期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 裂缝控制论文

裂缝控制论文精品(七篇)

时间:2022-02-12 21:47:26

裂缝控制论文

裂缝控制论文篇(1)

关键词:水利工程建设混凝土施工裂缝控制具体措施

引言

水工混凝土裂缝是水工建筑物最为常见的病害之一,产生的原因是多种多样的。裂缝对水工建筑物的危害程度不一,还可能诱发其他病害的发生和发展,对水工建筑物的耐久性产生巨大的危害,因此,必须对此加以重视,并采取措施加以解决。

一、水工混凝土裂缝的危害

混凝土裂缝将使水工建筑物产生渗漏,渗漏的结果,一方面在压力水作用下使裂缝逐步扩宽和发展;另一方面当水渗入混凝土内部后首先会引起水解破坏,并可能由此导致混凝土结构物的破坏。根据调查,由裂缝引起的各种不利结果中,渗漏水占60%。

由于混凝土碳化会加剧混凝土收缩开裂,导致混凝土结构物破坏。混凝土裂缝的存在,能使空气中的二氧化碳极易渗透到混凝土内部与水泥的某些水化产物相互作用形成碳酸钙,这就是常说的混凝土碳化。在潮湿的环境下二氧化碳能与水泥中的化学成分相互作用,使混凝土的碱度降低,使钢筋纯化膜遭受破坏,当水和空气同时期渗入,钢筋就产生锈蚀。

混凝土的裂缝还会使混凝土对钢筋的保护作用削弱,在裂缝部位,水拉性能减弱,裂缝进一步扩大,形成更大的危害。

综上,混凝土裂缝对混凝土结构物的结构强度和稳定性具有直接的影响。会降低混凝土结构物的结构强度和整体稳定性。轻则影响建筑物的外观和正常使用,严重的贯穿性裂缝甚至可能导致混凝土结构物的完全破坏。

二、水工混凝土结构裂缝产生的原因

按裂缝产生的原因划分有:由外荷载引起的裂缝;由变形引起的裂缝;由施工操作引起的裂缝。水工建筑物产生裂缝的主要原因如下:

2.1大体积混凝土水化时产生的大量水化热得不到散发,导致混凝土内外温差较大,使混凝土的形变超过极限引起裂缝。

2.2混凝土在硬化的过程中,由于干缩引起的体积变形受到约束时产生的裂缝,这种裂缝的宽度有时会很大,甚至会贯穿整个构件。

2.3在厚度较大的构件中,由于混凝土的塑性塌落引起的裂缝。

2.4当有约束时,混凝土热胀冷缩所产生的体积胀缩,因为受约束力的限制,在内部产生了温度应力,由于混凝土抗拉强度低,容易被温度引起的拉应力拉裂,从而产生温度裂缝。由于太阳暴晒产生裂缝也是工程中最常见的现象。

2.5混凝土加水拌和后,水泥中的碱性物质与活性骨料中活性氧化硅等起反应,析出的胶状碱——硅胶从周围介质中吸水膨涨,体积增大3倍,从而使混凝土涨裂产生裂缝。

2.6在炎热的大风天气,混凝土表面水分蒸发过快,造成混凝土内部水化热过高,在混凝土浇筑数小时仍处于塑性状态,易产生塑性收缩裂缝。

2.7构件超载产生的裂缝。例如:构件在超出设计的均布荷载或集中荷载作用下产生内力弯矩,出现垂直于构件纵轴的裂缝,构件在较大剪力作用下,产生斜裂缝,并向上、下延伸。

2.8当结构的基础出现不均匀沉陷,就有可能会产生裂缝,随着沉陷的进一步发展,裂缝会进一步扩大。

2.9当钢筋混凝土处于不利环境中,例如:侵蚀性水,由于混凝土保护层厚度有限,特别是当混凝土密实性不良,环境中的氯离子等和溶于水中的氧离子会使混凝土中的钢筋生锈,生成氧化铁,氧化铁的体积比原来金属的体积大得多,铁锈体积膨胀,对周围混凝土挤压,使混凝土胀裂。

三、控制混凝土裂缝的具体措施

3.1混凝土配合比的优化设计。掺入粉煤灰,选择减水剂,保证泵送流动度。采集原材料进行试拌,尽可能地减少水泥用量,添加Ⅰ级粉煤灰,将水胶比控制在规范允许的范围内,粗骨料采用二级配。掺入适量的粉煤灰对改善混凝土的和易性,降低温升,减少收缩,提高抗侵蚀具有良好的作用。

3.2原材料的选择。砂料细度模数控制在2.4以上,含泥量控制在1%内。碎石针片状控制在10%以内,含泥量控制在1%内,尽可能使用低水热化水泥,控制原材料的质量不使混凝土产生收缩。

3.3施工安排。混凝土的浇筑尽可能避开高温、曝晒、多风、降温的天气,若需要上述条件下施工时必须有相应遮挡、保温措施。

3.4施工过程控制。a.二次振捣法消除混凝土沉缩裂缝。对于浇筑后坍落度已经消失开始初凝的混凝土进行二次振捣,混凝土会重新液化,能较好地消除粗骨料、钢筋下面的水膜,消除沉缩收缩量。泵送混凝土特别需要二次振捣。b.二次压光消除混凝土塑性收缩裂缝。此种裂缝是混凝土表面水分散失引起的,发生在混凝土初凝至终凝期间,消除此种裂缝应使用机械抹光机进行大面积、高强度的提浆抹光,然后使用机械收光机进行大面积、高强度的收光,将极大地提高混凝土的平整度和表面强度,在混凝土终凝前再进行二次人工抹压收光。c.控制约束裂缝的措施。混凝土约束裂缝的产生是混凝土内外温差过大或收缩引起的约束拉力超过了混凝土的抗拉强度,在混凝土内外温差过大、气温骤降时,及时采取保温、保湿措施,加强测温和气温预报,做到防护及时。闸墩下部与底板同时浇筑或尽量缩短闸墩与闸底板之间浇筑的时间间隔,可有效控制闸墩裂缝发生。

3.5混凝土干缩裂缝的控制措施。混凝土存在空隙产生湿胀干缩,加强振捣使之密实,清除混凝土中的泌水,加强表面的抹压收光,掺加优质粉煤灰,降低水灰比,可有效地控制混凝土湿胀干缩裂缝产生。

3.6混凝土内部的温度控制。大体积混凝土内部埋设热电耦测温,掌握混凝土内部的温升变化及内部最高温度的发生时间,通过蓄热保温使混凝土内外温差控制在25℃以内。常采用两层农膜加干铺两层草袋的做法。

3.7混凝土的养护和表面保护。良好的养护可使混凝土保持或接近饱和状态,水化作用速度最大,也是控制混凝土裂缝发生的措施之一,一般保温、保湿养护不得少于14d。

四、水利工程构筑物已产生裂缝的修补方法

国内外学者把裂缝分为死缝、活缝和增长缝等3种。对于死缝可以采用刚性材料填充修补;对活缝则采用弹性材料修补;对于增长缝,必须消除引发裂缝的因素。裂缝修补除了要恢复防水性和耐久性为目的之外,还要从结构安全及美观角度出发进行修补,当前的修补方法主要有以下三大类。

4.1充填法对于裂缝宽度大于0.5mm的裂缝,沿裂缝处凿成“U”形或“V”形槽,槽顶宽约10cm,在槽中充填密封材料。充填材料采用水泥砂浆、环氧砂浆、弹性环氧砂浆、聚合物水泥砂浆等。如果钢筋混凝土结构中钢筋已经锈蚀,则将混凝土凿开到能够处理已经生锈的钢筋部分,将钢筋除锈,再在槽中充填水泥砂浆或环氧树脂砂浆等材料。

4.2注入法注入法分压力注入法(灌浆法)与真空吸入法两种。灌浆法适应于较深较细的裂缝,而真空注入法则利用真空泵使缝内形成真空,将浆材注入缝内,该方法适应于各种表面裂缝的修补。灌浆材料有水泥浆材、普通环氧浆材、弹性聚氨酯浆材、水溶性聚氨酯浆材等。

4.3表面覆盖法在细微裂缝表面上涂膜,以提高其防水性及耐力性为目的的修补方法。分涂覆裂缝部分及全部涂覆两种方法。施工时,首先用钢丝刷将混凝土表面打毛,清理表面附着物,用水冲洗干净后充分干燥,然后用树脂充填混凝土表面气孔,再用修补材料覆盖表面。:

五、结语

水工建筑构筑物的结构安全和防渗等主要由混凝土承担,因此混凝土的质量极其重要。因此,减少和控制混凝土裂缝的产生和扩展,对提高混凝土结构的质量,进而提升水工建筑物的安全起着极为重要的作用,必须加以重视。

参考文献:

[1]刘军《试论常见水工混凝土裂缝的种类及预防措施》[J].甘肃科技纵横.2008(1).

裂缝控制论文篇(2)

引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝。

1.1温度裂缝温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝等。导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。剪应力在墙体内的分布为两端大,中间小,顶层大,下部小。温度裂缝是造成墙体早期裂缝的主要原因。这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展。

1.2干缩裂缝烧结粘土砖,其干缩变形很小,且变形完成比较快。只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。对于砌块等砌体,随着含水量的降低,材料会产生较大的干缩变形。如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝。

2裂缝的危害和防裂的迫切性

砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。它已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,已成为国家行政主管部门、建筑公司及房屋开发商共同关注的课题。

3现有产生裂缝的原因

3.1设计者重视强度设计而忽略抗裂构造措施设计者一般认为多层砌体房屋比较简单,在强度方面作必要的计算后,针对构造措施,引用标准图集,很少单独提出有关防裂要求和措施。

3.2我国《砌体规范》抗裂措施的局限性我认为这是最为重要的原因。《砌体规范》GBJ3-88的抗裂措施主要有两条,一是第5.3.1条:对钢筋砼屋盖的温度变化和砌体的干缩变形引起的墙体开裂,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;控制硅酸盐砖和砌块出厂到砌筑的时间和防止雨淋。二是第5.3.2条:防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。

由此可见,《砌体规范》的抗裂措施,如温度区段限值,主要是针对干缩小、块体小的粘土砖砌体结构的,而对干缩大、块体尺寸比粘土砖大得多的砼砌块和硅酸盐砌体房屋,基本是不适用的。因为如果按照砼砌块、硅酸盐块体砌体的干缩率0.2~0.4mm/m,无筋砌体的温度区段不能越过10m;对配筋砌体也不能大于30m。在这方面,国外已有比较成熟的预防和控制墙体开裂的经验,值得借鉴:一是在较长的墙上设置控制缝,这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。这种控制缝的间距要比我国规范的伸缩缝区段小得多。二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%~0.2%或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.07%,该配筋率又抗裂,又能保证砌体具有一定的延性。

4防止墙体开裂的具体构造措施建议

4.1防止混凝土屋盖的温度变化与砌体的干缩变形引起的墙体开裂,宜采取下列措施:

4.1.1屋盖上设置保温层或隔热层;

4.1.2在屋盖的适当部位设置控制缝,控制缝的间距不大于30m;

4.1.3当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;

4.1.4建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》BGJ3-88第5.3.2条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m。

4.2防止主要由墙体材料的干缩引起的裂缝可采用下列措施之一

4.2.1设置控制缝①控制缝的设置位置a在墙的高度突然变化处设置竖向控制缝;b在墙的厚度突然变化处设置竖向控制缝;c在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;d在门、窗洞口的一侧或两侧设置竖向控制缝;e竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;f控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝;g控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。②控制缝的间距a对有规则洞口外墙不大于6mm;b对无洞墙体不大于8m及墙高的3倍;c在转角部位,控制缝至墙转角的距离不大于4.5m。

4.2.2设置灰缝钢筋①在墙洞口上、下的第一道和第二道灰缝,钢筋伸入洞口每侧长度不应小于600mm;②在楼盖标高以上,屋盖标高以下的第二或第三道灰缝,和靠近墙顶的部位;③灰缝钢筋的间距不大于600mm;④灰缝钢筋距楼、屋盖混凝土圈梁或配筋带的距离不小于600mm;⑤灰缝钢筋宜采用小螺纹钢筋焊接网片,网片的纵向钢筋不小于25,横筋间距不宜大于200mm;⑥对均匀配筋时含钢率不少于0.05%;局部截面配筋,如底、顶层窗洞上下不小于38;⑦灰缝钢筋宜通长设置,当不便通长设置时,允许搭接,搭接长度不应小于300mm;⑧灰缝钢筋两端应锚人相交墙或转角墙中,锚固长度不应小于300mm;⑨灰缝钢筋应埋人砂浆中,灰缝钢筋砂浆保护层,上下不小于3mm,外侧小于15mm,灰缝钢筋宜进行防腐处理;⑩当利用灰缝钢筋作砌体抗剪钢筋时,其配筋量应按计算确定,其搭接和锚固长度尚不应小于75d和300mm;不配筋的外叶墙应设控制缝,控制缝间距不宜大于6m;设置灰缝钢筋的房屋的控制缝的间距不宜大于30m。

4.2.3在建筑物墙体中设置配筋带①在楼盖处和屋盖处;②墙体的顶部;③窗台的下部;④配筋带的间距不应大于2400mm,也不宜小于800mm;⑤配筋带的钢筋,对190mm厚墙,不应小于2Φ12,对250~300mm厚墙不应小于2Φ16,当配筋带作为过梁时,其配筋应按计算确定;⑥配筋带钢筋宜通长设置,当不能通长设置时,允许搭接,搭接长度不应小于45d和600mm;⑦配筋带钢筋应弯入转角墙处锚固,锚固长度不应小于35d和400mm;⑧当钢筋带仅用于控制墙体裂缝时,宜在控制缝处断开,当设计考虑需要通过控制缝时,宜在该处的配筋带表面作成虚缝,以控制可预料的裂缝位置;⑨对地震设防裂度≥7度的地区,配筋带的截面不应小于190mm×200mm,配筋不应小于410;⑩设置配筋带的房屋的控制缝的间距不宜大于30m;

4.3也可根据建筑物的具体情况,如场地土及地震设防裂度、基础结构布置型式、建筑物平面、外形等,综合采用上述抗裂措施。

裂缝控制论文篇(3)

关键词:构造;裂缝;机理;研究

中图分类号:TU312+.1

文献标识码:B

文章编号:1008-0422(2008)03-0128-03

1引言

建筑结构在其使用过程中承受两类作用,静荷载、动荷载和其它荷载,称为直接作用;温度、收缩、不均匀沉降等则称为间接作用(即非荷载作用)。调查资料表明,由荷载引起的裂缝仅占20%左右,尚有约80%的裂缝是由非荷载作用引起的。构造配筋对裂缝发生发展的控制作用往往由以下两点来定性解释:一方面,配筋可以提高混凝土的极限拉伸应变,从而提高混凝土的抗裂能力,这一点目前已经得到普遍认可[1,2],另一方面,配筋可以有效的减小开裂处混凝土的应变集中从而有效控制裂缝宽度[3],因为裂缝的宽度与结构开裂过程中所释放的拉应变成正比,一旦开裂,必然在开裂区附近形成应变集中,应变集中程度越高,在相同条件下,裂缝宽度越大[4]。

为了能为裂缝控制设计提供理论依据,构造钢筋对非荷载裂缝的控制不能仅仅停留在定性的阐述上,必须从定量的理论上加以研究,这就涉及到混凝土的应力应变分布规律、裂缝宽度随配筋率的变化规律等内容。

2构造配筋控制裂缝的产生

配筋能否控制或者延迟裂缝的产生曾经是一个比较有争议的问题。一种观点认为,配筋对混凝土的极限拉伸没有影响,反而加大了混凝土的自约束应力;另一种观点则认为,配筋可以提高混凝土的极限拉伸,在配筋率较低的情况下,配筋引起的自约束应力是很小的,可以忽略不计。所以,问题的关键是,配筋能否提高混凝土的极限拉伸;另一方面是配筋是否会引起一个过大的自约束应力,从而导致裂缝的过早出现。

文献[1][2][4][5]中认为配筋可以提高混凝土的极限拉伸,从而提高混凝土的抗裂能力,文献[1]给出了合理配置构造配筋混凝土极限拉伸的经验公式

(1)

式中,为配筋后的混凝土极限拉伸;

为混凝土抗裂设计强度;为截面配筋率 ;为钢筋直径(cm)。

上述公式为经验公式,各参数无量纲代入。上式可以用来估算配筋对混凝土极限拉应变的贡献。分析公式可见合理配筋就是要“细、密”。故配筋可起到有效控制裂缝产生的作用。

3构造配筋控制裂缝的开展

在楼板开裂之后,配筋的主要作用表现为对裂缝发展的控制作用,即不同的配筋率对已有裂缝宽度的控制作用和对次级裂缝的限制作用[6]。

3.1 钢筋和混凝土的滑移规律

假定两端的固支约束构件受到温降值为 的非荷载温降作用,则钢筋和混凝土的单元应力分布如图1。

3.1.1基本方程

假定粘结应力和滑移成正比,则有

3.1.2边界条件

固支端的零滑移条件。即当时,

混凝土的变形条件,即混凝土中的变形与滑移之和等于混凝土的总收缩变形。由式(5)得

(13)

由两端受固支约束的钢筋混凝土楼板的对称性可知

(14)

混凝上的变形可由式(4)、式(12)得

式中,为积分常数。

显然,在裂缝处,即 处,混凝土的应力为0,所以,代入上式得

将式(15)、式(16)代入式(14),整理得

(17)

3.2混凝土的应力应变分布规律

将式(16)、(17)代入式(15)可得混凝土的应变在长度方向上的分布规律,即

(18)

混凝土应力在长度方向上的分布规律可由下式表示:

(19)

上面虽然得到了混凝土在长度方向上的应力-应变分布规律,但所给出的函数关系过于复杂,不便于发现规律。所以下面给出一系列实际情况下的计算结果,然后结合计算结果分别进行讨论。计算实例的初始条件均为,当量温度(混凝土的其他收缩可以参考文献[6]转化为当量温度)降低为25℃,钢筋的直径 , ,

图2给出了混凝土应力在长度方向上的分布规律。可以看出:①混凝土在裂缝附近存在一个应力过渡区,在该过渡区之外,混凝土的应力分布是非常均匀的,这与许多学者的基本假设是吻合的。②应力均匀区中,混凝土的应力大小与钢筋和混凝土图3混凝土应力在长度方向上分布规律与滑移刚度有关,滑移刚度越大,混凝土应力越大。因此,对要求严格控制初始裂缝的,可以考虑采用滑移刚度较小的光圆钢筋,而对初始裂缝不是特别敏感,但对裂缝宽度要求较高的工程,就应尽量选择滑移刚度较大的螺纹筋。

图3给出了应力均匀区的混凝土应力随着配筋率增加的变化情况,可以看出:①随着配筋率增加,混凝土内的应力明显增加。这就使得混凝土可能在已有裂缝的邻近区域很快地达到混凝土的极限抗拉强度,从而引起次级裂缝。这样,随着配筋率的增加,钢筋混凝土构件的裂缝间距变小了,裂缝变密。②类似于图3,的增加提高了应力均匀区的混凝土应力。

图4给出了应力均匀区的混凝土应力和所配置的钢筋直径之间的关系(配筋率为1.0%)。从力学方面看,改变钢筋的直径对控制裂缝作用不明显。试验和实际所证明的配置细密的钢筋有利于控制裂缝,主要还是应该从细密的配筋有利于改善混凝土内部应力的不均匀性从而提高混凝土的极限拉应变的角度上考虑。

3.3 裂缝宽度随配筋率的变化规律

由于钢筋的中截面并没有位移,所以裂缝宽度其实就是混凝土在整个长度方向的滑移总和,即

图5给出了混凝士的裂缝宽度随配筋率的变化规律。可以看出:①裂缝的扩展宽度和裂缝的配筋率近乎成线性关系,说明增加配筋对控制裂缝的扩展,效果是明显的。②在相同的配筋率条件下,增加钢筋和混凝土之间的滑移刚度可以减小裂缝宽度。

4结论

要求严格控制初始裂缝的,可以考虑采用滑移刚度较小的光圆钢筋,而对初始裂缝不是特别敏感,但对裂缝宽度要求较高的工程,就应尽量选择滑移刚度较大的螺纹筋。

从力学方面看,改变钢筋的直径对控制裂缝作用不明显。试验和实际所证明的配置细密的钢筋有利于控制裂缝,主要还是应该从细密的配筋有利于改善混凝土内部应力的不均匀性从而提高混凝土的极限拉应变的角度上考虑。

参考文献:

[1] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.197~208.

[2] 赵国藩,李树瑶.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.67~71.

[3] 林宗凡.钢筋混凝土受弯构件裂缝宽度允许值的直接控制[J].工业建筑,1988, 6(11):41~47,53.

[4] G.Creazza and S.Russo.A New Model for predicting Crack With Different Percentages of Reinforcement and Concrete Strength Classes. Materials and Structures, Vol.32, August-September 1999,520~524.

[5] G.F.Kheder. A New Look at Control of Volume Change Cracking of Base Restrained Concretr Walls.ACI Structural Journal,V.94,nO.3,May-June,1997 681~724.

[6] 丁大钧.钢筋混凝土构件抗裂度、裂缝和刚度[M].南京:南京工业出版社.1986(7):87~92.

裂缝控制论文篇(4)

关键词:砼裂缝,原因,防治措施

 

1.工程概况

连云港东疏港高速公路大岛山立交工程,为上跨连徐高速公路的预应力砼连续箱梁结构,桥长688m,柱式墩,肋式台,桩基础。在检查箱梁顶板砼质量时,发现不同程度地存在裂缝,裂缝宽0.2~0.4mm,长度不一。下面分析裂缝产生的原因,并依据工程实践提出防治措施。

2.裂缝分类及产生原因

2.1收缩裂缝

从砼浇筑至使用期,收缩过程大致可分为五个阶段,即塑性收缩期,自生收缩期,水化热温差收缩期,干燥收缩期,环境温度收缩期等。施工中常见的砼收缩裂缝有塑性收缩裂缝、干缩裂缝等。

(1)塑性收缩裂缝

塑性收缩是指砼在凝结之前,表面因失水较快而产生的收缩。一般在高温或大风天气易出现,裂缝多为中间宽、两端细且长短不一,互不连贯。免费论文参考网。由于砼在塑性状态时,刚开始终凝,而高温或大风天气使砼表面水分蒸发过快,砼表面产生急剧的体积收缩,此时砼表面强度较低,使砼表面出现龟裂。

(2)干缩裂缝

干缩裂缝多出现在砼养护结束后的一段时间或砼浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,这种裂缝出现在板的表面,比较细小。免费论文参考网。水泥是水硬性材料,具有干缩性,在硬化初期如果水份不足则可能产生裂缝。多在砼养护完毕一段时间后才出现,为表面性的较浅较细裂缝,多沿短方向分布。裂缝产生的原因主要是砼养护不良,受风吹日晒表面水分散失过快,而砼内部温度变化小,表面干缩变形受到砼内部的约束,从而产生较大拉应力后产生裂缝。

2.2温度裂缝

温度裂缝多发生在温差变化较大的环境特别是冬季施工的箱梁上。砼浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于砼的体积较大,大量的水化热聚积在砼内部不易散发,导致内部温度急剧上升,而砼表面散热较快,这就形成内外的较大温差,造成内外部热胀冷缩的程度不同,引起内部受压,外部受拉,使砼表面产生一定的拉应力。当拉应力超过砼的抗拉强度极限时,砼表面就会产生裂缝,这种裂缝多发生在砼施工中后期,通常只在砼表面较浅的范围内产生。

2.3沉降裂缝

沉降裂缝一般多沿主筋通长方向,在砼表面出现,常在浇灌砼后发生,硬化后停止。裂缝产生原因是砼浇捣后,骨料颗粒沉落,水泥浆上浮,受到钢筋或大骨料的阻挡,使砼骨料与浆分离,因砼本身组成材料沉落不均匀造成开裂。

2.4其它施工裂缝

包括应力集中引起的裂缝、加荷过早产生的裂缝、砼硬化初期模板振动或移位、施工缝处理不好引起箱梁出现裂缝等。

3.砼裂缝防治措施

3.1优化砼配合比

在满足强度等设计指标要求的前提下,通过掺加外加剂等尽量减少水泥用量,降低砼水化热温升,同时严格控制原材料的质量和用量,按砼的配合比拌制砼,提高砼的后期强度及抗裂能力。免费论文参考网。

3.2加强砼温度控制

在砼施工时降低浇筑温度,也就是降低最高温升和初始温差,达到降低表面拉应力的目的。这对防止早期温度裂缝非常有效。降低浇筑温度要控制骨料温度、水泥温度,充分利用制冷设施来降低砼出机温度;砼运输中采用搅拌车,减少运输途中的温度回升;减少入仓振捣时的温度回升。

3.3提高施工质量

加强砼浇筑过程中的振捣控制,浇捣过程中尽量做到既振捣充分又避免过度,保证砼内部组织密实,达到提高砼极限拉伸值的目的。

3.4二次抹压

为防止或减少砼表面的龟裂现象,必须重视砼表面的二次抹压工作。抹压的次数和时间要掌握好,可有效地减少砼表面的龟裂现象。

3.5加强砼养护。

箱梁顶面采用洒水、覆盖的养护方法,对不易覆盖的部位可采用延长模板的留置时间等进行砼的养护工作,模板的留置时间一般要求不得低于7天。采用这种养护方式,既能减少砼本身的水分散失速度,又保证了砼在早期处于―个相对比较稳定的温度、湿度环境,避免了风速、太阳暴晒等引起砼急剧干缩的因素,有效地控制砼易产生裂缝的现象发生。

大岛山互通立交现浇箱梁工程,在施工过程中采取各项保证措施,有效地控制砼的温度裂缝和收缩裂缝,收到较好效果。当然砼裂缝产生的原因很多, 其形成机理复杂,需要考虑的因素较多,既有环境因素,又有材料本身的原因,还有施工工艺的影响,不能统一而论,但在具体的施工中,努力减少人为外因、控制内部反应,也有较好的应用效果,砼的裂缝是可以避免的。

裂缝控制论文篇(5)

关键词:受弯构件 正截面承载力计算 裂缝控制 配筋率

中图分类号:TU375 文献标识码:A 文章编号:1672-3791(2014)02(c)-0078-01

1 钢筋混凝土受弯构件设计要求

混凝土结构的极限状态设计包括:承载能力极限状态和正常使用极限状态。承载能力极限状态:结构或结构构件达到最大承载力、出现疲劳破坏、发生不适于继续承载的变形或因结构局部破坏而引发的连续倒塌。受弯构件的承载能力计算主要由正截面弯矩承载力控制。正常使用极限状态:结构或结构构件达到正常使用的某项规定限值或耐久性能的某种规定状态。受弯构件的正常使用极限状态验算包括:裂缝控制验算和挠度验算。挠度验算与受弯构件的配筋率无关,故该文只讨论受弯构件的裂缝控制验算。

一般工程设计过程中,应用软件的梁配筋计算有按受力配筋或按裂缝配筋两种选项。如果选择按受力配筋,有时会出现裂缝超限的现象;如果选择按裂缝配筋,则不清楚受力配筋的实际情况。究竟按受力配筋及按裂缝配筋的差别有多大呢?该文以常用的工程条件,应用简化公式计算出最大裂缝宽度允许弯矩及正截面承载弯矩,进行简单的比较并得出结论。

2 钢筋混凝土受弯构件承载力计算

依据《混凝土结构设计规范》GB50010-2010公式:

(290.60mm单层配筋;282.83双层配筋),=70mm。

3 钢筋混凝土受弯构件裂缝控制验算

依据《混凝土结构设计规范》GB50010-2010公式:

(单排钢筋h0=0.935h,双排钢筋h0=0.910h)

当强度等级C30时,钢筋为单排的简化公式中,最大裂缝宽度允许弯矩为

系数表达为

×;

钢筋为双排的简化公式中,最大裂缝宽度允许弯矩为

系数表达为:

×。

当强度等级C35时,钢筋为单排的简化公式中,最大裂缝宽度允许弯矩为

系数表达为

×;

钢筋为双排的简化公式中,最大裂缝宽度允许弯矩为

系数表达为:

×。

式中,―按荷载的短期效应组合计算的弯矩值(N.mm);b―受弯构件截面宽度(mm);h―受弯构件截面高度(mm);―受弯构件受拉区纵向钢筋截面面积();d―受拉区纵向钢筋的等效直径,最大配筋率,最小配筋率=0.2%。

4 表格计算

如表1。

5 结语

根据简化公式,可以看出影响弯矩大小的因素有:钢筋直径、钢筋类别、配筋率、保护层厚度、受力状态、混凝土强度等级等。

(1)由于钢筋直径、钢筋类别、保护层厚度、受力状态均相同,故上述此项本文不予考虑。

(2)由表格计算可知,混凝土强度等级对M/Ms的影响非常小,可忽略。

(3)随着配筋率的增大,M/Ms降低,最低约为1.2。由于计算最大裂缝宽度允许弯矩Ms采用准永久组合,计算正截面承载弯矩采用基本组合,故M/Ms约为1.3。故在工程设计实例中,当配筋率不接近最大配筋率时,M远大于1.3Ms,计算配筋时按裂缝配筋比较合理;当配筋率接近最大配筋率时,M≤1.3Ms,计算配筋时比较适宜按受力配筋。

参考文献

[1] 混凝土结构设计规范[S].GB50010-2010.

裂缝控制论文篇(6)

【关键词】框架剪力墙结构,裂缝,成因分析,措施探讨

中图分类号:TU398+.2文献标识码:A文章编号:

一、前言

框架剪力墙结构是我国现阶段建筑工程行业重要的建筑发展方向之一,由于其独特的优势,在我国日益发展的建筑领域得到了越来越广泛的运用,对我国经济的发展和人们生活水平的提高有着巨大的推动作用。但是,由于框架结构在施工过程中有着十分严格的标准,施工工艺尚未完全成熟,加上一些人为或者其他的因素影响,使得框架结构墙体的质量控制具有一定的难度,墙体容易发生裂缝,形态各异的裂缝,不仅仅严重影响到建筑墙体的整体美观,也会造成建筑物开始漏水,一定程度的降低了整个建筑物的整体承载力和负荷性能,使得建筑物的刚度逐渐下降,稳定性和耐久性能迅速下滑,进而容易诱发墙体坍塌,造成重大的安全事故,既会造成巨大的资源浪费,又严重影响到居民的生命财产安全,因而,加强对框架结构墙体裂缝的分析,并采取有效的预防和治理措施,有着十分重要的意义。

二、框架剪力墙结构发生裂缝成因分析

框架剪力墙结构在我国的建筑行业有着十分广泛的运用,但是由于多种因素的影响,墙体容易发生裂缝,一般而言,框架结构的墙体裂缝表现为:表面龟裂。纵向、横向裂缝以及斜向裂缝。据笔者多年施工经验,将从以下几个方面分析墙体发生裂缝的原因。

1.混凝土原材料质量不合格

(一)水泥凝结或膨胀不正常。

水泥是整个建筑行业中最为基础的材料,其质量和性能将直接关系到整个墙体的质量控制。在进行混凝泥土配制过程中,由于受到施工人员素质的影响,或者是不规范操作,或是手动来自气温等方面的因素影响,使得水泥的凝结或是膨胀不正常,水泥的凝结难以符合施工标准。容易诱发裂缝。

(二)原料中含泥量过多

混凝土的质量将会对墙体的整体质量有着深刻的影响,如果混凝土等原材料中水泥和泥土的配比不合理,含泥量超过工程施工的标准,不仅仅使混凝土的质量降低,如此,也难以保证整个墙体的粘合性和稳定性。

(三)骨料和水泥发生化学反应容易引起裂缝

在进行混凝土的配制过程中,骨料和水泥中都含有很多的化学元素,一般而言,骨料多呈碱性而水泥也具有很强的碱性,当二者遇到水进行混合配比时候,很容易发生化学反应,从而生成一种新的物种,硅凝胶,这是一种碱性物质,具有很强的膨胀能力,由于硅凝胶的膨胀,很容易对墙体造成破坏,进而容易产生各种裂缝。

(四)在进行混凝土的过程中,如果水灰之间的比例超过工程要求的标准,塌落度也不符合工程质量控制的要求,在进行原料制作过程中,大量的使用粉砂,这些因素都使得墙体的质量难以得到控制,容易发生裂缝。

2.施工操作不规范,质量管理不严格

(一)混凝士施工不规范

首先,在进行混凝土的施工过程中,对混凝土的振捣没有严格遵守施工规范,过分的进行振捣,进行模板和垫层施工时候,施工过程过于干燥。其次,当混凝土进行浇筑振捣之后,由于不规范的操作,使得一些骨料粒发生沉落,从而使得其中的水分和空气被挤出来,混凝土的表面便因为水分的泌出而发生竖向的缩小沉落,形成了表面的砂浆层,当水分蒸发之后,很容易构成凝缩裂缝。最后,当混凝土浇筑振捣完成之后,由于过分的摸干压光超过了相关的操作标准,让混凝土中的一些细小的细骨料不断的漂浮到表层,造成含水量很多的水泥浆曾,使得混凝土的表面体积发生碳化,并不断收缩,造成墙体表面龟裂。

(二)施工工艺不科学

在进行施工过程中,由于施工工艺的选择不科学,缺乏合理性,很容易造成支座负筋发生下陷,同时,在进行楼板的施工操作过程中,由于楼板的弹性变形和相关支座处的负弯矩处的混凝土施工强度难以满足工程的施工标准,在还没有到达拆模的时间便提前拆模,混凝土终凝的时间未到便实施上荷载,这些不规范的操作,都使得楼板容易发生弹性变形,当混凝土尚处于早期时候,其强度和较小的情况下,如果承受弯曲,压力,拉力,应力等各个方面的力太多的时候,很容易造成楼板发生断裂。最后,位于大梁两边的楼板会发生一些不均匀的沉降,也使得支座产生很大的负弯矩,如此,便容易形成很大的横向裂缝。

3.工程设计缺乏合理性

(一)地基的不均匀沉降

如在软土地基下采用扩展基础,对于相对较长的条式楼来说,要保证沉降均匀相当困难。由于基础不均匀沉降,引起楼房的拉裂或钢筋混凝土现浇板的开裂。

(二)荷载的作用

设计人员在进行现浇板的配筋计算过程中,通常只是根据其承载能力确定配筋量,往往忽略了对板在正常使用阶段由其承受的荷载而引起的挠度及裂缝宽度的验算,由此而引起裂缝的产生,这些裂缝有时也会超过规范的最大允许值。

(三)结构体型突变及未设置必要的伸缩缝

房屋长度过长,而又未考虑设置伸缩缝。当房屋的自由伸缩达到应设置伸缩缝要求的间距时,就会引起裂缝的产生。

(四)照明、有线电视、通讯等所需的管线直接铺设在现浇板中,有时过于集中,使该处的现浇板厚度大大削弱。从而引起现浇板在该处开裂。

三、框架剪力墙结构裂缝的预防措施

1.加强现浇板浇捣后的养护

混凝土养护是整个施工过程中必不可少的一个重要环节,忽视对混凝土的养护,既会降低混凝土的强度.叉易使其在硬化过程中失水得不到及时补偿而产生裂缝,尤其在高温下施工,更应经常浇水养护,这样既可减少温度产生的裂缝,也可降低由于混凝土的收缩而产生的约束应力,有效控制裂缝。

2.严格控制砂石的粒径及含泥量

要加强振捣,提高密实度。混凝土用砂应采用中粗砂,如砂粒过细,砂的含泥量超过标准,不仅降低强度,也会使混凝土产生裂缝,这是因为泥的膨胀性大于水泥膨胀性的缘故。

3.控制抹灰时的温度

根据温度对裂缝影响的因素,楼板施工宜在较低温度下进行,但因为工程开发进度要求,工程的抹灰施工不可能选择季节施工,加之钢板网和粉刷砂浆何时开始共同受力,很难量化确定,故而很难通过控制抹灰时的温度来达到避免和减少裂缝,一般不会采用控制抹灰时的温度控制裂缝产生。

4.在板角增加辐射筋

现浇板的四周在设计上都已配置负筋,但针对绝大多数裂缝产生于板角这一现象,在板角四周增设辐射筋,使产生裂缝的应力作用方向与辐射筋相一致,能有效地抑制裂缝,此外配筋较多时,相对来说也能明显改善裂缝的产生或扩展,根据裂缝距板角的距离,辐射筋长度为1m左右。

5.施工中未能及时测定混凝土强度

板在拆除前应对相应部位混凝土的同条件试块进行抗压强度试验,混凝土强度达到28天设计值时才能拆除模板,而实际施工中,往往人为的规定混凝土的拆模时间,不对混凝土强度进行测试也未进行水泥、粗细骨料品重、外加剂类型等自身特性和气温等条件的综合考虑。

6.剪力墙上增开“结构小洞”,并留置后浇带

首先,通过开洞把长墙变成短墙减少混凝土收缩变形的约束,使混凝土收缩应力得到释放,从而达到控制墙体裂缝的目的,但必需重新对结构进行计算,确保结构的安全及正常的使用功能。其次,要先浇注后浇带两侧混凝土,约两个月后当混凝土收缩变形趋于稳定时,再浇筑留缝部位,从而避免因收缩应力而出现裂缝 .

7.设计方面

(一)对于地基的不均匀沉降,可通过调整基础的选型进行控制,如采取改用深基础及桩基础等方式以减少这类裂缝的发生。

(二)在板角增加辐射筋。现浇板的四周在设计上都已配置负弯矩筋,但针对绝大多数裂缝产生于板角这一现象,在板角四周增设辐射筋,使产生裂缝的应力作用方向与辐射筋相一致,能有效地抑制裂缝。

四、结束语

框架剪力墙结构是现代建筑结构发展的重要方向之一,在伴随着我国城市化进程的逐渐加快,将会得到更为广泛的运用,框架剪力墙结构的楼板裂缝问题是整个工程质量管理控制中的重要环节,因而,进行裂缝成因分析,对采取有效的质量控制措施,有着十分重要的意义。

参考文献:

[1]陈国斌 韩素容 赵晓明 框架剪力墙结构楼板裂缝分析 [期刊论文] 《工程抗震与加固改造》 ISTIC PKU -2007年2期

[2]史铁花 陈国斌,框架剪力墙结构楼板裂缝分析 [会议论文] 2006 - 第七届全国地震工程学术会议

[3]孙占利 黄慎 变形引起的楼板裂缝分析与修复探讨 [期刊论文] 《城市建设理论研究(电子版)》 -2011年23期

[4]张建霞,框架剪力墙结构楼板混凝土裂缝控制与防治 [会议论文] 2004 - 四川省土木建筑学会第29届学术年会暨2003西南土木建筑科技论坛

裂缝控制论文篇(7)

【关键词】地下室梁板抗裂逆作法施工地下连续墙周边约束有规律裂缝混凝土水化热

钢筋混凝土结构裂缝控制一直是设计、施工单位长期研究又无法彻底解决的问题。由于混凝土脆性材料的自身特性,高强度的同时也容易开裂,许多专家、学者做了大量的研究工作,从混凝土原材料、施工、养护等方面积累了丰富的经验。本人以亲自经历的工程为例,通过逆作法环境中的钢筋混凝土梁板施工,从设计构造等其它角度探讨裂缝控制问题。

1、工程实例概况

武汉市协和医院门诊医技大楼地下室三层,采用逆作法施工,周边地下连续墙厚度800mm,采用“两墙合一”型式,逆作施工阶段该墙体作为基坑支护墙,逆作完成后该墙体作为地下室结构永久性外墙。

地下室施工程序:施工地下连续墙――施工逆作桩(一柱一桩)――从上往下施工各层地下室梁板。地下室各层楼板结构直接与先施工的地下连续墙连接。

地下室顶板通过地下连续墙顶部的预留插筋及顶板周边压顶梁与地下连续墙连接,其它各层楼板通过楼板周边环梁及地下连续墙施工时预埋的水平钢筋连接。梁板与墙体间的连接刚度大。

施工前,我们对于控制楼板裂缝主要从施工分区、加强混凝土材料控制和施工、养护等方面采取了针对性的措施,但仍然在前期施工的几个区段内出现了许多有规律性的裂缝。发现问题后,我们对梁板结构收缩及裂缝的分布进行实际测量,绘制成图后进行了详细地分析,对后续施工的混凝土内部进行测温,初步分析出结论后,采取了针对性的措施试点施行,并在后续的区段中实施后,取得了良好的效果,得到设计师和业内专家们的一致认可。

2、施工区段划分

本工程地下室单层面积(基坑面积)约8600平方米,为有效地组织施工和减少一次成型混凝土的平面面积,利于楼板裂缝控制,我们将地下室楼板分为六个区段,利用跳仓法施工原理,控制区段间的施工间隔时间。后浇筑混凝土的区段通过2米宽膨胀加强带(图中阴影部位)与先前施工的混凝土结构连接,两者之间的混凝土浇筑间隔时间超过七天,符合王铁梦教授关于控制裂缝跳仓法施工间隔时间技术要求。

3、混凝土材料

逆作法中支模体系的拆模时间直接占用了进度计划的主线路工期,由于本工程的进度要求高,为达到业主方提出的工期目标,必须满足7~10天拆模的要求。本工程梁板结构的混凝土选择C50标号(与墙柱标号一致)。优化配合比后,每立方水泥用量为357Kg。

C50混凝土强度高,水泥用量大,不利于裂缝控制。为减少混凝土本身质量控制对裂缝控制的影响,本工程从混凝土的原材料(砂、石、水泥、外加剂、坍落度等)方面进行了较严格的控制。

4、施工及养护环境

地下室顶板施工时,正值八~九月间,日最高温度35度,平均气温接近28度。混凝土施工尽量安排在夜间进行,避开高温时段。混凝土浇筑完成后,随即覆盖塑料薄膜,进行保温、保湿养护。

5、前期出现的有规律裂缝

通过以上措施,在地下室顶层板第一施工段浇完混凝土第三天,梁板周边发现有规律性的裂缝,并在3~7天内同类型的裂缝明显增多,七天后,裂缝无明显变化。楼板裂缝分布图及压顶梁裂缝分布图:

6、分析成因

因裂缝仅出现在楼板周边部位,发现裂缝后,大家意见基本一致,认为由周边约束较大的原因引起。为真正了解裂缝成因的机理,我们将出现的裂缝测绘制成图进行理论分析和实体观测,并对后来施工的另一区段进行混凝土测温。压顶梁(截面800*1600)混凝土中心温度实测值为75度,表面混凝土混度为50度,内外温度差值达25度,已经达到大体积混凝土内外温差的控制值。同时对梁板混凝土收缩进行了现场实际测量,从混凝土终凝时布设观测点,到养护三天后测量,相距30米的两个观测点,距离减少10mm,实测收缩值为0.033%,足以影响梁板的水平受力状态。

得出结论:1、钢筋混凝土梁板自身收缩时周边受地下连续墙约束无法自由变形,造成周边拉裂;2、周边压顶梁内部水化热温度过高,混凝土具备强度后呈脆性状态,在降温过程中,自然收缩受到地下连续墙及预留钢筋的限制时,便出现分布较均匀的裂缝。3、拉裂的压顶梁裂缝宽度继续发展,造成与之相连的混凝土梁板出现以压顶层梁裂缝为起点穿透型裂缝。4、经市相关专家现场勘察和论证,该裂缝不属于结构受力裂缝,经过合适地处理后,不影响结构强度。

7、主要措施及效果

针对以上分析成果,我们主要采取了两个方面的措施:1、在角部45度裂缝分布位置,布设沿裂缝垂直方向的受拉抗裂钢筋,限制梁板裂缝;2、降低压顶梁内的混凝土温度,减少压顶梁裂缝及因此造成与之相连的楼板拉裂。

因工期原因,混凝土早期强度要求比较高,混凝土标号不能降低,也不能采用60或90天强度混凝土,无法减少水泥用量。我们采取了埋设降温水管的办法,通过循环水直接降低周边压顶梁混凝土内的温度,实测降温后混凝土内部温度峰值为55度,比降温前降低了20度,内外温混凝土差值也减少至10度,降温取得了明显的效果。

降温前后的压顶梁中心“温度-时间”曲线图

通过以上两项措施,对于楼板面的裂缝控制取得了良好的效果。混凝土浇筑后的第三天未发现压顶梁和楼板上有明显裂缝,连续十天观察,未发现角部45度裂缝,压顶梁上的裂缝数量减少80%。

第一次采取措施的区段内,因其它原因,一端头15米未设置降温水管,但板内布设了抗裂钢筋,该区段出现了明显的压顶梁裂缝,并向板内发展约200mm后宽度显著减小至消失,与先前施工的区段有明显区别,可以判断该处楼板布设的斜向抗裂钢筋起到了良好的楼板抗裂作用。另一端设置了降温管的压顶梁裂缝非常少,或不容易被发现。

8、总结经验,指导下步施工

通过试点实施,该措施取得了显著的效果,也得到了设计师和业内相关专家的认可。后续的施工区段,我们继续总结经验并视不同结构特点的具体情况将抗裂措施更进一步细化,在地下室楼层施工强约束裂缝控制方面取得了非常好的效果。

9、结束语

随着社会不断发展,城市空间越来越拥挤,地下空间的应用受到前所未有的关注和重视,由此,逆作法施工作为一种复杂的成熟工艺应用也逐渐普遍,其特有的“先施工外墙,再施工梁板”的工况对梁板结构型式、构造和施工提出了新的要求。

友情链接