华南地区荔枝寒害致灾因子的致灾等级标准。

2.2.2 研究方法

(1)减产率序列的构建。确定一年生农作物冬小麦历年减产率,通常采用逐年实际产量偏离其趋势产量的相对气象产量的负值。趋势产量通过正交多项式逼近法、直线滑动平均法等方法确定。

(2)不同致灾指标、致灾因子序列的建立。利用长年代灾情资料、产量、气象,对不同年代北方地区的冬小麦减产率与对应发生涝渍,华南地区荔枝减产率与对应发生寒害,江淮地区的冬小麦减产率与对应发生涝渍等各种致灾因子进行相关分析,筛选出主要致灾因子;根据减产率与致灾因子量值之间的关系,建立不同致灾指标、致灾因子序列。由此得到研究区域的不同致灾因子、致灾指标的长年代序列。

(3)农业气象灾害风险估算模型的构建对研究区域分县的不同承灾体的减产率序列,不同致灾等级下的致灾指标序列分别进行指数分布、正态分布、瑞利分布、伽玛分布、威布尔分布等概率分析方法。

3 结果分析

3.1 主要农业气象灾害致灾因子及致灾指标

东北地区玉米冷害致灾因子为5~9月平均气温之和。致灾指标为一般冷害和严重冷害。北方地区冬小麦干旱致灾因子为冬小麦全生育期自然水分亏缺、降水量亏缺、拔苗期降水量。致灾等级及对应的致灾指标:轻旱70。江淮地区冬小麦涝渍致灾因子为2、3、4、5月降水持续时间及降水量。致灾等级轻度涝渍、中度涝渍、重度涝渍。根据不同时期降水量不同进行致灾指标划分。

3.2 主要农业气象灾害风险评估

本文仅针对冬小麦进行评估,其他方法类似。冬小麦干旱风险评估方法,表现出了在实际生产情况下,自然社会等因素对冬小麦产量的综合影响。造成北方冬小麦产量低的最主要因素是干旱。北方地区气候干燥,降水量少,因此干旱成为北方地区冬小麦低产的主要农业气象灾害。分析冬小麦的历年减产率,得出年际间干旱变化对冬小麦产量具有很大的影响。通过数学概率分析的方法,利用构建的正态分布模型,可以估算北方地区分县的不同冬小麦减产率范围出现的风险概率。

4 结论

依据灾害风险分析理论,本文介绍了几种我国主要农业气象灾害风险评估方法,通过对相关资料的分析,筛选出适用于东北地区玉米冷害、北方地区冬小麦干旱、江淮地区冬小麦涝渍以及华南地区荔枝寒害风险评估的主要致灾等级、致灾因子、致灾指标以及相应的减产率,初步构建了主要农业气象灾害的风险量化标准体系。

参考文献

[1]李世奎,霍治国,王素艳,刘荣花,盛绍学,刘锦銮,马树庆,薛昌颖.农业气象灾害风险评估体系及模型研究[J].自然灾害学报,2004(01).

气象灾害论文篇(3)

关键词:气象灾害风险评估;气候可行性论证;重大项目

为了避免或减轻气象灾害,对其进行气象风险评估,加强对气候可行性认证的管理,规范气候可行性认证活动,合理开发利用气候资源,避免或减轻规划和建设项目实施后可能受气象灾害、气候变化的影响,或者可能对局部气候产生的影响,必须要重视气象灾害风险评估和气候可行性论证。气象灾害风险评估与气候可行性论证二者之间的关系是相辅相成的,先进行气象灾害风险评估,再进行气候可行性论证,通过气象灾害风险评估来完成气候可行性论证,二者缺一不可。

1 气象灾害风险评估

近几年,全球气候变化异常,气象灾害频繁发生,是人娄活动对自然界的影响,如区域项目建设,重大基础设施建设及排放温室气体的企业建设都对气候产生了影响,为了减缓或适应气候变化,在区域项目建设前进行气象灾害风险评估与气候可行性论证是必要的。重大项目的气象灾害风险评估,可以得出项目建设后对大气环境的影响及气象灾害对建设项目本身的影响,根据评估结论,及时调整建设方案,避免或减轻规划和建设项目实施后可能受气象灾害、气候变化的影响,避免对局地气候产生的影响。

1.1 气象灾害风险评估依据 气象灾害风险评估在2009年1月1日起实行的《气候可行性论证管理办法》(18号令)里有相关的规定,主要规定是对城市规划编制、重大工程建设、重大区域性经济开发项目进行气候可行性论证,对气象灾害风险进行评估,主要依据是:

(1)《中华人民共和国气象法》

(2)《气候可行论证管理办法》

(3)国务院办公厅《关于进一步加强气象灾害防御的工作的意见》((2007)49号)

(4)各省、市、县(安监部门)的关于气象灾害风险评估工作通知。

1.2 气象灾害风险评估动作模式及内容 气象灾害风险评估采用分级管理,国家、省、市各级分别负责相关的内容,主要是当地气象主管部门承接风险评估业务,送上级风险评估,不进行气候评价及风险评估。气象灾害风险评估的分级管理主要是考虑区域性和技术性,专业的评估平台,权威的专家队伍、详细的基础气候资料,可以做出确切的风险评估和气候评价。

根据建设项目的性质和特点,进行相应的气象灾害风险评估,如地震、火山、大风、暴雨、雷电、高低温、大雾、雪灾等。尤其是国家重大项目要求更加详尽。兴城市徐大堡核电站建设,就调用了兴城30年的气候条件变化参数,特别对极端气候条件进行了评估。

2 气候可行性论证

气候可行性论证,是指对与气候条件密切相关的规划和建设项目进行气候适宜性、风险性以及可能对局地气候产生影响的分析、评估活动。

气候可行性论证往往在重大项目实施之前,从气候学角度出发,根据项目对气象要素的敏感度,对项目所在地的气候状况进行分析,对该项目进行气象灾害风险评估,并适当评估该项目对局地气候可能产生的影响,就预防或减轻气象灾害提出建议和对策。

2.1 气候可行性认证依据和内容 根据《中华人民共和国气象法》和《气候可行论证管理办法》需要进行气候可行性论证的项目一般可以分为五类,包括:①城乡规划、重点领域以及区域发展建设规;②重大基础设施、公共工程和大型工程建设项目;③重大区域性开发、区域性农(牧)业结构调整建设项目;④大型太阳能、风能等气候资源开发利用;⑤其它重大建设项目。

在综合考虑各种建设项目与气象条件关系的基础上,一般将气候可行性论证内容归纳为:基础情况调查;气候背景分析;;气候灾害风险评估;气候极值的推算;污染气象条件分析;预防或减轻气象灾害的具体对策和措施等6个方面。

2.2 气候可行性论证的方法 在气候可行性论证的实际工作中,常需分析气象要素的平均状态、稳定性、极端状况以及建设项目所在地的污染气象条件。对于短期气候考察所获得的超短气候序列,需要进行订正延长。因此,工程项目的气候可行性论证技术方法主要是关于气候要素的平均状态、稳定性、极端状况、污染气象条件分析、超短资料序列的订正延长等方面的分析方法。

3 总论

气候,不仅水资源、热量资源、太阳能、风能等不同的资源供人类利用,而且做为一种重要的环境因素在影响着人类的生存和发展,另一方面,各种人类的活动,尤其是重大工程项目的又对气候产生了不同程度,气候与重大项目是相互影响、相互作用、相互制约,因此气象风险评估和气候可行性论证是一项复杂的系统工作。

灾害性天气的发生、发展时间较短,具有突发性特征,往往让人们猝不及防,危害性大。气象灾害防御,重在预防。对重大建设项目要进行气象灾害风险评估和气候可行性论证,以防止这些项目不能抵御灾害甚至加重气象灾害的危害。

合理开发、利用、保护气候资源,避免或减轻规划和建设项目实施后可能受气象灾害、气候变化的或者对局地气候产生的影响,最终达到趋利避害,争取社会效益的最大化,实现可持续发展才是气象灾害风险评估和气候可行性论证的目标。

参考文献

[1] 中国气象局.气候可行性论证管理办法[N].中国气象报2008-12-11,003版

气象灾害论文篇(4)

关键词:气象信息,农业保险

 

1 气象信息服务在重大天气灾害中的减灾思路

随着气象事业的不断发展,天气预报服务和短时天气预警在人们日常生产、生活中的作用也越来越大。然而面对重大灾害性的天气的发生,即使我们及时作出了预警,对人和牲畜来说,能起到一定的保护作用。然而对农作物、树木、城市建筑等等,则是无法规避灾害。,农业保险。。中国是自然灾害严重的国家,每年因天气灾害而造成的损失多达上千亿,如何有效地规避这些损失则成了国家的难题,气象信息服务能完全减少因灾害性天气造成的农业损失吗?显然不能完全减少,尽管防御及时到位的话也能减少部分损失。

2 我国农业保险的现状

尽管自80年代恢复农业保险以来,农业保险在我国发展的还比较迅速,但是从90年代中期开始,我国农业保险一直停滞不前,并呈现出不断委缩的态势,具体有以下几个方面:

2.1保费收入不断下降

根据有关部门的数据显示,近年来我国境内的农业保费收入一直很低,不但没有上升还呈现下降的趋势。1993年我国农业保险保费收入超过8个亿,从1994年就开始处于下滑状态,到2000年仅有3.87个亿,农业保险深度不到1%,到2002年我国农业保费收入仅占保险业收入的0.16%,2004年我国农业保费收入仅为3.77亿元,与历史最高1992年的8.71亿相比下降了约55%,2005年农业保险收入为4.16亿左右,仅为保险业收入的0.08%,农业保险深度几乎为零了。这完全不和我国的经济发展相协调,严重影响农业经济的发展,对农业基础地位的保护作用已不存在。

2.2 国家实行农业政策险的政策

国家试行的农业政策险,目前的情况是,国家补贴8元/亩,农民自己出2元。如果受到大灾,颗粒无收,农民可以得到300元/亩的赔偿。对农民来说,亩产收入不足300元的情况是受了多大的灾呢?每亩300元的收入对农民来说,吸引力并不大,仅仅是保命钱而已,并不能起到减灾的效果。而对国家来说,仅就濮阳市就有360万亩土地,小麦和玉米8元/亩,每年保费则会有5700万元,而河南省则保费超过15亿元,保险公司处于纯盈利模式。

下面举例简单说明:

2009年5月,河北省邢台、邯郸两地受到大风、强降雨天气侵袭,小麦发生不同程度倒伏灾害。两地共承保政策性小麦种植保险352.45万亩。据不完全统计,受灾小麦共计16.44万亩,估损2200余万元,保险公司已预支赔款877.66万元。目前,查勘理赔工作仍在进行中。大家可以看到352万亩的土地大概收入应该在3000万以上,而保险公司仅仅支付赔偿877.66万元,估计损失和赔偿额度之间其实有很大的差异。,农业保险。。

而我们来看看保险公司一大堆难言的“苦”,如农业保险的承保与理赔和其他商业保险相比难度较大,比如核保,由于种植业保险承保标的范围较大(如农田、果树林),核保时承保标的难以精确测量,有时还存在农户的道德风险;再如定损,由于各种农作物生长特点不同,损失原因、损失程度的确定需要由专业人才提供技术支持等。

2.3气象技术和资料为保险理赔提供科学依据

从核保方面来说气象部门有着绝对的权威资料可以作为灾害的证据。核保时标的难以精确测量:气象部门有着多年对小麦、玉米作物生长进行专业服务的经验,对标的测量的准确程度是其他行业所难以超越的。农户的道德风险,在证据优先的情况下,在没有农田大面积遭灾的情况下,单个农户是很难获得举证支持的,并且保险赔付标准很低,基本上不认为存在农户的道德风险。再说定损,各种农作物生长特点不同,损失原因、损失程度的确定气象部门也有着相当强的监测鉴定能力。

3 气象行业融入保险业

历年来的灾害评估使气象部门对农作物的灾情损失情况有着精确的统计基础,因此可以对灾害的赔率指标做到心中有数。气象行业完全应该从农业政策保险中占有一定的份额,认为气象部门可以有两种模式来进入保险业。

3.1 国家对农业政策险进行招投标

农业政策险由国家相关部门进行招标决定,在确定中标公司后,由气象部门出具灾情认定,然后按照国家规定赔付标准进行赔付,而承保金额的10%作为气象部门的运作经费来确保工作得以进行。国家政策补贴为全部耕地投入基本保险(小麦、玉米),农民即使颗粒无收,也可以获得300元/亩的收入,这样就能够使种植土地的农民投入成本后不至于颗粒无收,而保险公司也不会因为过低的投保率而导致保费不足和支出风险大的危险。如果农民愿意,可以追加投保金额,使农民在受灾情况下也可以确保有较高的收入,这样就有效的增加了农民耕种的信心,同时保费也可以大幅增加。在逐步积累经验的情况下,还可以对其他农业项目比如果园、蔬菜等进行调查投保。

3.2 气象部门作为股东参与保险公司的经营

气象部门本身在农民心目中就是值得信赖的行业,近年来越来越准的天气预报,使公众对气象服务的依赖度增加,并且气象部门对农业的了解度高,相对从业成本低,不需要重新培训专业技术人员,农民投保兴趣高。气象部门参与农业政策险的话可以有效缓解气象行业经费不足的情况。因气象部门的卫星遥感能及时了解遭灾情况,不易存在虚假和骗保现象。

3.3 国家直接介入保险公司经营

气象部门可以积极提供灾情信息、受灾后的灾情赔付信息,以及农作物生长状况,光、热、水等农事农业气象条件分析,以及农事未来天气预报和对策建议,从而使国家能够及时调用资源优势来进行抢险救灾工作。

4 气象与保险业结合对气象事业的发展的有哪些好处

4.1一方面,气象灾情评估容易,一旦出现灾情,灾民为了减少自己的损失,会迅速向气象部门进行报告,加快了灾情收集时效。另一方面,对气象灾情现场调查和评估制度的建立具有潜在的动力,使得灾情报告更具有可信性,评估制度更合理,从而增强了气象部门对灾害信息的收集和分析处理的能力。

4.2如果没有气象部门的参与,保险公司并不能及时有效的发现灾情和指导灾民如何自救及减少损失,往往是过一段时间后才能作出反应,这与减灾的目的相违背。而气象部门参与后,通过加强暴雨洪涝、台风、山洪、地质灾害、干旱、高温热浪、雷电、冰雹、雪灾、低温冷害、雾、霾、酸雨等灾害性天气预警服务,可以使政府及灾民迅速做出反应,并根据未来的天气变化情况,提出应急响应对策建议从而可以及时采取应急措施来减少灾害的损害,从而达到减灾的目的。,农业保险。。

4.3通过建立以GIS为基础的气象灾害风险评估基础数据库,可以迅速的对灾区受灾的耕地进行确认,通过对受灾耕地农民以银行卡转账的方式将钱直接划入农民账号中,减少了中间流通环节,使灾民迅速获得了生产自救能力,减少了繁冗的中间环节,使农民的收入得到了更可靠及时的保障。

4.4通过建设灾害防御专家队伍,组建分灾种的气象灾害评估专家队伍,充分了解各种作物对气象的敏感程度,在提供气象预报预测信息的基础上,能对气象灾害可能造成的影响做出预见性分析。

气象灾害论文篇(5)

听了十届政府五年工作报告,我最大的体会可以概括为一句话:“讲成绩,有事实,有依据,令人振奋;讲困难,有分析,有措施,催人奋进”。

全国政协委员、上海市气象局学术委员会主任徐一鸣带来了一份提案——《应对全球气候变暖背景下极端天气事件频发的建议》。图为休会间隙,同来自上海的政协委员张鳌讨论。

面对自然灾害,报告提出了“加强应急体系和机制建设,提高预防和处置突发事件能力;加强对现代条件下自然灾害特点和规律的研究,提高防灾减灾能力”,措施极有针对性,也非常有力。

在保障经济,社会发展方面,也有许多新措施。

环保方面,从“环境治理”到“节能减排”、“生态文明”。

优先发展教育方面,提出了“增加农村义务教育公用经费”,“全面免除城市义务教育学杂费”。

在增加城乡居民收入方面,“再连续三年进一步提高企业退休人员基本养老金水平”。

在推动文化大发展方面,提出了“公益性博物馆、纪念馆今明两年全部向社会免费开放。”

全国政协委员徐一鸣认为,极端天气还会更加频繁地发生,政府部门应制定明确的攻关目标。

个人的一点思考:随着全球气候持续变暖,必须把防御极端天气气候灾害置于应对气候变化的非常重要位置。

一是必须切实把增强防御极端天气气候事件摆在应对气候变化的重要和优先位置。加大投入,开展研究全球气候变暖背景下我国极端天气气候事件发生频次、强度和空间分布特征及其变化规律,加强极端气象灾害的预警预报和影响评估技术研究,增强防灾减灾的针对性和有效性。二是将研究成果及时应用到科学规划和决策中。加强气象灾害风险评估,严格实施气象灾害风险论证制度,未雨绸缪,加强规划,科学设计,使人居环境和重要的战略基础设施远离灾害多发区、易发区和自然环境脆弱区。依据研究成果,采取更广泛和更有效地措施开展极端天气气候事件的防御工作,降低气候变化的灾害风险。三是随着城市化进程的加快,应高度重视局地气候变化与大城市经济社会发展的相互影响关系。四是气象灾害防御的部门合作、信息共

气象灾害论文篇(6)

第一条为了防御和减轻气象灾害,保障国家和人民生命财产安全,促进经济和社会发展,根据《中华人民共和国气象法》和有关法律、行政法规,结合本省实际,制定本条例。

第二条本条例适用于本省行政区域内从事气象灾害的监测、预报、预防和减灾等活动。

第三条气象灾害防御工作,应当坚持预防为主、趋利避害、统筹协调、分级负责的原则。

第四条县级以上人民政府应当加强对气象灾害防御工作的领导,将气象灾害防御工作纳入国民经济和社会发展规划,并安排必要的气象基本建设和事业经费。

第五条各级气象主管机构(以下简称气象主管机构)负责管理和监督本行政区域内灾害性天气的监测、预报、预警,气象灾害应急服务,以及人工影响天气作业、雷电灾害防御等工作。

县级以上人民政府其他有关部门按照职责分工,做好气象灾害防御的有关工作。

第六条县级以上人民政府应当鼓励和支持气象灾害防御的科学技术研究和先进技术推广,将气象灾害防御的科学技术研究纳入科技发展规划。

气象主管机构应当加强气象灾害防御科技的研究与应用,提高灾害性天气预报、预警的准确性、及时性,提高防御气象灾害的服务水平。

第七条气象主管机构应当会同有关部门开展气象灾害防御法律、法规和防灾减灾知识宣传,增强社会防御气象灾害的意识,提高公众自救互救能力。

第二章规划与实施

第八条县级以上人民政府应当组织气象主管机构和有关部门,编制本行政区域内气象灾害防御规划。

气象主管机构应当会同有关部门开展气象灾害普查,建立气象灾害风险数据库。

第九条编制土地利用总体规划、城市规划和区域、流域的建设开发利用规划,以及农业、林业、能源、水利、交通、旅游等专业规划,应当符合气象灾害防御的要求。

第十条气象主管机构应当组织对城市规划编制、重大基础设施建设、重大区域性经济开发项目,以及大型太阳能、风能等气候资源开发利用项目,进行气候可行性论证,对气象灾害风险作出评估。

需要进行气候可行性论证项目的范围,由省发展改革部门会同省气象主管机构确定。

第十一条气象主管机构应当建立城市气象灾害监测预警系统,实现气象灾害的动态监测,及时城市气象灾害信息。

第十二条气象主管机构应当会同农业、水利等部门,建立农业气象灾害预警、评估体系和粮食安全气象预警系统。

第十三条气象主管机构应当会同交通、公安、国土资源、林业等部门,建立专业气象监测网和气象灾害预警系统,为道路交通安全、水上交通和水上作业安全、地质灾害防治、森林防火、森林病虫害防治等提供气象实时服务。

第十四条气象主管机构应当会同卫生、环境保护等部门,建立气象变化对疾病、疫情、环境质量影响的气象预警系统,为突发公共卫生事件、环境事件等应急处置提供气象实时服务。

第十五条县级以上人民政府有关部门应当按照各自职责,做好因气象因素引发的地质灾害、洪涝灾害、森林火灾、植物病虫害、环境污染、流行疾病、疫情等次生、衍生灾害的防御工作。

第三章建设与保护

第十六条县级以上人民政府应当按照合理布局、有效利用的原则,组织建立本行政区域气象灾害监测网络。气象灾害监测网络的构成,包括气象主管机构所属气象台站以及农业、水利、林业、交通、环境保护、国土资源、民航等有关部门和单位所属的监测站点。

气象主管机构对监测网络的气象监测业务实行统一指导和监督。

第十七条县级以上人民政府应当组织气象主管机构和有关部门加强气象预警基础设施建设,畅通预警信息与传播渠道。

新建机场、铁路、高速公路、大型水利工程、大型桥梁和配置大型港口机械的港口等,应当根据气象灾害防御的需要,将气象灾害监测、预警设施纳入建设项目,统一规划和建设;已投入使用的,应当根据气象灾害防御的需要,加装气象灾害监测、预警设施。

第十八条县级以上人民政府应当按照国家标准划定气象探测环境保护范围,并纳入城市规划或者村庄和集镇规划。

发展改革、规划、建设、国土资源、无线电管理等有关部门在审批可能影响已建气象台站探测环境和设施的建设项目时,应当事先征得有审批权限的气象主管机构的同意。

第十九条依法保护气象灾害监测、预警设施,任何单位和个人不得侵占、损毁或者擅自移动。

气象灾害监测、预警设施因不可抗力因素遭受破坏时,当地人民政府应当采取紧急措施,组织修复。

第四章监测与预报

第二十条县级以上人民政府应当组织有关部门和单位建立气象灾害监测信息共享机制,建设监测信息共享数据库。气象主管机构负责气象灾害监测信息共享数据库的管理工作。

气象主管机构应当及时向有关部门和单位提供气象灾害监测、预报、预警信息;有关部门和单位应当按照各自职责提供与气象灾害有关的大气、水文、环境、生态等监测信息,并相互及时通报预报、预警信息。

第二十一条气象主管机构应当组织对重大灾害性天气的跨地区、跨部门的联合监测、预报,及时提供重大灾害性天气预报、警报和旱涝趋势气候预测,并向本级人民政府报告,同时通报有关部门。

第二十二条气象主管机构所属气象台站根据可能造成气象灾害的监测信息和天气变化趋势,按照国家气象主管机构的规定向社会灾害性天气预报、警报和气象灾害预警信号,其他任何组织和个人不得向社会。

第二十三条各级广播、电视台站和省人民政府指定的报纸、网站收到气象主管机构所属的气象台站要求播发的灾害性天气预报、警报、气象灾害预警信号后,应当及时向公众传播;对重大灾害性天气的补充、订正预报,应当及时增播或者插播。

广播、电视、报纸、网站等媒体以及通信运行企业向社会传播灾害性天气预报、警报、气象灾害预警信号,应当使用气象主管机构所属的气象台站提供的适时气象信息,并公布时间和气象台站的名称。

机场、港口、车站、高速公路、旅游景点、学校、医院、体育场馆等人员密集场所的管理单位,在接到灾害性天气预报、警报和气象灾害预警信号后,应当及时向公众传播,并采取相应防御措施。

第五章防灾与减灾

第二十四条县级以上人民政府应当组织有关部门制定本行政区域重大气象灾害防御应急预案,建立重大气象灾害应急机制和预警应急系统。

重大气象灾害防御应急预案应当包括气象灾害的性质和等级、组织指挥体系及有关部门职责、预防和预警机制、应急预案启动和响应程序、应急保障和后期处置等内容。

第二十五条气象主管机构所属气象台站重大灾害性天气预报、警报和气象灾害预警信号后,当地县级以上人民政府应当根据气象灾害的严重和紧急程度,决定启动并组织实施重大气象灾害防御应急预案。有关部门和单位按照应急预案的分工做好相应的工作。

启动和终止重大气象灾害应急预案,应当及时向社会公布,并报告上一级人民政府。

第二十六条灾害性天气预报、警报和气象灾害预警信号后,对可能造成人员伤亡或者重大财产损失的区域,当地县级以上人民政府应当根据需要及时划定气象灾害危险区,并予以公告。

第二十七条县级以上人民政府应当加强气象灾害应急救援队伍建设,逐步设立乡村气象灾害义务信息员。鼓励志愿者参与气象灾害应急救援,帮助群众做好防灾避灾工作。

第二十八条发生重大气象灾害,当地人民政府及有关部门应当根据灾害危害程度,采取停工、停业、停课、交通管制等必要的气象灾害应急处置措施。情况紧急时,当地人民政府、基层群众自治组织和企业、学校等,应当及时动员并组织受到灾害威胁的人员转移、疏散。

对当地人民政府及有关部门采取的气象灾害应急处置措施,任何单位和个人应当予以配合,不得妨碍气象灾害救助活动。

第二十九条重大气象灾害发生过程中,气象主管机构应当组织所属气象台站加强对灾害性天气的跟踪监测,及时向本级人民政府和有关部门报告天气实况和变化趋势。

第三十条县级以上人民政府应当加强对人工影响天气工作的领导和协调,完善人工影响天气的基础设施,健全人工影响天气作业体系。

第三十一条县级以上人民政府应当组织气象主管机构和有关部门,在大型水库、城市供水和工农业用水紧缺地区的水源区域,森林火灾频发区,干旱和冰雹灾害高发区域建立专项人工影响天气作业点,并适时组织作业。

第六章法律责任

第三十二条违反本条例第十九条第一款规定,侵占、损毁或者擅自移动气象灾害监测、预警设施的,由气象主管机构按照权限责令停止违法行为,限期恢复原状或者采取其他补救措施;情节严重的,可以并处1万元以上5万元以下的罚款;造成损失的,依法承担赔偿责任;构成犯罪的,依法追究刑事责任。

第三十三条违反本条例第二十二条、第二十三条第二款规定,有下列行为之一的,由气象主管机构按照权限责令改正,给予警告,可以并处5000元以上2万元以下的罚款:

(一)非法向社会灾害性天气预报、警报和气象灾害预警信号的;

(二)广播、电视、报纸、网站等媒体以及通信运行企业向社会传播灾害性天气预报、警报和气象灾害预警信号,不使用气象主管机构所属气象台站提供的适时气象信息的。

第三十四条违反本条例第十条第一款、第二十一条、第二十三条第一款、第二十五条、第二十六条、第二十八条、第二十九条规定,有下列行为之一的,由县级以上人民政府、有关部门、有关企业事业组织对直接负责的主管人员和其他直接责任人员,依法给予行政处分或者由所在单位追究责任;构成犯罪的,依法追究刑事责任:

(一)在气象主管机构所属的气象台站重大灾害性天气预报、警报和气象灾害预警信号后,未按规定的程序启动并组织实施应急预案或者未按照应急预案的规定采取有关措施、履行相关职责的;

(二)未按照规定提供与气象灾害有关的监测信息和预报、预警信息,造成严重后果的;

(三)应当组织进行气候可行性论证的项目未组织论证,造成重大损失的;

(四)广播、电视台站和省人民政府指定的报纸、网站未及时播发灾害性天气预报、警报、气象灾害预警信号,或者未及时增播、插播重大灾害性天气补充、订正预报,造成严重后果的。

第三十五条气象主管机构及其所属气象台站的工作人员有下列行为之一的,依法给予行政处分;构成犯罪的,依法追究刑事责任:

(一)因,导致漏报、错报重大灾害性天气预报、警报和气象灾害预警信号的;

(二)出具虚假气候可行性论证报告的;

气象灾害论文篇(7)

关键词:暴雨洪涝;GIS技术;致灾因子危险性;风险评估

中图分类号:TV122+.1 文献标识码:A 文章编号:

引言

20世纪90年代以来,在以全球变暖为主要特征的气候变化背景下,极端天气气候事件明显增多,特别是强降雨引发的暴雨洪涝灾害。如2008年北海市6月份雨量高达900毫米;2011年10月1日,福成镇4小时雨量超过400毫米;2012年7月下旬,北海市铁山港区一次连续暴雨过程(4天)雨量超过600毫米;2012年10月29日,北海市区和银滩镇一小时雨量分别是140毫米和150毫米。这些极端强降雨天气对北海市社会经济和人民群众财产安全造成严重的影响。因此,为有效的规避风险,为给北海市经济可持续发展和防灾减灾决策提供理论支持和科学依据,开展北海市暴雨洪涝风险评估很有必要,而致灾因子危险性分析是暴雨洪涝风险评估的主要部分。

1.暴雨洪涝对北海市影响概况

北海市位于广西南部,低纬度沿海地区,南濒北部湾,属亚热带海洋性季风气候,主要受中低纬度天气系统影响,是气象灾害较为频繁的区域之一,而暴雨洪涝是北海市最主要的气象灾害之一。北海市平均每年每站发生暴雨(日雨量50毫米)以上降雨7-8天,大暴雨(日雨量100毫米)以上2-3天。暴雨天气给北海市造成了严重的洪涝灾害,据气象灾情数据统计,不包含台风暴雨所造成的损失,北海市平均每年因暴雨洪涝造成损失超过亿元。

2.数据和方法

2.1数据来源:

(1)气象观测数据

气象资料取自北海市24个自动气象站逐日降雨量资料,资料时间从2008年1月~2012年7月。

(2)基础地理信息资料利用ArcGIS9.2对广西1:25万地理数据中的F4905、F4906、F4909和F4910等四个图幅所包含的E00资料和dem ASCII资料进行格式转换和拼接、对矢量数据分层、筛选以及裁剪、经、纬度和坡度、坡向栅格数据提取等一系列处理后得到北海市的行政区划界数据、行政点数据、河流、水体数据、路网数据及网格距为100m×100m的广西DEM、经度、纬度、坡度、坡向栅格数据。

2.2暴雨洪涝灾害风险指数模型构建

自然灾害风险的形成过程中,是致灾因子危险性(VH)、孕灾环境稳定性(VE)、承灾体的脆弱性(VS)和防灾减灾能力(VR)等4个主要因子的综合作用的结果,其函数表达式为:。式四个因子当中,致灾因子危险性(VH)所占的权重最大。

2.3相关技术方法:

(1)因子规范化处理方法

气象灾害的孕灾环境敏感性、致灾因子危险性、承灾体脆弱性、防灾减灾能力四个评价因子包含若干个指标。由于评价指标体系的参评因子来自不同的方面,各参数间的量纲不统一。为了消除各指标的量纲和数量级的差异,需对每一个指标值进行规范化处理。

敏感性、危险性、易损性三个指标规范化计算采用公式:

式中Dij 是j 区第i个指标的规范化值, Aij是j 区第i个指标值, mini和maxi 分别是第i个指标值中的最小值和最大值。

(2)加权综合评价法

暴雨洪涝致灾因子危险性指数的计算采用加权综合评价法。加权综合评价法综合考虑各个具体指标对评价因子的影响程度,是把各个具体指标的作用大小综合起来,用一个数量化指标加以集中,计算公式为:

式中 V 是评价因子的值,n 是评价指标个数,Di 是指标 i的规范化值,Wi 是指标 i 的权重。权重 Wi 的确定可由各评价指标对所属评价因子的影响程度重要性,利用层次分析法确定,或根据专家意见,结合当地实际情况讨论确定。

3.致灾因子危险性区划

致灾因子危险性表示引起暴雨洪涝灾害的致灾因子强度和概率特征,是暴雨洪涝灾害产生的先决条件。

3.1临界致灾雨量的初步确定

暴雨过程降水定义:过程降水量以连续降水日数划分为一个过程,一旦出现无降水则认为该过程结束,并要求该过程中至少一天的降水量达到或超过50毫米,最后将整个过程降水量进行累加。

统计本市年各气象台站1天、2天、3天、……10天(含10天以上)暴雨过程降水量。将本市所有台站的过程降水量作为一个序列,建立不同时间长度的10个降水过程序列。分别计算不同序列的第98百分位数、第95百分位数、第90百分位数、第80百分位数、第60百分位数的降水量值,该值即为初步确定的临界致灾雨量。利用不同百分位数将暴雨强度分为5个等级,具体分级标准为: 60%~80%位数对应的降水量为1级,80%~90%位数为对应的降水量为2级,90%~95%位数对应的降水量为3级,95%~98%位数对应的降水量为4级,大于等于98位数对应的降水量为5级。

3.2降水致灾因子权重的确定

根据暴雨强度等级越高,对洪涝形成所起的作用越大的原则,确定降水致灾因子权重。暴雨强度5、4、3、2、1级权重分别为5/15、4/15、3/15、2/15、1/15。

3.3单站降水致灾因子危险性指数

加权综合评价法计算不同等级降水强度权重与将各站的不同等级降水强度发生的频次归一化后的乘积之和。

3.4致灾因子危险性区划

将各站的危险性指数作为本市分县乡镇图的致灾因子影响度属性的属性值赋给该图,然后将该图栅格化,利用GIS中自然断点分级法将致灾因子危险性指数按5个等级分区划分(高危险区、次高危险区、中等危险区、次低危险区、低危险区),绘制致灾因子危险性指数区划图(图1)。由图可见,北海市暴雨洪涝危险性大致呈现东北高西南低的分布态势,说明北海市东北部发生暴雨的强度和频度要明显强于西南部。致灾因子高危险区主要位于合浦县东到东北部,从白沙镇、公馆镇到闸口镇、石康镇一带,低危险区位于北海市西南端。

图1 北海市暴雨洪涝灾害致灾因子危险性区划图

4.结论与讨论

4.1一直以来,由于乡镇一级的气象资料、灾情资料和社会经济数据十分匮乏,自然灾害风险评估工作只能以县为分析单元。本文采用中尺度自动气象站资料和各乡镇社会经济数据进行风险评估分析,基于地理信息化(GIS)技术,应用自然灾害风险指数法、加权综合平均法,大大提高了评估科学性和精细化程度。

4.2以乡镇为单元的区域自动站气象历史资料,存在资料长度较短的问题。如果能结合水文、海洋以及能源等部门的气象资料则评估效果更可靠。

4.3采用逐日降雨量做暴雨洪涝、台风等灾害风险评估,很多时候对暴雨强度的反映不够准确,假如使用逐小时降雨量做暴雨洪涝的危险性因子分析不但可以增加资料样本数,还能提高分析精度。

4.4应用专家打分法、灾情验证法及查找文献等方法选取评估因子、确定各因子权重系数,还是具有一定的主观性。

参考文献:

章国材.气象灾害风险评估与区划方法.气象出版社,2010.1

暴雨洪涝灾害风险区划技术规范(气减函〔2009〕24号文附件)

作者简介: