期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 智能化变电站

智能化变电站精品(七篇)

时间:2022-06-12 11:38:45

智能化变电站

智能化变电站篇(1)

关键词:变电站;智能化;设计;探讨

中图分类号:TU984 文献标识码:A 文章编号:2095-2104(2013)

智能变电站就是将信息技术、通信技术、计算机技术和原有的变电基础设施高度集成而形成的新型变电站,它具有提高能源效率、减少对环境的影响、提高供电的安全性和可靠性等多个优点。智能主要体现在:1)可 观 测-- 量测、传感技术;2)可控制--对观测状态进行控制;3)嵌入式自主处理技术;4)实时分析--从数据到信息的提升;5)自适应;6)自愈。本文在常规变电站智能化改造研究的基础上,实现常规变电站的智能化改造的实际应用。智能变电站以先进的信息化、自动化和分析技术为基础,灵活、高效、可靠地完成对输电网的测量、控制、调节、保护、安稳等功能,实现提高电网安全性、可靠性、灵活性的资源优化配置水平的目标。

1 国内外变电站的现状

国内变电站自动化技术经过数十年的发展,整体水平已经达到国际领先。新建变电站,无论电压等级高低,大多采用变电站自动化系统,许多老变电站也经过改造实现自动化。当前的数字化变电站从技术上来说,其突出成就是实现了变电站信息的数字采集和网络化信息交互,但是这对于智能电网的需求来说,还是远远不够的,一种新型的变电站—智能变电站应运而生。

智能变电站是采用先进、可靠、集成、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,同时具备支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。在智能电网技术的推动下,智能变电站将成为变电站建设的主流模式。

2 变电站智能化改造设计的内容

本文开展常规变电站智能化改造的可行性研究,着重解决在解决变电站综合信息化集成,光互感器、常规互感器匹配,常规变电站智能化过渡等智能化变电站发展过程中的核心问题,实现对常规变电站测控系统的全面智能化整合与提升。

常规变电站智能化改造主要包括以下内容:

2.1 数据的智能一体化集成

采用一体化技术,实现全站SCADA功能的全景展示,以模块化、开放化的设计思想,实现监控系统的智能化。将全站信息通过开放、规范的接口,进行统一建模,建立信息统一的存取平台,提供标准的DL/T860通讯功能(包括Server/Client通讯),为各种应用提供高效、可靠、稳定的一体化数据平台。依托该平台,系统除具备常规的SCADA功能外,还配置工具软件、状态检测可视化软件、报文分析等软件,具有一、二次系统顺序控制、智能告警、状态估计、故障综合分析、保信子站、电压无功控制、负荷优化控制等功能。

2.2 参数的智能化传输

采用模型映射与协议的无缝转换,实现远动装置由传统的实时数据上传向各种参数智能化传输的转变。一方面承担常规站的远动机功能,另一方面子站控制器实现与调度系统的无缝连接,完成IEC61850与IEC61970模型的自动映射管理,从而实现变电站与调度自动化主站系统的一体化建模。

2.3 数据建模及数据模板的智能转换

利用数据建模与数据模板转换技术,实现传统规约转换装置向智能型的转变。智能接口装置针对智能变电站内智能设备信息交互的功能需求设置,提供了将非标准的智能设备信息转换为符合DL/T 860(IEC61850)标准的信息模型的功能。对站内直流屏、电度表、巡检、电源、风机、空调、消防等子系统进行数据收集整合和IEC61850标准规范建模,实现变电站实时集成监控和优化管理,对外主要采用MMS通讯服务为其它站控系统提供数据,实现站内信息快速互动。

2.4 在线监测的智能集成

通过具备数据智能集成汇总功能的智能控制柜实现变压器顶层油温及油位、有载开关的测控、变压器在线监测相关数据以及(包括油中溶解气体分析、局部放电在线监测、铁芯接地电流监测等)智能集成;实现断路器、避雷器等设备在线监测数据(包括断路器分合闸线圈电流、时间、速度、行程曲线、SF6气体压力、避雷器泄漏电流、动作次数等),以及该区域的辅助系统数据(照明控制、振动告警等)的智能集成。

2.5 运行环境的智能监测

整合视频系统、变电站监控系统,实现运行环境远程监测与综合自动化系统、辅助系统等的智能联动,通过摄像头快速定位报警设备或报警区域,避免人为的现场定位不准确问题,同时能够确认火警及其严重程度;通过图像分析处理功能,发现变电设备漏油、异物缺陷,采集断路器、隔离开关的分合闸位置,对变电运行巡视及程序化操作提供智能辅助判断;同时实现视频系统与安防系统、照明控制系统的智能联动,实现人员非法入侵的全天候监视;集成户内外环境温湿度及气象监测功能,并与空调、排风、排水等系统智能联动,实现室内温湿度的自动控制、调节,并根据雨量及场区水位自动启动排水系统。

2.6 变电巡视智能化

通过在变电站三维模型上规划巡视路线的功能,充分调动巡视路线上的相关摄像头,根据巡视作业指导书所要求的巡视过程中的主要观察点,利用摄像头的预置位,实现在模拟线路上自动巡视的功能,并通过图像识别技术,发现一些明显的设备缺陷,起到辅助运行巡视的作用。

2.7 设备状态可视化

设备状态可视化就是基于自监测信息和经由信息互动获得的高压设备其它状态信息,通过智能组件的自诊断,以智能电网其它相关系统可辨识的方式表述诊断结果,使高压设备状态在电网中是可观测的。建立变电站变电设备三维全景展示模型,变电设备的主要技术参数、设备状态等均通过三维全景模型进行展示。变电站主要一次设备(变压器、断路器、避雷器、开关柜等)安装外置的在线监测装置,采集设备状态信息,同时结合设备运行信息(运行电压、电流、开断故障电流、动作次数等),通过在线监测中心专家系统分析,将设备状态在集控中心进行展示。

3 研究方案及难点

计划对需智能化改造的常规站设备、运行情况进行深入的调研,对国内的智能化变电站设备主流厂家及智能化变电站相关运行维护单位进行广泛调研,深入分析电网公司对变电站智能化的需求,研究智能化变电站的表达模式,并在此基础上建立一种智能化变电站系统架构,为智能化变电站实用化打下坚实的基础。

本文的实施方案如下:

4 预期成果和可能的创新点

计划对需智能化改造的常规站设备、运行情况进行深入的调研,对国内的智能化变电站设备流厂家及智能化变电站相关运行维护单位进行广泛调研,深入分析电网公司对变电站智能化需求,研究智能化变电站的表达模式,并在此基础上建立一种智能化变电站系统架构。

智能变电能够完成比常规变电站范围更宽、层次更深、结构更复杂的信息采集和信息处理,变电站内、站与调度、站与站之间、站与大用户和分布式能源的互动能力更强,信息的交换和融合更方便快捷,控制手段更灵活可靠。与常规变电站相比,智能变电站设备具有信息数字化、功能集成化、结构紧凑化、状态可视化等主要技术特征,符合易扩展、易升级、易改造、易维护的工业化应用要求。

5 结束语

变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。尤其是现在大容量发电机组的不断投运和超高压远距离输电和大电网的出现,使电力系统的安全控制更加复杂,如果仍依靠原来的人工抄表、记录、人工操作为主,依靠原来变电站的旧设备,而不进行技术改造的话,必然没法满足安全、稳定运行的需要,更谈不上适应现代电力系统管理模式的需求。

参考文献:

智能化变电站篇(2)

【关键词】GIS 智能变电站 智能终端 合并单元

中图分类号:TM411 文献标识码: A

引言

我国电力系统正向高度信息化、自动化的方向发展,电网规模日益扩大,现代智能电网、智能变电站、变电站设备智能化成为热门话题。随着我国“十二五”规划“加快现代电网体系建设”,“推进智能电网建设”等纲要的及从国家电网招标情况来看,我国电网建设的关注焦点开始集中到了智能电网的发展上。这将对智能电网以及整个电力行业的发展产生重要意义,其中的主设备气体绝缘金属封闭开关设备(GIS)领域正经历着新一轮的更新换代,智能GIS正面临着前所未有的发展机遇。

智能变电站是以数字化变电站为依托,通过采用先进的传感器、电子、信息、通信、控制、智能分析软件等技术,建立全站所有信息采集、传输、分析、处理的数字化统一应用平台,实现变电站的自动运行控制、设备状态检修、运行状态自适应、分布协同控制、智能分析决策等高级应用功能,提高管理和运行维护水平。

为了提高智能变电站自动化系统的技术水平、提高变电站自动化系统安全稳定运行水平、节约开发验收维护的人力物力、实现完全的互操作性,智能变电站的通信标准采用IEC61850标准。IEC61850标准是由国际电工委员会(International Electro technical Commission)第57技术委员会于2004年颁布的、应用于变电站通信网络和系统的国际标准。IEC61850标准作为基于通用网络通信平台的变电站自动化系统唯一国际标准,提出了一种公共的通信标准,通过对设备的一系列规范化,使其形成一个规范的输出,实现系统的无缝连接。IEC61850标准的目标是推广“一个世界,一种技术,一种标准”的理念。在国内,现有信息交换技术在变电站自动化领域的种种弊端严重限制了生产管理新技术的提高,因此,采用IEC61850标准实现信息交换标准化成为国内众多电力自动化专家的一致共识。

现阶段的智能变电站主要有三种模式

模式1:基于站控层IEC61850

该系统与传统的变电站自动化系统基本类似。间隔层智能电子设备IED(保护及自动化装置)仍然可被安装在间隔层设备上或集中组屏。

这种模式的推广是为了解决传统变电站中智能设备的互联互通及信息互操作问题。由于变电站的智能设备的通信及功能被约束在IEC61850标准范围内,因此,整个系统中的每一个节点的信息传输被标准化,从而使得整个系统的可维护、可扩充性能大为提高。

模式2:基于传统互感器及过程层信息交换

这种模式不仅在站控层信息交换采用了IEC61850,而且增加了过程层网络进行过程层信息交换。对于每一个间隔,配置了过程层设备合并单元、智能操作箱,将常规一次设备的信息及操作数字化,与之相关的间隔层智能电子设备IED(保护及自动化装置)则通过光纤以太网与对应间隔的合并单元、智能操作箱相连接。

IED与合并单元、智能操作箱之间既可以点对点的方式互联,也可以以网络总线方式相连。原来一次设备与IED之间的传统的大量铜芯导线被少量的通信光缆代替了。同时由于建立了过程层网络,过程层的高速采样数据可以被不同类型的装置共享,从而简化了接线。

模式3:基于站控层及过程层全信息交换

区别于模式2,该模式采用电子式互感器代替了传统互感器。

由于光电式互感器的性能优势,这种模式是高压及超高压、特高压电站的发展趋势。采用的光电式互感器有支柱式、内置GIS等方式。

从现阶段智能变电站的几种模式可以看出变电站中,气体绝缘金属封闭开关设备(GIS)的一次设备智能化主要体现在采用数字信号输出的电子式互感器、配置智能单元的传统开关等智能一次设备。一次设备和二次设备间用光纤传输数字编码信息的方式交换采样值、状态量、控制命令等信息。目前大多数变电站的一次设备都不具备智能化的通讯接口,一次设备的状态信息和控制信息需要通过控制电缆的硬接线方式传递。而智能变电站要通过通信手段传递控制信息,就必须需要一次设备具备通讯接口,在一次设备不具备条件的情况下,需通过二次设备与一次设备的结合来完成对一次设备的智能化改造。因此,近期智能变电站的建设主要是基于IEC61850的二次设备发展。智能变电站中,开关设备通过通信网络不仅能完成继电保护控制指令,还能按照IEC61850规约执行网络遥控命令。二次设备间可以通过通信网络实现交换模拟量、开关量和控制命令等信息,取消常规自动化系统一次设备和二次设备间的控制电缆,采用光纤网络直通通信。一次设备的状态信息和控制信息都可以通过通信网络在二次设备间共享,这样就可以减少设备上传信号所需的节点数,尤其是大量减少了开关设备机构上传信号所需的辅助开关节点数,这给实际的二次设计带来了很大便利,减少了大量硬接线。

目前的智能变电站大多是通过智能单元与断路器操作箱接口,智能单元可单独设置智能组件柜,也可组合在气体绝缘金属封闭开关设备(GIS)的汇控柜中。GIS高压开关设备的传统二次设备主要集中在其汇控柜中,智能组件柜与汇控柜合并,即可实现智能组件与GIS结构一体化。现阶段智能变电站配置在GIS汇控柜的智能组件主要有智能终端、合并单元、智能监测装置及IED装置等。一些变电站在设计中处于测控保护一体化考虑,也会将主控室的保护控制装置下放至汇控柜。

对于GIS高压开关设备的二次设计,智能终端、合并单元是主要涉及的智能装置。

智能终端具有按照IEC61850协议与间隔层通讯,配置断路器参数,控制断路器动作等功能。智能终端与一次设备之间采用硬接线连接。智能终端与间隔层保护测控装置之间通过面向通用对象的变电站事件(GOOSE)实时传送信号量。间隔层保护装置的跳闸命令以及测控装置的跳合闸命令,按不同的GOOSE优先级传送到智能终端,由智能终端通过硬接线输出到一次设备,达到取消屏间硬连接线,光缆取代电缆的要求。智能终端作为数字化变电站三层结构中过程层的典型设备,主要担负一个间隔内一次设备位置和状态告警信息的采集和监视,对设备的智能控制,并具有防误操作功能。依靠智能终端各类信息全部通过光缆交互,从而将传统断路器改造为满足数字化需求的智能一次设备。智能终端装置的开入功能,用于断路器、刀闸的位置和一次设备告警信息的采集和监视。除了硬接点开入外,装置还支持GOOSE开入,满足过程层和间隔层智能设备之间开关量和控制数据交换。开出功能则提供保护用断路器的分合控制及通用控制的开出接点。

智能化变电站篇(3)

关键词:智能变电站;继电保护;数字化

DOI:10.16640/ki.37-1222/t.2015.21.044

继电保护技术在实际应用,已经取得了良好的效果,从信号传输、信息共享以及自动化水平等放慢进行分析,智能变电站的建设与应用具有更大的优势。需要从智能变电站实际应用中进行优化分析。在对智能变电站继电保护技术的分析中,需要了解其保护特征,争取提高其实施的安全性、实时性、稳定性等方面功能,来确保变电站运行效果可以满足供电需求。

1 智能变电站特点分析

与传统变电站相比,智能变电站已经实现了数字化运行与管理,如信息采集、传输、处理等过程,建设所用设备均具有较高的自动化与智能化水平,同时通过有效的信息收集与共享,应用效果更为突出,对建设智能电网具有重要推动作用[1]。智能变电站集中体现了一次设备智能化与二次设备网络化,在提高运行效率的同时,降低综合运营成本。对于传统变电站建设运行中存在的问题,智能变电站在建设时也对其进行了优化,例如常见的选择应用光电互感器与智能断路器设备,在运行过程中可以有效解决传统变电站存在的电磁式互感饱和问题。

2 智能变电站继电保护结构分析

2.1 “三层两网”构架

与传统变电站继电保护不同,智能变电站主要是利用过程网络为中心,将IEC 61850作为通信标准,则按照功能分析构架可以分为三层,即站控层、间隔层以及过程层,并且没两层之间会构成站控层网络与过程层网络[2]。其中,站控层主要负责传输整定值召唤、修改以及录波文件的传送等;过程层主要负责传输采样值、跳闸、开关状态量以及闭锁等信号,对定时性与可靠性具有严格的要求,关系着变电站各项功能是否能够正常运行。

2.2 数据帧传输机制

传统变电站继电保护设置有负责采样以及命令信号通道,由通道固定延时以及装置处理速率构成传输延时,保护效果相对固定。而智能变电站的继电保护,主要是利用以太网数据帧的形式来完成传输采样值、获取开关状态量以及下达跳闸值指令等,整个过程以交换机以及光纤作为介质,并由过程层网络来完成通信。由此可以确定,智能变电站继电保护对工程层网络有着较高的依赖性。

2.3 IEC 61850标准体系

IEC 61850为智能变电站继电保护网络以及通信设计必须要遵循的原则,在设计继电保护系统构架时,往往一个实体设备中会包含多个逻辑设备,并且由基本单元来实现逻辑节点的划分,如跳闸回路、保护算法以及采样值处理等节点。对于通信协议,主要就是通信服务类型以及性能要求等来映射特定通信协议,例如如SV/GOOSE通信,为保证实时性传输层与网络层协议映射为空[3]。

3 智能变电站继电保护设计优化要点

3.1 安全性优化

智能变电站继电保护装置均以IEC 61850标准体系为依据,但是因为其为统一,可以说是处于完全透明的网络环境中,这样保护系统在运行过程中,将要面临更多网络攻击,以及信息安全威胁,必须要做好对系统安全性的分析。IEC 61850标准体系中对于安全性方面并没有专门规定,因此需要总结以往管理经验,针对安全防护方面来采取措施进行优化。

3.2 可靠性优化

智能化变电站继电保护已经实现了全数字化建设,保护结构中含有众多电力电子设备,对提高变电站运行稳定性与安全性具有重要意义,满足社会生产生活对供电网运行的要求。但是在选择电力电子设备时,需要就实际情况来做好相应的设计,提高设计方案的合理性与应用效果,最大程度上来降低外界因素对其造成的影响,以免出现信息不同步或者电磁兼容等方面的问题。降低保护系统运行的稳定性。针对保护结构中电子设备易受影响的特点,采取措施来提高系统运行可靠性,如选择应用性能稳定的光缆,并通过冗余技术来完成系统的自检,对于不合理的部分可以及时发出警告,并产生保护动作。

3.3 实时性优化

实时性是智能变电站继电保护的重要特点,在保护结构设计时,经常会受到合并器链路传播时延、交换机交换时延等因素限制,对变电站数字化互感器传输效果造成影响,使得传输误差超出允许范围。就运行实际情况来看,合并器排队与交换机转发是造成数字式互感器采样值传输抖动的主要原因。合并器在完成采集器传输的数据信息后,一般会存在一个排队处理的过程,并且在接受采集器通信的阶段也会产生额外等待时间。另外,对于系统中所安装交换机性能不同,在实际运行中也会出现一定程度的延时问题,当信息转发时必须要将一帧数据全部发送成功后,再进行下一次的转发对保护系统的实时性存在一定影响,需要采取措施进行优化。

3.4 同步性优化

智能变电站继电保护数字化建设,在正常运营工程中,经常会遇到数据同步性问题,即合并单元所输出的数据采样信号中存在时间信息,这样以消除电气量相位与幅值上存在的误差,就必须要对继电保护设备进行优化,使其可以在相同时间点来获得相应的数据信息。如果丢失同步信号,最终采集到的数据势必会存在一定的误差。因此在对此方面进行优化设计时,应做好过流与过压保护,此保护原理比较简单,保护动作行为仅对输入信号幅值正确性有要求,对同步信号的要求比较小,这样即便在保护动作中丢失同步信号,也不会对保护动作产生太大的影响。

4 结束语

智能变电站继电保护为维持所有设备正常运行的前提,在对其进行研究时,需要针对智能变电站所具有的特点进行分析,确定设计优化要点,从不同角度进行研究,选择对应的措施进行优化,降低各项因素对保护系统运行效果的影响,确保所有保护动作维持在正常状态。

参考文献:

[1]蔡泽祥,王海柱.智能变电站技术及其对继电保护的影响[J].机电工程技术,2012(05):1-4.

[2]吴娟.智能变电站继电保护配置的分析与探讨[J].企业技术开发,2014(28):53-54+61.

智能化变电站篇(4)

关键词:智能化;远动自动化;变电站

中图分类号TM411:文献标识码: A

一、智能变电站

1、智能变电站的特点

1.1 智能化的一次设备

一次设备被检测的信息回路和被控制的操作驱动回路,、采用微处理器与光电技术设计,简化了传统变电站的控制回路结构。运用网络信号传输取代传统的导线连接,提高了变电站设备的通信质量,实现了变电站设备的智能化控制。

1.2网络化的二次设备

继电保护、防误闭锁、测量控制、故障录波、同期操作等装置的二次设备在变电站系统中发挥着极其重要的作用,这些装置对变电站的每个环节都起一定的作用。自动化技术应用于智能变电站后,上述设备之间的连接全部采用先进的互联网通信技术,二次设备不再出现常规功能装置重复的 I/O 现场接口,通过网络真正实现设备资源共享和数据共享。

1.3 运行管理系统自动化

在智能变电站运行过程中,运行管理系统起着非常重要的作用,比如电力运行数据的统计、数据的分层化操作和自动化的分流操作等。如果变电站在运行过程中出现问题,系统会及时进行故障分析,输出分析报表,并指出故障源头,进行自动检修。如果变电站无法做到自动检修,则会“通知”工作人员协助进行故障检修工作,将系统维持在正常的工作状态。

1.4 网络技术自动化

互联网通信和信息技术是智能变电站的核心技术,维持着整个变电站系统的运行。在传统变电站系统中,数据的采集、统计、整理和分析由 1 个 CPU 系统来完成,这种方法方便、快捷,但采集与分析数据的能力较差。在自动化技术运用于智能变电站后,整套系统采用多个 CPU 来操作,并采用相应的操技术对 CPU 进行控制,使其分工协作,高效、高质量地维持变电站的运行。

二、智能化变电站远动自动化的概述

在电力系统中,智能化开关、光电式电流电压互感器等一大批变电站智能化管理技术相继出现。并在我国计算机高速网络的不断普及过程中得到进一步深化。当前已经基本实现了对变电站所有信息采集、管理的数字化。智能化变电站远动自动化技术是经通道对被调度对象实行遥信、遥测、遥控、遥调的一种技术。其中遥信即遥远信号,其作用是将被监视的发电厂。智能化变电站的主要设备及线路的断路器位置信号及其它用途的信号传送给调度所,在调度所模拟盘上用灯光信号直接反映或用其它显示装置反映出来。遥测即遥远测量,其作用是将被监视的发电厂,变电站的某些运行参数传送给调度所,在调度所一般可以用表计模拟量或数字量显示其参数;遥控即遥远控制,其作用是调度所值班人员,通过远动装置对智能化变电站的某些设备进行控制。遥调即遥远调节,其作用是在调度所直接远方调节发电厂的有功或无功出力,也可用于远方调节带负荷调压变压器的分节头等。

三、智能化变电站远动自动化系统的功能特点

智能化功能的应用与开发,为变电站的信息采集,传输和全智能的处理提供了物质和理论的基础,提高了现代计算机技术在变电站中的应用,计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全智能化的变电站自动化系统即将出现,我们在以下的文章中对于智能化变电站远动自动化系统的功能特点进行了简要分析,如下:

1、技术性能

智能化变电站硬件系统需要选用技术比较成熟,以及比较先进可靠的工业产品设备,系统内所有的模件也应该是固态电路、模件化、标准化与插人式的结构。硬件还要具备较好的可维护性,支持系统整体结构的扩展与功能的升级,系统硬件接口还需要采用工业标准与国际标准。智能化变电站远动自动化系统还可采用开放与分层分布式的网络结构。系统软件还需要具有比较好的兼容性、可靠性及可移植性。同时,系统还要具有良好的电磁兼容的特性,不可发生拒动或误动,及扰动等影响其监控系统的正常常运行。系统需要采取相应措施,避免或阻止因为计算机的病毒侵害,所造成的系统内存数据的丢失与系统损坏等不良影响。其中智能化变电站中,断路器的智能化,代替了常规机械结构的辅助开关和辅助继电器,实现按电压波形控制跳、合闸角度,精确控制跳、合闸时间,减少暂态过电压幅值;检测电网中断路器开断前一瞬间的各种工作状态信息,自动选择和调节操动机构以及灭弧室状态相适应的合理工作条件,以改变现有断路器的单一分闸特性;在轻载时以较低的分闸速度开断,而在系统故障时又以较高的分闸速度开断等,这样就可获得开断时电气和机构性能上的最佳开断效果;断路器设备的信息由微处理器直接处理,并独立执行当地功能。

2、监控保护装置结构及特点

模块化的结构,GE-UR系列的监控保护装置是采用模块化的结构,给设计和维修,以及扩展带来了极大的方便。其根据功能与信号类型来划分模块:电源、cpu、开关量输入、开关量的输出入、开关量输入的输出、等等模块。因为UR系列的监控保护装置所采用模块化的结构,用户还可通过选择不同种类的模块,来组成不同类型的装置。

3、实时监控子系统

实时监控子系统,是智能化变电站远动自动化中的基础部分,为远动自动化的综合系统,提供了运行工况的监视与控制操作的手段,还要具备相应处理的能力和较高的安全性及可靠性。所以,此系统节点一般都采用冗余的配置。系统具有的硬件设备与软件任务模块运行的自监视功能,可自动通过热备,以切换等机制,来保证系统能够正常运行。实施监控子系统,还包括几方面:首先, 数据采集。数据采集功能是数据采集系统及监事控制系统,与变电站的直接接口。通过与远程终端控制系统设备的通信,来实现对电网的实时运行信息的采集,使实时数据能够提供给应用子系统的实时数据库,并根据应用子系统所下达的相关命令,来实现对远方变电站或者当地变电站所的调节与控制。数据采集还要具备高度的可靠性,以及强大信息处理的能力。其次数据处理。数据的处理一般是遥信处理和遥测处理,以及电量的处理。再者。监视功能。系统的配置画面,直观的显示系统的各模块,运行状态与网络通信的状态,用图形的方式来显示自动化系统的每个设备间 配置与连接,还可采用不同颜色或者动画,来体现设备状态变化。最后,转发的功能。系统需要提供不同转发的方式,并设独立转发的工作站,也就是设置成通道型转发,还可设置成网络型转发。对其转发的数据和转发的地点,以及转发的速率等都可以任意的设置。

四、加强智能化变电站远动自动化系统的运行

1、提高系统的可靠性

依照调试与运行的经验,在其设备的选型时,不但要保证所选的功能够满足其变电的需求之外,还需要有先进的技术,避免由于功能的欠缺,引起后期使用过程中,不能够安全的运行,甚至导致过时或被淘汰。其智能化变电站的综合自动化的系统,其工作侧重点为稳定和安全,以及完整的监控站以内,各个主设备与电网运行的状况,同时合理的运行与优化调度来进行提供可靠的依据。在选型时,比较适合采用稳定与可靠类型的设备,着重点在其数据采集和运行监视,另外,历史数据的记录和遥控的正确性,以及遥控的可靠性等,还应该具备可维护与可扩展的性能。

2、加强其标准化的建设

在智能化变电站远动自动化的选型工作时,还要树立合理化、标准化等理念。首先,要形成宏观与科学选型的体系,并统一自动化系统的选型原则。同时还要建立完善、科学、合理评价的体制和评价程序,以及评价方法。其次,要从微观方面人手,在其设备的选型、交换机的选择、服务器和操作系统的选取等关键环节,推广通用的设计、造价、设备及标准的工艺等,形成能够指导电网设计、设备采购和基建施工等不同阶段的规范标准,构建高效完整和统一协调的电网规划的整体框架。

五、结束语

远动自动化技术是智能变电站系统中非常重要的部分,在变电站未来发展中占据着无法取代的地位。当前,远动自动化技术在智能变电站中的应用主要表现在对设备的实时监控与检修方面,这些控制和操作对变电站的正常运行有着极其重要的意义。因此,相关工作人员一定要提高对自动化技术的重视程度,不断采用先进的技术手段,逐步完善变电站的基础设施与自动化系统。对变电站未来发展的智能化与自动化技术开展专项研讨,为变电站的建设打好基础,提高整个电力系统的运营能力。

参考文献:

[1]宋彦哲.智能变电站自动化技术应用探讨[J].机电信息,

2013,12(12):75-76.

[1]王大成,徐锋,鲁志豪,张辉. 基于多种数据流的变电站远动通信设备隐性故障监视系统[J]. 华东电力,2011,10:1759-1760.

智能化变电站篇(5)

【关键词】智能变电站;一次设备;智能化;运行

引言

在社会经济和科学技术的发展前提下,对变电站的技术要求也越来越高,变电站面临着自动化和智能化的挑战,一次设备的智能化可以有效的实现变电站的自动化,变压器、断路器、互感器、母线构成了变电站的一次设备,因此智能变电站一次设备的智能化就需要引进智能变压器、智能断路器等设备,而这些设备智能化的实现,依靠了先进的传感技术、微机处理技术、状态监测和故障诊断技术与抗电干扰技术。

一、智能变电站和一次设备智能化介绍

随着我国用电量的扩大,变电站的增长速度很快,几乎每年都会出现近千座变电站。所以变电站的管理面对着困难,这就需要利用先进的技术,实现变电站的自动化和智能化,从而提高变电站的利用率。在变电站的自动化中,面向对象技术成为其发展的关键,在技术层面上,变电站的一次设备还会引进先进的测控设备,实现一次设备的智能化,让变电站的一次设备能够拥有监控、操作等功能,并形成信息库[1]。随着变电站数量的增多和面向技术在变电站的运用,变电站的系统结构出现了改变,逐渐由原来的集中式向分散式发展,分散式系统结构可以改变目前变电站笨拙、落后的设施,取而代之的是简便的、快捷的操作。

二、主要的一次设备的智能化分析

1、智能断路器

智能断路器主要依靠计算机计术、微电子和新型传感器,对断路器进行二次系统的设计,实现了断路器开关的数字化控制。智能断路器的设计主要是达到数字化控制与新型传感器的结合,能够做到检测断路器的缺陷和故障,确保在故障产生的条件具备时,发出报警信号,并且自动的采取应对措施,对问题解决[2]。智能断电器更换了旧的储能设备和机械传动设备,运用高技术的电容储能和变频驱动电机。智能断路器工作模式就是依照监测到的故障电流,自动的选择操作机构或者灭弧室输入的工作条件,实现电力和机械的分闸。目前断路器采用的控制机构主要是弹操机构,其合、分闸电流都不大,要求电源的容量也不大,动作快,且能快速自动重合闸,集成度较高,动作可靠,从而实现对断路器的控制,提高断路器的速度特性。

2.智能变压器

智能变压器主要包括变压器本体和智能组件。集中了健康状态监测传感器、电压互感器、控制器等。智能变压器主要发展方向是智能组合式变压器和智能通用变压器,组合式变压器是把传统的变压器分离,分成熔断器、开关、分接开关等,方便智能化的实现[3]。智能通用变压器功能模块少,减轻了变压器的配件数量,适用于中小容量的用电场合。

三、智能变电站一次设备智能化技术及运行分析

1、状态监测和故障诊断技术

在电力系统中,状态的诊断和监测是很有必要的,尤其是智能变电站,一次设备的智能化进程中,对断路器、变压器的智能化都有很大的促进作用,有效的实现了对一次设备的状态监测,确保设备的正常运行,并且实现了自动的故障诊断,及时预警。

从图1中可以看出,监测和诊断技术的具体过程。通过对采集数据的分析,表现出实时的工作状态,如果出现异常,就会由诊断设备对异常情况进行分析,得出具体异常的结果,检测出设备的症状,然后根据设备症状的表现,进行参数分析和识别,找到发生故障的原因,然后通过执行程序,对故障进行处理或者发出预警信号,实现自动化的监测和诊断。监测和诊断技术在变电站一次设备的智能化中有广泛的运用,解决了断路器和变压器智能化的技术难题。

2、传感技术

传感技术可以有效的、自动的获得信息。传感技术解决了一次设备智能化中数据的传递和采集。在变压器、断路器和母线等的智能化中,需要对自身的信息进行收集,然后经过处理分析,判断出设备的工作状态。传感技术具体是通过传感器的功能和性质来表现的,传感技术中最重要的就是信息处理,信息处理包括信息的预处理、后置处理和具体的特征提取和选择。把采集的信息经过处理,以数字或者其他系统能够识别的形式进行发送。在传感技术中,识别主要是对处理过的信息进行辨识和分类[4]。传感技术在一次设备智能化中,主要以一次设备为识别对象,对变压器或断路器等相关联的模型信息进行辨识、比较、分类和判断,从而准确的反应一次设备的状态。

3、微机处理技术

微机处理技术可以有效的把测量、运算、控制和遥控集中起来,实现设备的智能化,能够实时对电量进行监控、继电保护和信息的记录。

4、抗电磁干扰技术

数据信息在传输时,会出现电磁干扰,这就会导致数据接收受损,不能有效的对信息进行处理。然而,数字化信号可以有效的减小干扰,保证数据的准确性和及时性,通过抗电磁技术的运用,在传输光信号时进行光电转换,可以进行电气隔离,保证数据传输过程不受电磁场的干扰。抗电磁干扰技术在断路器智能化运用中起到了最为重要的作用,因为断路器系统的工作电压较低,在进行信息传输的时候,会受到强大电磁场的干扰,导致数据失真或者是受损,抗电磁干扰技术可以有效的解决电磁兼容的问题,能够做到对电磁的有效屏蔽和隔离,更好的实现断路器的智能化。

四、结束语

智能变电站一次设备的智能化存在着极大的潜力,随着科技的进步,一次化设备在各个零部件的技术问题都将会解决,并且功能会更加的完善。变电站也将会实现现代化,信息化控制,数字化操作,智能化将会覆盖整个变电站,在变电站智能化不断发展中,会注入很多新鲜的血液,比如更加进步和完善的功能设备会被开发利用,这不仅可以方便了自动化变电站的取材,同时也促进了变电站自动化的发展,一次设备智能化能够有效的促进变电站的自动化,从而促进电力事业的不断发展。

参考文献:

[1] 李玉坤.智能变电站一次设备智能化技术探讨[J].城市建设理论研究(电子版),2012(33):46-47.

[2] 胡元潮,阮江军,杜志叶.基于TOPSIS法的变电站一次设备智能化评估[J].电力自动化设备,2012(12):120-122

智能化变电站篇(6)

关键词 智能化变电站;技术问题

中图分类号TM63 文献标识码A 文章编号 1674-6708(2014)114-0077-02

所谓智能化变电站系统,就是以设备智能化、测控智能化为基础的变电站体系。在传统变电站的基础上,智能化变电站能够自动对数据和信息进行处理,包括信息采集、数据测量、信息控制、信息保护以及计量和检测等。同时,在智能化的变电站系统网络中,系统能够根据电网运行的实际需要,对电网进行自动调控,同时还能为网络系统运行过程中遇到的问题提供实时的解决方案。此外,智能化变电站的协同互动性,使相邻变电站以及电网之间进行相互调度变成了可能。随着智能化变电站建设的不断进行,变电站技术也取得了较快的发展,以下从几个方面来研究智能化变电站关键技术问题。

1 智能化变电站建设过程中的技术问题

目前,我国的智能化变电站建设还处于起步阶段,各项技术的运用还不够成熟,在变电站建设过程中,需要对这些技术问题进行克服,保障智能化变电站建设的科学性、合理性。总体来说,智能化变电站建设过程中需要集中注意的技术问题主要有:首先,着力对智能化电子设备进行研发和升级,通过智能化电子设备基础来提高变电站的智能化水平。其次,需要建立变电站建设相关技术规范,在智能化变电站组织架构以及技术体系方面,需要重点进行规定。最后,需要对变电站运营管理模式进行研究,实现变电站的智能化监控和信息诊断等,提升变电站的信息处理能力,促进变电站的信息化、智能化发展。

2 智能化变电站高压设备测控技术问题

智能化高压设备是智能变电站的基本特征,智能化变电站高压设备需要进行智能化测控,因此,对智能化的测控技术进行研究十分重要。在智能化测控中,变电站通过传感器对系统中的设备进行测控,保证整个变电站系中的电气设备具处在有效的可观测和可控制状态之中,进而实现变电站设备的自动化目标。在智能化变电站高压设备体系中,高压设备智能化测控技术的应用,能够获取高压设备的及时状态和信息,然后利用信息融合技术以及故障诊断模型,对处于被检测状态高压设备的运行状态以及使用寿命等进行综合评估,当然,在评估过程中还需要综合考虑高压设备的结构特性、运行参数、环境因素等。此外,还需要重点对变电站高压设备测控技术的功能进行拓展,可以对测控技术的信息感知能力进行提升,加强信息处理能力和判断能力,从而为变电站高压设备的正常运行提供保障。

3 智能化变电站信息融合技术

智能化变电站信息融合技术是一项实用性强,功能强大的技术。通过对多种信息进行获取,对各信息间的内部关系进行分析,然后对信息进行融合和优化处理,达到智能化变电站有效运行的目的。在智能化变电站的信息融合技术中,通过对多源信息进行协同利用,采用的是多视角的信息处理方式,进而能够更加全面的获取信息的内部联系,对有用的信息进行保留,对错误和无用信息进行删除,提高系统信息的利用效率,最终实现智能化变电站的信息化发展。例如,在当下的智能变电站信息融合技术中,已经能够全面和独立的进行在线监测,热别是在变电站的二次设备中,通过信息融合技术,极大的减少了设备特征量采集中存在的盲区,进而能够更加全面的掌握二次设备运行过程中的各项数据,减少故障,实现优化运营。

4 在智能化变电站中构建五防系统

在智能化变电站系统中,为了防止失误操作,需要构建五防系统,对变电站误操作进行控制,保证变电站正常运行。在变电站五防系统的作用下,倒闸等操作都需要在五防系统中进行模拟和判断之后才能实施。因此,在智能化变电站中构建五防系统,通过五防系统来保障变电站网络的有效运行。随着我国电力事业的不断发展,用电量急剧增加,给电网带来了极大用电负荷的同时也容易引发安全事故。因此,为了保障变电站的安全性,构建五防系统十分重要。

在智能化变电站中,通过变电站层以及间隔层二者之间的以太网,对五防逻辑闭锁过程中所依赖的间隔层IED信息进行实时交换。在这个过程中,变电站数据经过开放的过程层,对变电站事件进行传送,同时依靠过程层合并器对模拟信息进行获取,利用智能接口对遥信数据信息进行获取等。此外,在间隔层中,GOOSE机制的采用,能够让系统及时获取五防逻辑闭锁需要的各项基本数据,然后对这些数据进行分析,对系统中各个间隔设备的控制闭锁逻辑条件进行判断,最终得出变电站设备的逻辑闭锁状态决策。例如,以某智能化变电站五防系统为例,该系统的网络化闭锁功能如下图:

在该示意图中,底层网络是基础,整个间隔层设备之间的信息共享以及交互操作等都需要根据底层网络来进行,常规系统中采用的电气编码锁装置被替换了。在这样的五防系统闭锁功能示意图中,设备运行状态可以进行实时识别,然后进行综合判断,最终得出设备运行决策。同时,变电站网络系统间隔层中,GOOSE网络技术的应用,在技术层面保证了网络化五防系统闭锁功能的实现。但是在实际操作过程中,同样需要遵循相应的技术规范。

5 结论

本文选取了几个方面分析了智能变电站关键技术,对现阶段智能化变电站建设以及运行中所面临的主要问题进行了分析,当然,笔者的见解只是一部分,在今后的智能化变电站建设工作以及变电站运行维护工作中,还需要大家的进一步努力,共同探索智能变电站各个工作环节中的技术问题,促进变电站的安全运行,推进电力事业的发展。

智能化变电站篇(7)

关键词:智能化变电站 计算机网络应用维护

中图分类号:TM63 文献标识码:A 文章编号:1672-3791(2012)06(c)-0143-01

由于网络安全的原因,无人值班变电站的调度自动化系统常会引起各种问题,例如,开关误动、拒动、保护定值整定参数的错误更改、自动化信息紊乱,等。这些问题将会严重威胁电网和变电站的安全运行,甚至引发灾难性的事故。目前,国家加大电力数据专用网建设的进程,尤其在调度自动化系统和智能变电站综合自动化网络化领域,因此,变电站计算机网络安全问题变得尤为重要。

智能变电站的计算机网络安全包括硬件设备的安全、软件系统的稳定运行、口令密钥的保管,以及重要的电力运行信息和系统配置信息不因偶然的或恶意的原因而遭到破坏、更改和泄露。在规划、设计变电站计算机网络时,如何实现数字变电站自动化系统的功能及其运行的可靠性是着重关注的问题,而网络安全问题常被忽视。

1 变电站智能化系统的特征

变电站一次设备的智能化:一次设备中采用光电和微处理器技术设计受控制和监测的操作驱动与信号回路,采用先进的计算机监控系统,统一站内通信规约,以光纤取代控制光缆,以光电数字信号取代强电模拟信号。

二次设备的网络化:基于模块化和标准化的微处理技术设计制造二次设备,包括测量控制设备、继电保护设备、远程控制设备、防误/闭锁设备、电压无功控制设备、故障录波设备和在线状态检测设备。高速的网络通信模式连接各种二次设备,消除I/O现成接口中功能重复的部分,以网络通信实现各种设备之间和远程控制端之间的资源、数据共享,以逻辑功能模块代替常规的功能装置。

运行管理系统智能化:变电站自动控制的智能化系统要记录电力供应生产运行的数据和状态,并实现资料的无纸化和智能化;实现变电站在运行过程中故障分析报告的及时提交,并对故障原因进行分析,提出处理方法;能够自动发送设备检修的报告。

2 智能化变电站系统对网络的要求

在逻辑结构上,变电站智能化系统分为三个层次:变电站层、间隔层和过程层。变电站是一间隔层一过程层的结构分层,在这样结构的变电站内需要传输数据。变电站层的内部通信,在变电站层不同设备之间存在信息流,各种数据流在不同的运行方式下有不同的传输响应速度和优先级的要求。

2.1 功能要求

在智能化变电站中,计算机网络主要负责实时切换系统内部各部分以及与其他系统的数据信息。在变电站智能化系统中,构建稳定、高效、即时、可靠的计算机网络通信体系是变电站综合自动化通信的关键节点之一。数据通信网络是变电站智能化系统的关键技术成为一致的共识。网络的基本功能是变电站内智能电子设备之间的连接,因此,网络对各种接口需要网络接口的支持。在变电站无人值守和数据信息量增加的发展中,要求网络对事件、操作、电量、录波和故障等数据信息的传输和存储满足承载的空间和速度。在无人值守变电站中,网络必须完成电压自动调节和对时等功能,以保证电压运行的质量。在智能化变电站系统的维护和运行中也有自诊、远程控制、自我恢复等功能的要求。

2.2 性能要求

智能化变电站对网络的性能要求,以可靠性、开放性和实时性为主要表现。

可靠性:由于变电站是电力网络的核心节点之一,其系统工作必须具备连续性,变电站网络的可靠性能是最重要的要求。在智能化变电站系统中,数字、图像等多媒体信息技术广泛应用,系统对于网络通信的依赖性增强,可靠性的要求也更为重要。

开放性:变电站智能化系统是电力调度智能化内部的子系统之一,在满足站内智能电子设备的接口和扩展要求的同时,还必须与电力调度智能化的总体设计相适应,接口必须满足国际标准的要求,使用国际标准的通信协议,以满足系统集成的要求。

实时性:远程命令、信号保护、数据测控等功能决定了传输过程所具有的即时特点。在正常工作时,变电站内的数据流较小;故障发生时,需要数据大量即时传输,此时需要快速的传输速度。变电站网络的理想化运行,必须确保其功能和性能要求。在网络上,多个处理器协调才能完成采集信息、保护算法和形成控制命,所以,我们面临急需解决的问题便是确保各个处理器同步采样和命令输出保持在高速状态。要想解决这一问题,关键在于网络环境的满足,即使网络通信提速和通信协议符合规定要求。现场总线的设计方法是一种常规的方式,它已经不能满足变电站智能化系统所需要的速度要求,因为大部分智能化变电站的通信网络。由于标准化的数字控制技术发展、OSI七层协议的固化和高速接口芯片等技术和产品的出现,为变电站智能化的开发提供了物理层面的技术支持。

3 变电站智能化系统的安全问题

传统的变电站控制系统都是厂家生产的独立系统,包括SCADA,对于安全性要求较低。开放和标准的网络通信技术是变电站综合系统智能化的基础。在开放的网络环境中,通过广域网环境下开发的应用软件远程控制、监测和诊断,导致智能化系统在计算机环境下有更高的安全性要求。为了满足要求,电力系统要可靠、安全和稳定。

厂站与调度主站、生产主站、监控主站等系统主站系统间的通信技术安全凸显,智能变电站与上级主系统间的安全问题也显的尤为重要。

目前,变电站内已通过安全分区,横向隔离、纵向加密等措施来保障监控系统与主站系统的安全。在安全Ⅰ区中,监控主机采集电网运行和设备工况等实时数据,经过分析和处理后进行统一展示,并将数据存入数据服务器。Ⅰ区数据通信网关机通过直采直送的方式实现与调度(调控)中心的实时数据传输,并提供运行数据浏览服务;在安全Ⅱ区中,综合应用服务器与输变电设备状态监测和辅助设备进行通信,采集电源、计量、消防、安防、环境监测等信息,经过分析和处理后进行可视化展示,并将数据存入数据服务器。Ⅱ区数据通信网关机通过防火墙从数据服务器获取Ⅱ区数据和模型等信息,与调度(调控)中心进行信息交互,提供信息查询和远程浏览服务;综合应用服务器通过正反向隔离装置向Ⅲ/Ⅳ区数据通信网关机信息,并由Ⅲ/Ⅳ区数据通信网关机传输给其他主站系统。

友情链接