学术刊物 生活杂志 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 数学思想论文

数学思想论文精品(七篇)

时间:2023-03-16 16:00:54

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇数学思想论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

数学思想论文

篇(1)

数学教学中,怎样寓知识、技能、方法、思想于一个学过程中,是数学教学的重要课题。由于数学的高度抽象性、严谨的逻辑性、结论的确定性以及应用的广泛性这些特征,决定了数学教学的难度。如果教师只是注重单纯地传授知识,而不注重学习方法的指导和能力的培养,学生就会跟在老师的后面跑,整天忙忙碌碌,全是死记硬背。听老师讲时还会,自己做时就错,临到考时就蒙,这样下去是越来越糊涂。所以,要使学生变书本知识为自己知识,就必须学会学习知识的方法。下面就其怎样使学生在原有知识基础上学习新知识的方法谈些教学体会。

新知识的获得,离不开原有认知基矗很多新知识都是学生在已有知识基础上发展起来的。因此,对于学生来讲,学会怎样在已有知识的基础上掌握新知识的方法是非常必要的。这就需要教师在教学中精心设计、抓住知识的生长点、促进正迁移的实现。

例如,在研究多边形内角和定理时,可向学生提出:我们已经知道三角形的内角和等于180°,那么,你能根据三角形的内角和求出四边形的内角和吗?这样简单、明了的一句话就勾通了新旧知识间的内在联系。问题的提出,激发了学生学习的兴趣,促使了学生思维的展开,提供了回答问题的机会,创造了活跃的教学气氛,学生会准确地回答出四边形的内角和等于360°。又问:你是根据什么说四边形的内角和等于360°呢?是猜想的?还是推理得到的?学生的回答是作四边形的对角线,将四边形分为两个三角形,而每个三角形的内角和等于180°,两个三角形的内角和等于360°。教师马上对学生的回答给以肯定和鼓励,再问:五边形、六边形的内角和等于多少度?学生很快就会回答出五边形的内角和等于540°,六边形的内角和等于720°。接着又问:你知道十边形、一百边形、一千边形的内角和是多少度吗?这是老师故意设置“知识障碍”,激发学生的求知欲望。及时引导、启发、迁移、总结规律。让学生观察、发现求四边形、五边形、六边形的内角和,都是从它们的一个顶点作对角线将它们转化为三角形来求得的,并且内角和是由从它们的一个顶点作对角线所分得三角形的个数确定的,而三角形的个数又是由这个多边形的边数确定的。从而可知从n边形的一个顶点作对角线可将n边形分成(n-2)个三角形,所以n边形的内角的和等于(n-2)·180°,即得多边形的内角和定理。这个定理的出现,是教者通过设疑、引导、启发学生思维,寻求解题方法,由个性问题追朔到共性问题,总结出了一般规律。这样做,不但使学生学会了在原有知识基础上学习新知识的方法,又培养了学生分析问题和解决问题的能力,还渗透了把多边形转化为三角形来研究的数学转化思想。

当学生在原有知识的基础上掌握了学习新知识的方法和数学的转化思想,对于诸如此类的问题就迎刃而解了。如,研究梯形中位线定理,学生很自然就会将它转化为三角形中位线来解决。对于平行四边形、梯形的问题学生也很容易就想到转化为已有知识来研究。又如,对于解二元二次方程组,学生根据已学过的解一元二次方程等知识,自然就会想到通过消元将原方程组转为一元二次方程来解之,或将二元二次方程组通过降次转化为一次方程或有一个一次方程和一个二次方程组来解决。对于分式方程要通过去分母或换元转化为整式方程来解。对于无理方程需把方程两边乘方或换元化为有理方程来解。

在数学教学中,教师只要做到精心设计教学环节,科学的提出问题,采取得体的教学方法、适时疏导,帮助学生学会用自己的语言对所学知识进行概括和总结,以知识讲方法,以方法取知识,就能够调动学生学习数学的积极性,达到开发学生智力、提高学生能力的目的。

篇(2)

在中学数学的教学中,对“数形结合”、“由形到数”,解题时可以观察图形的特征以及数量关系。“数”“形”“数形结合”思想不仅对于学生掌握知识变得统一,更是一种思维的训练与提高的过程。函数的单调性解决不等式、函数与数列、函数的思想对于解决方程根的分布问题。函数与解析几何等等都会应用到。但是传统的教学中,重视表层知识的学习的现象弊端太多,数学学科是一种抽象思维的学习学科,不同于语言思维,过于感性化,不够严谨与理性,而数学思维是抽象性、理性严谨的知识体系学科,如果不注重思维学习的方法,是不能达成教学效果和目标的实现的,不利于对于数学学科的学习,难以提高。

2.“数形结合思想”在实际生活中的应用

将实际问题转化,运用数形结合的思想去解决。“数形结合”思想可以帮助理解抽象的问题,会在实际生活中有很大的应用。“数形结合”的思想不仅在教学中有用,利用数形结合的思想来解决现实生活中的问题有很大的帮助。例如:对于在实际生活的中,需要地域500元购入60元的单片软件3片,需要购入70元的磁带2个,额选购方式有几种?其实这样的题目就是对于数形结合思想、排列以及数学中不等式的解法的考查,那么只要设需要软件x片,需要磁带y盒,然后列出不等式,相反,如果用列举法一一列出,是可以解决的,但是过程就会变得麻烦。因此,掌握数形结合思想对实际问题的解决作用是很大的。

3.“数形结合思想”在几何当中的应用

中学数学中对于“数形结合”思想对于直线、四方形、圆以及圆锥曲线在直角坐标系中的特点,都可以在图形中寻找解题思路。不论是找对应的图像,以及求四边形面积等的几何问题都有很大的应用。例如:已知正方形ABCD的面积是30平方厘米,E,F是边AB,BC上的两点,AF,CE并且相交与G点,并且三角形ABC的面积是5平方厘米,三角形BCE的面积是14平方厘米,要求的是四边形BEGF的面积。在求解过程中,结合图形,连接AC\BG并设立方程可巧妙求解。可见,在具体实际的几何中的分析与思考,运用到数形结合思想就会将问题变得简单。

4.结语

篇(3)

“亲其师,信其道,乐其学”.和谐的师生关系,是教学中师生交流合作活动的基础、动力和保证.首先,教师在进行教学的过程中要不断重视自身的情绪表达,培养起良好积极的情绪范围和情绪能量.其次,和谐的师生关系,也是学生产生积极情感体验的手段.和谐的师生关系需要教师与同学的共同经营,其中一个重要方面就是教师对每个学生自有品性及人格的认可.例如,在接任七(4)班的数学教学工作时,我认识了小霞.由于先天智力不行,加上后天不认真和单亲家庭,她很自卑,导致学习落后.同学们讥笑她,家长也责备她.开学后,我首先制止同学们对她的讥笑和瞧不起,动员大家给她更多的关心和爱护.学习与生活中的每一丝进步都及时进行肯定,不仅在同学面前正式鼓励,还及时向她的家长肯定她的成长,这种肯定不仅表现在语言上,也体现在每次的善意眼神及行为中.由于老师的表率作用,带动了全班同学对她的尊重.她逐渐走出了自卑的阴影,有学习的兴趣,成绩也提高了,人也开朗了.教师对学生的关爱和尊重,教师的每一个眼神、每一句话中,都可以使学生受到激励,感到振奋,从而形成一种积极向上的情感.这种学习情绪的调动更是单纯的学习沟通无法带来的,只有良好情绪的共同感染才能引起.于是,教师的情绪便对学生的情绪起着尤其关键的影响与作用,只有让学生真切地感受到自己对教学及学生的热忱、积极向上的教学情绪、真诚自然的教学态度,才能让学生感受到积极轻松的氛围,继而在这种课堂氛围下接纳授课内容.我会真诚对全体学生说:“老师的教学需要全体同学的支持和配合,老师愿意和同学们一起学好数学.我不期盼学生背负着从前一纸成绩的压力,更期待的是学生拥有良好的心理,和建立在良好心理基础上的奋斗意识.一切从现在开始,只要肯努力,我相信每个同学都会进步!”在执教过程中,对于学习成绩与动力暂时不突出的同学,课上在尊重为主的前提下关注这些学生的行为,更是及时肯定他们踊跃参与课堂活动的表现;平时对他们学习上的困难进行耐心辅导,关注他们的点滴进步,不断给他们加油鼓劲,使他们总是生活在希望之中.我真切地意识到,在老师孜孜不倦的鼓励与肯定下,学生往往会形成更多的学习主动性与积极性,进而取得更多的进步.

二、以情引趣,创设新鲜的学习情境,让学生学习劲头足

数学教学不仅是一种活动,而且是一种充满情感交流的过程.师生的交流沟通,不仅应饱含情感与尊重,更应在这样的基础上及时鼓励学生的积极性,这样才能将精神源头转化为实际行为.在教学过程中,对教材的深度钻研是合理规划课堂内容的基础,在这一层面上将数学教材总结的生动有趣,才能使学生有更大兴趣.兴趣是通往一门新知识的钥匙,学生的兴趣能够深层影响其学习动力.在讲授数学知识时,可以更多设立中等难度引导学生思考的范围,让其进行积极深入的思索,引起学生对新领域新知识的兴致.班里几个同学在抛硬币,教师可以提问:一个硬币正面向上的可能性有几种?两个呢?这样的引发学生思考的提问,能够逐步地引发学生的疑惑与求知的欲望,进而让学生在新课程的讲授中更加集中注意力并积极参与,在接下来的课程中,接二连三的抛出让学生思考的问题,将课程的讲授自然地深入进行,而学生也就在稍有间断的思考中不断获取新的书本知识.然后又问:三个硬币呢?学生带着疑问看多媒体计算机演示.精心安排与引导的课程环节,能够让学生一直处在被求知欲与好奇心包围的氛围之中,教师不仅将课本知识得以传授,更可以通过轻松有趣的沟通方式与学生建立情感深入交流,让全体学生都在轻松的学习过程中体会到独立思考的乐趣,通过多次这样的教学慢慢培养学生主动思考与积极参与的有益习惯.

三、以情促知,恰当地将知识潜移默化,能使学生兴奋,对正确理解和巩固知识有好处

赞可夫认为,少儿的情绪反应和其好奇、疑惑、思考、探索等行为是紧密相关的,并且会互相影响.也就是说愉悦、轻松、有成就感的学习过程能够潜移默化地引导学生的学习行为,进而达到促进学习劲头的良性循环.然而,这样的良性循环并不是一次或几次就能达到的结果,授课的过程是漫长且需要耐心的,根据不同学生的基本情况进行分层次教学模式,不对优秀学生偏袒也不对暂时落后的学生另眼相看,在让每一位学生都能感受到相比从前自己的进步,让学生从内心深处认可自己的进步与潜力,在不断提升的自我认可度基础上,逐步用行动证明自身的努力成果.在教学过程中,我力求做到如下两点:一是反馈练习的设计注重层次性,突出针对性:足量的基本练习给基础较差的学生创设了成功的机会;设置不同层次的练习题目,分为必做和选做等多种题型,这样就能让学习成绩较好的学生有更多的发挥空间与求学动力,不会感觉到知识的信手拈来,让这部分学生迎难而上.二是练习形式的多样性,增强趣味性.巩固反馈阶段,有书面练习,口答练习,也有动手操作练习,有小组合作,也有竞赛,调动学生学习的积极性,激发他们的学习兴趣,动静结合,充分开发学生的潜能,增强学生以学为主的情感.

四、以言唤情,用情促行

教学语言既是一门科学,也是一门艺术.它是提高课堂教学效果行之有效的重要手段.有人说“教师应该是语言大师”.这句话说得非常恰当,因为教师就是通过语言来授之以理、授之以法的.有的教师总是能把一节课讲得有声有色,很好地完成教学任务.而有的教师则词不达意,言不传情,因此效果极差.可见,课堂教学语言的艺术是多么重要.在数学教学过程中,教师的专业术语精确练达固然重要,更让学生产生情感共鸣的还应是教师的言语方式及个人风度涵养,优秀的师风师德配合表达风趣、结构严谨的语言,必然能吸引更多学生的注意力与求知欲.例如,有的教师在初次接触几何课的学生面前,用一支笔能测量高楼的悬殊对比这一生动例子,很好地抓住了学生的疑惑心理,学生听后目瞪口呆,随后议论起来如何测量.教师提问:想知道如何测量吗?学生回答非常想知道.那我们必须学好八年级的几何!本节课学生情绪高涨,听得、学得、做得都非常认真、入神、到位.在上课的同时,教师要经常用“你太棒了!”“还有别的做法吗?”用这样的提问式语句与互动方式,提供给学生自主发挥想象空间的平台,通过几何就在生活中随处可见的例子,拉近新课程与学生的心理距离.

五、结语

篇(4)

1用字母表示数的思想

用字母表示数是由特殊到一般的抽象,是中学数学中重要的代数方法。初一教材第一章代数初步知识的引言中,就蕴涵用字母表示数的思想,先让学生在引言实例中计算一些具体的数值,启发学生归纳出用字母表示数的思想,认识到字母表示数具有问题的一般性,也便于问题的研究和解决,由此产生从算术到代数的认识飞跃。

学生领会了用字母表示数的思想,就可顺利地进行以下内容的教学:(1)用字母表示问题(代数式概念,列代数式);(2)用字母表示规律(运算定律,计算公式,认识数式通性的思想);(3)用字母表示数来解题(适应字母式问题的能力)。因此,用字母表示数的思想,对指导学生学好代数入门知识能起关键作用,并为后续代数学习奠定了基矗

2分类思想

数学问题的研究中,常常根据问题的特点,把它分为若干种情形,有利问题的研究和解决,这就是数学分类的思想。初一教材中的分类思想主要体现在:(1)有理数的分类;(2)绝对值的分类;(3)整式分类。教学中,要向学生讲请分类的要求(不重、不漏),分类的方法(相对什么属性为类),使学生认识分类思想的意义和作用,只有通过分类思想的教学,才能使学生真正明确:一个字母,在没有指明取值范围时,可以表示大于零、等于零、小于零的三种情形。这是学生首次认识一个有理数的取值讨论的飞跃,不要出现认为一个字母就是正数、一个字母的相反数就是个负数的片面认识。这样,学生做一些有关分类讨论的题也就不易出错,使学生养成运用分类思想解题的习惯,培养严谨分析问题的能力。

3.数形结合的思想

将一个代数问题用图形来表示,或把一个几何问题记为代数的形式,通过数与形的结合,可使问题转化为易于解决的情形,常称为数形结合的思想。初一教材第二章的数轴就体现数形结合的思想。教学时,要讲清数轴的意义和作用(使学生明确数轴建立数与形之间的联系的合理性)。任意一个有理数可用数轴上的一个点来表示,从这个数形结合的观点出发,利用数轴表示数的点的位置关系,使有理数的大小,有理数的分类,有理数的加法运算、乘法运算都能直观地反映出来,也就是借助数轴的思想,使抽象的数及其运算方法,让人们易于理解和接受。所以,这样充分运用数形结合的思想,就可突破有理数及其运算方法的教学困难。

4方程思想

所谓方程的思想,就是一些求解未知的问题,通过设未知数建立方程,从而化未知为已知(此种思想有时又称代数解法)。初一代数开头和结尾一章,都蕴含了方程思想。教学中,要向学生讲清算术解法与代数解法的重要区别,明确代数解法的优越性。代数解法从一开始就抓住既包括已知数、也包括未知数的整体,在这个整体中未知数与已知数的地位是平等的,通过等式变形,改变未知数与已知数的关系,最后使未知数成为一个已知数。而算术解法,往往是从已知数开始,一步步向前探索,到解题基本结束,才找出所求未知数与已知数的关系,这样的解法是从把未知数排斥在外的局部出发的,因此未知数对已知数来说其地位是特殊的。与算术解法相比,代数解法显得居高临下,省时省力。通过方程思想的教学,学生对用字母表示数及代数解法的优越性得到深刻的认识,激发他们学好方程知识,运用方程思想去解决问题。由此,学生用代数方法解决问题和建立数学模型的能力得到了培养。

5化归思想

化归思想是把一个新的(或较复杂的)问题转化为已经解决过的问题上来。它是数学最重要、最基本的思想之一。初一数学中的化归思想主要体现在:

(1)用绝对值将两个负数大小比较化归为两个算术数(即小学学的数)的大小比较。

(2)用绝对值将有理数加法、乘法化归为两个算术数的加法、乘法。

通过这样的化归,学生既对绝对值的作用、有理数的大小比较和运算有清晰的认识,而且对知识的发展与解决的方法也有一定的认识。

(3)用相反数将有理数的减法化归为有理数的加法。

(4)用倒数将有理数除法化归为有理数的乘法。

篇(5)

无论是任何一个学科的教学中,教材都会起到不可忽视的重要作用。然而,当下的实用经济数学教材却在很大程度上存在着多个方面的缺陷和不足。具体体现在教材的编撰思想上,过度的重视实用经济数学的理论、公式,不能很好的体现出经济性以及实用性。所以,在教材方面,笔者建议可以从以下几个方面进行弥补:首先,教材要充分的体现出经济性与实用性,所以要在教材中以及课堂中增添相关的案例。其次,对数学的理论、公式的具体推理过程要淡化,重视对实例的研究和思考。

2.丰富教学方法

由于实用经济数学教学的目的和特点,就决定了运用传统的,比较单一的授课模式,即讲授式,是不可能达到理想的教学目标的。所以,在教学的过程中,要多种教学方法并用,尤其是能够促进学生思考,激起学生兴趣的教学方式,如讨论式教学法、启发式教学法等等,对于实用经济数学教学中融入建模思想都是非常有益的。

3.改革学生成绩评价机制,为社会输送应用型专门人才

由于当下的教育中,对于考试成绩的重视程度极高。然而,在实用经济数学的考试中,却在很大程度上侧重于推理以及推理过程中的计算。这就使得教师以及学生在教学以及学习的过程中都过度的重视推理与计算。所以要想提高数学建模思想的在课堂中的渗透,必须要改变学生的成绩评价机制,从而为我国培养更多的具有高强度思维能力的人才。

4.加强师资队伍建设,培养应用型专门数学教师

由于现在的经济数学教师在大学时接受的都是传统的数学教育,依据他们现有的教育观念和知识结构,很难真正实现上述三条措施,因此应大力加强经济数学师资队伍的建设。要加强教师的数学教育哲学、现代教育理论的学习,从根本上转变教师的数学教学观,要专门培养一批精通数学建模方法和数学软件的使用、掌握经济学基本知识、了解经济问题。要想将数学建模思想很好的应用在实用经济数学中,需要从教学的多个方面进行考虑。然而,以上也仅仅是实用经济数学建模思想的几个方面的探索,且这些研究都还比较浅显。而仅仅凭借这些研究来提高实用经济数学的教学质量,并且将数学建模思想很好的应用在实用经济数学中,显然是远远不够的。所以,对于实用经济数学中融入数学建模思想的研究还需要数学教育领域的研究人士进行进一步的研究和思考。

5、结语

篇(6)

论文关键词:一元一次方程中的整体思想

 

在解一元一次方程时,若把着眼点放在问题的整体上,将一个代数式看作一个“整体”来处理,可使解题过程简捷明快,常能达到事半功倍的效果.请看几例.

一 整体合并

例1解方程 ﹙2x-1﹚+﹙x-1﹚+﹙1-2x﹚=0

分析:将2x-1视为整体,进行合并,即可迅速获解.

解:原方程化为 ﹙2x-1﹚-﹙2x-1﹚+﹙x-1﹚=0

合并同类项得 x-1=0

∴x=1.

二 整体移项

例2 解方程x-〔x-﹙2113-x〕〕=﹙2113-x〕+1

分析::将2113-x视为一个整体,先去中括号,再移项合并,即可迅速获解.

解:原方程化为x-x+ ﹙2113-x〕=﹙2113-x〕+1

移项得 x-x+ ﹙2113-x〕-﹙2113-x〕=1

合并同类项得 x=1

化系数为1得 x=.

三 整体去括号

例3 解方程 〔﹙x-1〕-2〕-x=2.

分析:将小括号内的代数式看成一个“整体”,先去中括号,再去小括号小学数学论文,可减少运

算中因多次变号可能出现的各种错误,从而简化解题过程.

解:去中括号得﹙x -1〕-3-x=2.

移项,合并同类项得 -3x=24

化系数为1得 x=-8.

四 整体添括号

例4 解方程3{2x-l-〔3(2x-1)+3〕}=5.

分析:将2x—1视为一个整体.

解:原方程为 3{( 2x-l)-〔3(2x-1)+3〕}= 5.

去大、中括号得 3(2x-l)一9(2x-l)-9=5.

合并同类项得 -6 ( 2x-1 ) =14.

∴ x = -.

五 整体加1

例5 解方程++=-3 (其中x是未知数,a、b、c是已知数).

分析:注意到三个分数中分子与分母的和都相同,因此可用“整体加l”的方法来解.

解:原方程可化为﹙+1﹚+﹙+1﹚+﹙+1﹚=0.

++=0.

整体合并同类项得 ﹙++﹚﹙x+a+b+c﹚=0.

当++≠0时,x=-a-b-c.

当++=0时,方程有无数个解.

点评:对于某些含有分母的一元一次方程,当用分子加上分母时,所有分数的分子都相同,此时可用“整体加1”的方法巧解方程.

六 整体减1

例6 解方程 ﹙x+2009﹚+﹙x+2011﹚ = 3 -﹙x+2010﹚

分析:原方程即+=3-中,注意到三个分数的分子与分母的差都相同,因此可用“整体减1”的方法来解.

解:原方程可化为﹙-1﹚+﹙-1﹚+﹙-1﹚=0

即 ++=0

整体合并同类项得﹙++﹚﹙x-1﹚=0

即x-1=0

∴x=1.

点评:对于某些含有分母的一元一次方程,当用分子减去分母时,所有分数的分子都相同,此时可用“整体减l”的方珐巧解方程.

篇(7)

数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法。它能使人领悟到数学的真谛,学会数学的思考和解决问题,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用。日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用。所以突出数学思想方法教学,是当代数学教育的必然要求,也是数学素质教育的重要体现,如何在中学数学教材中体现数学思想方法也是一个十分重要的问题.

2001年我国新一轮基础教育课程改革已正式启动,此次基础教育数学课程改革的特点之一就是把数学思想方法作为课程体系的一条主线。已经有不少文章探讨初中数学教材中的数学思想方法,但对高中数学教材中蕴含的数学思想方法探讨较少。事实上,高中数学教材的改革也已经开始酝酿,目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)•数学》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材(试验本•必修•数学)》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。

二、高中数学应该渗透的主要数学思想方法

1、数学思想与数学方法

数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。数学思想的高层次的理解,还应包括关于数学概念、理论、方法以及形态的产生与发展规律的认识,任何一个数学分支理论的建立,都是数学思想的应用与体现。

所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。如变换方法包括恒等变换,恒等变换中又分换元法、配方法、待定系数法等等。

总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。

2、高中数学应该渗透的主要数学思想方法

中学数学教育大纲中明确指出数学基础知识是指:数学中的的概念、性质、法则、公式、公理、定理及由数学基础内容反映出来的数学思想方法。可见数学思想方法是数学基础知识的内容,而这些数学思想方法是融合在数学概念、定理、公式、法则、定义之中的。

在初中数学中,主要数学思想有分类思想、集合对应思想、等量思想、函数思想、数形结合思想、统计思想和转化思想。与之对应的数学方法有理论形成的方法,如观察、类比、实验、归纳、一般化、抽象化等方法,还有解决问题的具体方法,如代入、消元、换元、降次、配方、待定系数、分析、综合等方法。这些数学思想与方法,在义务教材的编写中被突出的显现出来。

在高中数学教材中,一方面以抽象性更强的高中数学知识为载体,从更高层次延续初中涉及的那些数学思想方法的学习应用,如函数与映射思想、分类思想、集合对应思想、数形结合思想、统计思想和化归思想等。另一方面,结合高中数学知识,介绍了一些新的数学思想方法,如向量思想、极限思想,微积分方法等。

因为其中一些数学思想方法都介绍很多了,这里只谈一下初等微积分的基本思想方法。无穷的方法,即极限思想方法是初等微积分的基本思想方法,所谓极限思想(方法)是用联系变动的观点,把考察的对象(例如圆面积、变速运动物体的瞬时速度、曲边梯形面积等)看作是某对象(内接正n边形的面积、匀速运动的物体的速度,小矩形面积之和)在无限变化过程中变化结果的思想(方法),它出发于对过程无限变化的考察,而这种考察总是与过程的某一特定的、有限的、暂时的结果有关,因此它体现了“从在限中找到无限,从暂时中找到永久,并且使之确定起来”(恩格斯语)的一种运动辨证思想,它不仅包括极限过程,而且又完成了极限过程。纵观微积分的全部内容,极限思想方法及其理论贯穿始终,是微积分的基础。

三、普通教材与实验教材在数学思想方法处理方面的比较

普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。

1、相同之处在于

普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。

2、不同之处在于

(1)有些在普通教材中隐含方式出现的数学思想方法,在实验教材中被明确的指出来,并用以指导相关数学知识的展开。

关于数学方法

我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”

而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。

关于数学思想

在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。

(2)实验教材中还增加了一些数学思想方法的介绍。

关于数学方法

普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。

关于数学思想

实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。而普通教材将第一册(下)的第五章设为“平面向量”,在第二册(上)的第七章才设置“直线和圆的方程”,中间隔了不等式一章,并且在内容上,也没有将向量与直线方程联系起来,关于法向量、点直线点法式方程都没有讲,只是随后设置了“向量与直线”的阅读材料简单介绍法向量、直线间的位置关系。

四、重视数学思想方法,深化数学教材改革

1、在知识发生过程中渗透数学思想方法

这主要是指定义、定理公式的教学。一是不简单下定义。数学的概念既是数学思维基础,又是数学思维的结果。概念教学不应简单地给出定义,而是应引导学生感受或领悟隐含于概念形成之中的数学思想方法。二是定理公式介绍中不过早下结论,可能的话展示定理公式的形成过程,给教师、学生留有参与结论的探索、发现和推导过程的机会。

2、在解决问题方法的探索中激活数学思想方法

①注重解题思路的数学思想方法分析。在例题、定理证明活动中,揭示其中隐含的数学思维过程,才能有效地培养和发展学生的数学思想方法。如运用类比、归纳、猜想等思想,发现定理的结论,学会用化归思想指导探索论证途径等。

②增强解题的数学思想方法指导。解题的思维过程都离不开数学思想的指导,可以说,数学思想指导是开通解题途径的金钥匙。将解题过程从数学思想高度进行提炼和反思,并从理论高度叙述数学思想方法,对学生真正理解掌握数学思想方法,产生广泛迁移有重要意义。3、在知识的总结归纳过程中概括数学思想方法,以数学思想方法为主线贯穿相关知识

概括数学思想方法可以从某个概念、定理、公式和问题教学中纵横归纳,反过来也可以以数学思想方法统领相关知识,

总之,数学思想方法是数学的灵魂和精髓,我们在中学数学教材中,应努力体现数学思想方法,不失时机的向学生渗透数学思想方法,学生方能在运用数学解决问题自觉运用数学思想方法分析问题、解决问题,这也是素质教育的要求。

参考文献:

王传增初中数学教学中的数学思想方法教教学与管理2001年4月

李艳秋发挥义务教材特点,培养学生数学素教育实践与研究2002年8月

曹才翰章建跃数学教育心理学北京师范大学出版社2001

章建跃朱文方中学数学教学心理学北京教育出版社2001年7月