期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 无线传感网的关键技术

无线传感网的关键技术精品(七篇)

时间:2024-01-31 15:16:31

无线传感网的关键技术

无线传感网的关键技术篇(1)

关键词:无线传感器网络 关键技术 节点结构

中图分类号:TP212.9 文献标识码:A 文章编号:1672-3791(2017)04(c)-0004-02

传感器节点构成了无线传感器网络(WSN),而无线通信又将这些传感器节点连接起来。在当代社会,无线传感器网络(WSN)的优点逐渐显露出来,吸引了越来越多的科学技术从业者参与到了该工程的研究工作当中,并努力将这一新兴交叉研究成果尽可能广泛地应用到社会生活的各个领域中。而由于这一研究工作对于工作人员的专业素质要求极高,涉猎范围广、难度大、需要的技术支持复杂且规模大,注定了这必将是一长期奋斗的过程,而这一过程中,做好对无线传感器网络(WSN)的发展现状以及其发展的关键技术的研究极其重要。

1 无线传感器网络(WSN)基本现状

1.1 特点

与其他的无线通信网络相比,无线传感器网络(WSN)有其自身的显著特点,并在其不断地发展一个新规程中显露出来。分布式、自组织性:它是由对等节点构成的网络,不存在中心控制,灵活性强,不依赖固定的基础设施和人为手段;健壮性:随机分布大量节点,应对节点损坏问题,具有较强的整体性;可扩展性:可兼容新增节点;动态拓扑:面对环传感器节点故障或失效等传感器拓扑结构可能发生变化的问题,无线传感器网络(WSN)具有动态的系统可重构性;应用相关:无线传感器网络(WSN)不能像因特网那样具有统一的通信协议平台,必须针对其具体应用来研究传感器网络技术;规模大:这一点包含了两方面:一方面是传感器节点分布在大的地理区域范围内;另一方面是传感器节点部署很密集;高冗余:大量冗余节点的存在,是系统具有很强的容错性;以数据为中心:传感器网络通常以数据本身作为查询或传输线索,不需要点对点通信。

除了以上这些自身的优点以外,它也存在一些局限性。比如节点自身的大小也有其要求,过大容易被发现,过小自身的内存也受限,不能完美的发挥无线传感器网络(WSN)的作用;或者所部署网络的环境过于恶劣,无线传感器网络(WSN)的一个重要作用就是帮助人类更大范围的感知世界、获取信息,而由于所处的环境因素,对其要求也更是严苛;各种局限性也时刻要求着科技工作者们对无线传感器网络(WSN)进行更深入的研究。

1.2 应用

美国是第一个从事无线传感器网络(WSN)研究的,并将其应用到了军事领域,在我国该领域研究起步较晚,但到21世纪,无线传感器网络(WSN)基本上已经得到广泛应用,但由于受科学技术发展的局限,其应用的范围也有限。在当代社会,世界各国基本已经实现了将无线传感器网络(WSN)在环境监测、医疗护理、目标跟踪、军事领域。国防安全、工业领域安全监测以及工业自动化生产等领域。

2 无线传感器关键技术

2.1 路由协议

设计传感器网络路由协议主要是为了寻找建立高效路径和传感器节点到接收器节点可靠的数据传输的方法,尽可能地延长其使用的年限。与传统的有线网络和蜂窝式无线网络不同,由于无线传感器网络(WSN)中没有基础设施和统一的面向全网的控制中心,因而在这种无中心控制的状态下路由机制可以广泛的获悉网络动态拓扑信息,并以一定方法计算路径并维护路径,使其正常运行。无线传感器网络(WSN)中路由协议的主要任务是建立一个源节点到目的节点的最优化路径,并通过这个优化路径传输信息。在无线传感器网络(WSN)中,路由协议具备以下几点特点:第一,能量优先。由于在无线传感器网络中,节点的能量是有限的,延长整个网络系统的使用年限是当前亟需解决的主要问题。因此,才设计路由协议的过程中,应将着手点挡在解决节点能量过快消耗这一问题上,建立一个可以高效的利用节点能量的机制;第二,基于局部拓扑信息。通常情况下,无线传感器网络(WSN)为了节省通信能量,多采用多跳的通信模式,而有限的节点不能存储大量的信息,也不能进行更深层次的路由计算。面对这一情况,建立一个简单高效的路由机制对无线传感器网络设计具有十分重要的意义;第三,可扩展性。面对无线传感器网络(WSN)节点失效或者新增节点的问题,或者面对无线传感器网络(WSN)所部署的外部环境因素的影响,路由协议的可扩展性(也可以称其为兼容性)可以十分有弹性的解决一系列可能出现的动态拓扑问题;第四,应用相关。由于无线传感器网络(WSN)的用单位以及场所的不同,造成了数据通信模式不同,每个应用都需要特定的路由机制。设计者应该具体问题具体分析,特定的应用建立特定的路由机制。

2.2 安全技术

安全问题是一个系统正常平稳运行的基础,且这一问题关乎到数据的安全性,对其自身系统的发展也发挥着重要作用。而无线传感器网络的应用就是为了为人力所不便,这一系统多数应用在人烟稀少的地区或者敌方地区,过分开放的网络环境和开放的传播媒介,使得该系统部署区域潜藏着各种各样的安全问题,极易受到各种各样的攻击。这也就解释了无线传感器网络(WSN)需要安全技术来支持其自身正常运转的原因,也正是如此,安全技术对于无线传感器网络(WSN)的正常运行、快速发展具有重要意义。针对无线传感器网络(WSN)安全问题,该领域研究工作的出发点是解决信息的机密性、完整性、消息认证、组播/广播认证、信息新鲜度、入侵检测以及访问控制问题。其中安全技术主要包括密钥算法、安全协议、密钥管理、认证、安全路由、入侵检测、拒绝服务攻击(DOS攻击)和访问控制等,在部署无线传感器网络(WSN)时可利用实体认证、密钥管理等技术,确保任务的安全性(保密性)以及信息安全,并在相对安全的网络环境下完成任务。密钥算法,也称为密码算法,由于无线传感器网络(WSN)缺乏网络基础设施、节点数量有限造成的资源受限、因是新兴技术科技不能支持其正常运行,在这一系统中许多现有的密码算法都不能直接使用。目前主要使用对称密码算法,有时也会使用非对称的密码算法。由于密码算法成本低,使得许多该领域的研究工作者都投入到这一技术的研究当中;SNEP是A.Perrig.等专门为无线传感器网络(WSN)打造的一个能够有效保障数据的机密性、完整性以及新鲜性安全协议;作为无线传感器网络(WSN)的安全基础,密钥管理的重要性也是不言而喻。本着解决无线传感器网络(WSN)安全问题的原则,所有网络节点不能够共享一个主密钥方式。是以目前许多研究者有针对性地提出了几个可行的密钥管理方式,其中包括:每对节点之间都共享一对密钥;每个节点与基站之间共享一对密钥;基本的随机密钥分配模型以及使用部署知识的密钥分配模型等。当然,这种多方式的密钥管理机制所需的研究工作任务繁重,对人才的专业素养水平要求也是极高。认证技术主要分为三种:一是内部实体之间认证;二是网络和用户之间认证;三是广播认证。对于内部实体之间的认证,传感器网络密钥管理是其实现的基础,在这一方面它和上一关键技术密钥管理技术紧密相关,都是利用对称密码学来实现内部实体之间的认证,使共享密钥的内部实体能够相互认证。用户是利用无线传感器网络(WSN)收集数据、采集信息的主体,当这一信息采集指令需要被实现时,就需要通过传感器网络的认证,这就是所谓的网络和用户之间的认证。广播认证,可以说是效率较高、最节约能量的一种通信方式。研究传感器网络广播认证,保证广播实体和消息的合法性,对于无线传感器网络(WSN)的研发具有重要意义。

2.3 无线传感器节点

在无线传感器网络(WSN)系统中,传感器节点(sensor)、汇聚节点(sink node)和管理节点作为三大基本要素在该系统中占据了主要作用。无线传感器网络节点通过自组织的动态拓扑方式,构成了整个无线网络系统,被传感器节点采集的数据通过其他传感器节点进行传输,并在传输过程中被多个带有不同指令的传感器节点处理,然后以多跳的方式汇聚到汇聚节点,最后这些数据会被卫星或者互联网汇聚到管理节点。在系统运行过程中,实体用户通过管理节点指令,并采集监测数据。传感器网络节点的组成和功能主要包括四个部分:传感单元、处理单元、通信单元以及电源部分。此外,可以选择的其他功能元素还包括:定位系统、运动系统以及发电装置等。针对节点的数量有限、能量有限、其能量无法补充这一短板,越来越多的工作人员从节省能量、发挥节点最大效益这一出发点出发,投身于对节点的研究工作当中,努力寻找一个既可以控制节点数量又可以有效利用节点的能量,使其可以最大限度地发挥作用,发挥自身的最大效益,并延长其使用年限,为此,无线传感器节点在网络运行过程中的作用也是至关重要,针对节电技术的研究也应该更加深入。

3 结语

除了上文提到的,无线传感器网络的关键技术还包括覆盖控制技术、数据融合技术、嵌入式系统等技术,他们也都对无线传感器网络的正常运行起到了技术支持作用。作为一门新兴技术,无线传感器网络(WSN)对当代社会以及未来社会的各种可能性还不为世人所知。随着科学技术的不断发展,人们对该领域的研究也不断加深,人们将要面对的问题也会不断浮现出来,这就需要该领域的研究人员们抓紧研究,解决已经出现的或者将来可能出现的问题。随着越来越多的领域应用到了无线传感器网络,这就意味着在将来社会这一技术可能会普及,目前我们能够做的就是对其发展加大关注力度,为实现无线传感器社会各方面的对接做出努力,从而使其更好地服务于人类,促进人类的进步。

⒖嘉南

[1] 吕涛.无线传感器网络(WSN)的关键技术研究[J].福建电脑,2016,47(6):96-97.

无线传感网的关键技术篇(2)

1 物联网的技术思想

物联网作为全球战略性新兴产业已经受到国家和社会的高度重视。物联网的应用标志着互联网的发展已经开始进入一个新的历史阶段,而基于互http://联网的产业化应用和智慧化服务将成为下一代互联网的重要时代特征。物联网将充分发挥新一代信息通信技术的发展优势,与传统产业服务深度融合,促进传统产业的革命性转型,研究满足国家产业发展需求的信息化解决方案,推动信息服务产业的发展与建设,实现战略信息服务产业的智慧化;将形成以新兴信息服务业为龙头,网络运营业为支撑,网络设备制造业为补充的完善的产业结构。

物联网的技术思想可以定义为利用“泛在网络”实现“泛在服务”,是一种更加广泛深远的未来网络应用形态;其原意是用网络形式将世界上的物体都连接在一起,使世界万物都可以主动上网。它的基本方式是将射频识别设备(rfid)、传感设备、全球定位系统或其他信息获取方式等各种创新的传感科技嵌入到世界的各种物体、设施和环境中;把信息处理能力和智能技术通过互联网注入到世界的每一个物体里面,令物质世界被极大程度的数据化,并赋予生命;物联网希望世界万物能够智慧化地上网,使物体会“说话”、会“思考”、会“行动”。

物联网的本质就是借助于网络智慧化的实现,把各种事物以信息化的方式通过网络表现出来;物品能够利用rfid等传感技术彼此进行智慧“交流”,而无需人的干预;通过互联网实现物品的自动识别和信息的互联与共享。WwW.133229.CoM

物联网最为明显的特征是物物相连,而无需人为干预,从而极大程度地提升效率,同时降低人工带来的不稳定性。因此,物联网在行业应用中将发挥无穷的潜力。比如,将感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合。

在一个网络物理平台上提供多种业务,这才是多域资源和服务融合的真正内涵。真正的多域融合以后,将会提供一个统一的网络平台,所有的业务就都可以在这个网络平台上实现,当然,接入方式是多种多样的,但整个网络将会是一个统一、融合的网。融合后的网络,将能够为用户的使用带来极大的方便。

物联网是一个多设备、多网络、多应用、互联互通、互相融合的一个大网,相关的接口、通信协议等都需要有一个统一标准来指导。而目前,各地的物联网都各有自己的标准。标准很多,又缺乏权威性,这就导致不同的物联网项目难以互通,成为一个个“孤岛”。仅仅rfid在全球就有几十个标准化组织出台了250个标准,而全球两万多种传感器的标准化现状可想而知。因此统一的标准对物联网产业化发展显得至关重要。不仅可以让各地正开展的示范应用的成功案例在其他地区进行有效复制,推而广之,并且能让一个个信息“孤岛”有效融合,整合资源链,在一定程度上避免重复建设带来的资源耗费从而提高效率。

广泛的物联网应用需求必将积极推进物联网标准体系的构建,建立跨行业、跨领域的物联网标准化协作机制,鼓励和支持企业积极参与国际标准化工作,推动中国具有自主知识产权的技术成为国际标准。国家将围绕物联网关键技术和产业,开展技术攻关和产业化推进工程,着力突破传感器网、物联网关键技术,加快通信网、传感网络以及物联网的结合,推动形成完整产业链和自主发展的规模产业化能力,提升整体产业层级和在国际分工体系的位置,推动形成具有国际竞争力的物联网制造和运营产业体系。国家将大力支持自主知识产权的创造和应用,鼓励企业建立专利联盟,加大对物联网知识产权保护和管理。

物联网的技术思想正在催生一场战略性新兴产业革命[1-3],物联网时代的到来将给我们带来千载难逢的机遇。

物联网产业发展的核心价值是传促使传统产业在这场新兴产业革命的新一轮竞争中占领制高点,抢占先机,掌握主动权,引领世界信息化的发展与建设,全面推动社会的经济振兴和社会进步。

2 泛在无线技术是实现物

联网产业化应用的关键

物联网可以理解为是泛在网的应用形式[4],而不是传统意义上的网络概念。

泛在网是在异构网络融合和频谱资源共享基础上实现无所不在的网络覆盖,是一种基于个人和社会的需求。

泛在网利用现有的和新的网络技术,实现人与人、人与物、物与物之间无所不在并且按需进行的信息获取、传递、存储、认知、决策、使用等综合服务的网络体系[5]。

泛在无线技术是泛在网在连接物质世界过程中实现末梢效应和边缘价值的核心技术,也是促进物联网产业化应用的关键。

泛在网通过泛在无线技术完成与物质世界的连接,并且实现环境感知、内容感知以及智慧性,为个人和社会提供泛在的、无所不含的信息服务和应用。泛在网具有比物联网更广泛的内涵。

作为泛在无线技术重要组成部分的传感网可以看作是物联网的一种末梢网络和感知延伸网。传感网是多个由传感器、数据处理单元和通信单元组成的节点,通过自组织方式构成范围受限的无线局域网络。传感网为物联网提供事物的连接和信息的感知。

目前,与物联网紧密相关的无线通信技术已渗透到社会各领域,成为很多行业的支撑,并形成新的经济增长点。随着无线通信网络发展所呈现出的高速化、宽带化、异构化、泛在化趋势,由于泛在网络实现的关键就在于泛在无线技术,泛在无线通信成为近年来无线通信领域关注的热点之一。

转贴于 http://

作为泛在无线通信的一个重要应用,无所不在的“物联网”通信时代即将来临,从长远来看,物联网的产业化应用有望成为后互联网时代经济增长的引擎。

通信网络正在朝着泛在网络发展,而泛在无线接入是泛在网络和物联网的核心和关键技术。泛在网络能够随时随地提供网络服务,泛在网络中用户http://通过智能终端可以从网络上获得除传统的话音、短信、视频业务外的各种各样的服务。泛在网络是一个无处不在的网络,人们可以在任意时间任意地点接入网络。泛在网络帮助人类实现在任何时间、任何地点,任何人、任何物都能顺畅地通信。通信对象可以是机器对机器、机器对人、人对机器和人对人。随着国民经济的发展和社会信息化水平的日益提高,泛在网络已经成为国内外政府、学术界、运营商、社会团体、设备厂商关注的重要话题。

3 泛在无线通信技术研究

进展

在物联网产业发展的过程中,关于泛在无线通信技术的研究进展已经在业界引起了广泛的关注,所涉及的关键无线技术主要包括:末梢感知层的关键技术、网络融合层的关键技术、无线资源管理的关键技术以及对数据进行综合处理的信息处理等关键技术。

3.1 末梢感知层

末梢感知层的关键技术主要涉及数据的感知、采集和传输技术,其中无线技术主要集中在数据传输部分。物联网的末梢网络主要是以无线传感器为代表的大规模自组织网络结构。传感器网络内部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器对不同的环境和信息进行感知并捕获数据。传感器按一定周期采集不同类型的数据,所采集的信息内容和信息格式也不同。数据采集需要采用短距离低功率的无线通信技术,之后要将数据传输到控制中心或者处理平台,经过处理后,由应用平台控制实现不同的系统应用。因为本文主要探讨物联网与无线技术,因此,以下着重说明短距离无线通信技术和无线传感器网络。

3.1.1 短距离无线通信技术

鉴于物联网的无线连通方式有部署灵活、移动性、渗透性强等特点,近年来,世界众多站在技术前沿的国家和企业在制订标准、研究新技术和应用解决方案方面纷纷予以关注,以期掌握市场主动。国家近期也通过一系列措施支持和鼓励中短距离无线通信、与无线传感技术相关技术的研发和产业化。

短距离无线通信尤其适合物联网的感知延伸层的组网和应用,尤其以无线个域网(wpan)为主的无线通信网络为主要内容。目前,主流的微功率短距离的无线通信技术如wlan、uwb、rfid[6]、bluetooth、zigbee、60 ghz毫米波的wpan等,其中大部分技术的工作频率都集中在了2.3~2.4 ghz频段上。2.4 ghz频段无线系统主要有bluetooth、wi-fi、wireless usb、zigbee以及无绳电话和微波炉等系统与设备。如此密集的系统分布,必然造成该频段的资源紧缺,频谱日益拥挤,电磁兼容问题日益凸现。

蓝牙(bluetooth)技术[7-8]是一种适用于短距离无线数据与语音通信的开放性全球规范。目前,蓝牙技术已经经历了艰难的酝酿阶段,进入了全面起飞阶段。蓝牙越来越多地嵌入到中高档产品中,如pda、移动电话、无绳电话、台式计算机、笔记本计算机、mp3播放机、数字相机和便携式上网设备等,并从移动信息电器逐步拓展到汽车、工业控制、医疗设备等新的领域。

wi-fi[9-10]是一种可以将个人电脑、手持设备(如pda、手机)等终端以无线方式互相连接的技术。其技术标准采用ieee 802.11b标准。wi-fi可以帮助用户访问电子邮件、web和流式媒体。它为用户提供了无线的宽带互联网访问。同时,它也是在家里、办公室或在旅途中上网的快速、便捷的途径。在物联网应用中,wi-fi将作为无线和有线相连接、短距离与长距离通信相衔接的桥梁,发挥更大的作用。

zigbee[11]使用ieee 802.15.4标准作为媒体访问控制(mac)和物理(phy)层规范,并在此基础上定义了应用层(apl)、网络层以及用户应用框架。

zigbee之所以能在自动控制领域得到广泛应用,是由于它自身具备的多种优点,包括低功耗、低成本、低速率、近距离、短时延、高容量、高安全、免执照频段。

总之,除了底层的传感器技术、海量的ipv4/ipv6地址资源、自动控制、智能嵌入等配套技术之外,实现真正的无所不在的、大规模的物与物联网,更为重要的是在传输层实现统一协作的通信协议基础,而这其中,各种无线电通信技术,将起到特别关键作用。

wpan、wlan、ngbwa等无线通信技术,以及基于这些无线技术相结合的融合应用将是物联网产业链中,最为重要的组成部分。

3.1.2 无线传感器网络

无线传感器网络[12-13]将以其网络规模大、自组织性强、网络拓扑动态变化强、以数据为中心等优势成为物联网不可或缺的主要部分。

itu架构中泛在传感器网络、基础骨干网络和泛在传感器接入网络是物联网网络架构中可能采用无线传输技术的部分,也是物联网频谱需求的主要来源。

传感器网络基础骨干网络以传统的公共移动通信网络和数字集群网络为代表,泛在传感器接入网络则以短距离无线传输技术为代表。

物联网在各个行业(如智能家居、智能安全、动物溯源、智能医院、智能交通、智能物流等)领域应用中,末端设备和设施,包括具备“内在智能”的(如传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等)和“外在使能”的(如贴上rfid的各种资产、携带无线终端的个人与车辆甚至“智能尘埃”等)物理界实体,都需要通过各种传感器设备、无线、有线的通信网络实现互联互通,以实现其“智能化物件或动物”的特质,这其中无线传感器网络的应用需求最为强烈。

目前,我们在无线传感器网络方面研发的技术包括:

·无线传感网接入技术,内容包括基于无线传感器网络的多网络融合系统结构和多种无线传感器网络转贴于 http://

接入技术的比较。

·无线传感网路由技术,内容包括无线传感器网络路由协议设计。

·无线传感网拓扑控制技术,内容包括无线传感器网络功率控制技术和典型的拓扑控制方法。

·无线传感网中数据聚合与管理,内容包括无线传感网数据聚合技术,无线传感网数据管理技术以及无线传感网安全技术。

3.2 无线频谱资源应用与管理策略

我们对物联网应用过程中对无线资源特别是无线频谱资源的需求做了分析。

在末梢网络中,以无线传感器网络的频http://谱需求为例,无线传感器网络所能提供的无线通信带宽是十分有限的,特别是在2.4 ghz的通信频段上,聚集了蓝牙、wi-fi、zigbee等无线网络,使得该频段的信道变得十分拥挤。

从全局的观点考虑,根据itu-r m.2078等国际报告[14],4g还需要352~1 152 mhz的频率,这些频谱都是按照4g的用户流量模型为人与人的通信而设计的,并不包括物联网的频谱需求,因此解决物联网的频谱需求的难度远远大于4g。

无线频谱资源紧张可能成为物联网应用的“瓶颈”问题。同时,我们发现,可以通过有效的资源管理机制实现频谱的合理和高效再利用,从而解决频谱资源紧张问题,使资源的供需达到平衡。

无线资源管理可以从国家政策和规划角度得到很好的再配置,我们也对该方面提出了相关的建议。例如对物联网频谱的合理规划与管理、物联网频率划分调整及频率保护政策、参照国际惯例对物联网频谱进行规划、建立物联网的流量模型及常见应用模型、为典型的物联网应用制订频谱标准、借鉴频谱拍卖机制适当实施频谱开放计划等等。

目前,我们主要从技术方面提出了适合于物联网无线资源管理的各种措施,包括:从空时频能复用角度,开发频谱池、频谱聚合、智能天线、软件无线电、多点协作等技术;在授权频段开发d2d直通技术,在非授权频段,开发多种短距离通信技术共存技术等;从系统级角度开发频谱分析、频谱决策、频谱监视、频谱搬移和频谱共享等频谱管理技术;从频谱二次利用角度开发可见光通信、太赫兹通信、白色空间通信以及开发2.5 ghz、3.3~3.4 ghz、3.5 ghz、5 ghz、5.15~5.725 ghz等新频段业务;此外,在无线资源管理方面,着重开发无线技术的电磁兼容和电磁干扰技术,为无线资源的有效复用、多种技术和系统的高效共存提供保障。

3.3 异构网络融合与协同技术

网络的异构性主要体现在以下几个方面:

·不同的无线频段特性导致的频谱资源使用的异构性。

·不同的组网接入技术所使用的空中接口设计及相关协议在实现方式上的差异性和不可兼容性。

·业务的多样化。

·终端的多样化。

不同运营商针对异构网络所实施的相应的运营管理策略不同。

以上几个方面交叉联系,相互影响构成了无线网络的异构性。这种异构性对网络的稳定性、可靠性和高效性带来了挑战,同时给移动性管理、联合无线资源管理、服务质量保证等带来了很大的问题。

网络融合的主要策略可以理解为各种异构网络之间,在基础性网络构建的公共通信平台之上,实现共性的融合与个性的协同。

所谓“融合”是在技术创新和概念创新的基础上对不同系统间共性的整合,具体是指各种异构网络与作为公共通信平台的移动通信网或者下一代网络的融合,从而构成一张无所不在的大网。

所谓“协同”则是在技术创新和概念创新的基础上对不同系统间个性的整合,具体是指大网中的各个接入子网通过彼此之间的协同,实现共存、竞争与协作的关系以满足用于的业务和应用需求。

不同通信网络的融合是为了更好地服务于异构通信网络的协同。协同技术是实现多网互通及无线服务的泛在化、高速化和便捷化的必然选择,也是未来的物联网频谱资源共享亟待解决的问题。

具体来说,异构网络融合的实现分为两个阶段:一是连通阶段,二是融合阶段。

连通阶段指各种网络如传感器网络、rfid网络、局域网、广域网等都能互联互通,感知信息和业务信息传送到网络另一端的应用服务器进行处理以支持应用服务。

融合阶段是指在网络连通层面的网络平台上,分布式部署若干信息处理的功能单元,根据应用需求而在网络中对传递的信息进行收集、融合和处理,从而使基于感知的智能服务实现得更为精确。从该阶段开始,网络将从提供信息交互功能扩展到提供智能信息处理功能乃至支撑服务,并且传统的应用服务器网络架构向可管、可控、可信的集中智慧参与的网络架构演进。因此,异构网络融合不是对现有网络的革命与颠覆,而是对现有网络分阶段的演进、有效地规划异构网络融合的研究与应用。

3.4 海量信息处理技术与云计算

在物联网中,从末梢网络采集了大量的数据,这些数据需要进行处理才能实现各种不同的应用需求。于是,海量信息智能处理与云计算技术应运而生。根据泛在无线网络中数据信息的特点,可以采用诸如数据时间对准技术、集中式数据融合算法及分布式数据融合算法等技术进行数据融合,采用分类、估值、预言、相关性分组或关联规则、聚集、描述和可视化、复杂数据类型(text、web、图形图像、视频、音频

转贴于 http://

等)挖掘等进行数据挖掘。

目前,我们针对海量信息处理和云计算方面,建立了相应的实验平台,涵盖网络信息处理等领域的应用,围绕机器翻译、语言信息处理、海量信息存储与搜索、网络内容技术、语义计算、web挖掘与服务、云计算、网络通信及安全等若干领域的理论技术与应用开展研究。

4 结束语

如今,物联网正越来越多地运用到人们的生活中。全中国的力量都被发动起来迎接物联网时代的到来,作为科研力量之一的学校和科研团队一直努力在物联网研究方面做出有价值的工作,目前,我们研发了智慧校园系统、校园环境控制系统、云计算开发平台,将各种信息与服务孤岛融合成为一个统一的平台,统一了门户,统一了用户的身份,实现了全校资源、服务和用户的融合共享;采用云计算和新一代信息技术使校园服务逐步实现智慧化。将人才培养、科学研究、服务社会融为一体。需要融合、需要创新、需要共享,这是物联网的方向。还有一个是面向服务、面向应用,而云计算就是基础。相信,我们会继续为物联网时代做出更多有意义的成果。

在后互联网时代的国家物http://联网产业化发展和技术应用策略中应当高度重视泛在无线通信技术的研发,并加快推进与物联网产业化应用的深度融合,以新兴信息服务业为龙头优先发展基于网络的新兴智慧服务产业,以社会发展的服务需求为导向发展物联网。

无线传感网的关键技术篇(3)

【关键词】 传感器网络 信息广播系统 关键技术

传感器网络在采集数据方面具有很强的优势,也是信息广播系统得以维持的根本,同时,广播系统其内部的功能组件,又会对传感器网络技术所收集的数据信息进行分类处理,在管理、决策的基础上为信息广播系统提供数据支持。可见,作为信息广播系统中的核心技术,传感器网络的重要性不言而喻。

一、无线传感器网络中的复杂事件订阅与匹配

所谓的复杂事件订阅,是指系统在运行的过程中,为了满足自身的需求,会在周期内向传感器网络发送数据请求的一种功能。然而,由于无线传感器网络其自身结构的复杂性,在同一时间产生数以百万计的检测数据,这必然会导致数据采集与传输的错乱,因此,需要进行节点匹配,以确保能够满足系统内消费者需求。若想要达到这一目的,首先,需要设计出一种较为完善的处理架构,即EventX架构,并保证改架构中具备完整的实体对象,如订阅者、消费者等;其次,在满足EventX架构的基础上,应该在无线传感器网络中进行订阅分解机制设置,以达到对数据进行订阅分解、数据处理、子订阅合成、仿真与分析的目的;最后,还要对SGEM事件匹配算法及其理论进行分析,最终使无线传感器网络中的杜咋时间订阅与匹配得以实现[1]。

二、无线传感器网络中的数据存储

对无线传感器网络中的数据存储进行研究,主要通过研究其内部的存储机制便能够得以实现,首先需要对节点进行网络存储时所采用的方式,主要包含怎样确定数据的存储位置、系统中发出的查询信息请求,怎样才能够准确无误的链接到数据被存储的位置上等两个方面,事实上,这类似于中介过程,在整个过程中,最为核心的技术便是如何确定数据的存储位置,以完成特定的匹配查询;其次,完成特定的匹配查询,又需要对无线传感器网络中的数据存储模式进行合理的设置,在信息广播系统中,常用到的数据存储模式主要有以下几种,分别为:集中式存储、本地存储和分布式存储等几种。同时,在分布式存储中还引入了一种基于协作域的分布式存储方法,其流程主要如下:对问题进行描述与假设――应用基于协作域的分布式存储方法REALSTORE――协作域的建立――对协作域内的数据进行存储与提取;最后,通过建立方针模型,并对其进行分析,来实现对信息开销的控制,确保信息的有效性。

三、层次化信息广播系统中的数据更新

由于传感器网络具备数据收集和复杂事件订阅与匹配的功能,并作为信息广播系统中的基础和核心技术,在同一时刻,传感器网络所产生的百万检测数据需要被存储在准确的位置上,并且确保满足消费者的查询需求,随时都会有新的数据需要被存储,并且也不可避免的会产生消费者更改需求的现象,这就需要层次性信息广播系统中带有数据更新的功能,随时能够进行数据的更新,只有将二者进行有效的融合,实现“同步请求”与“同步更新”,才能够更好的降低数据传播的开销。满足这一点要求,需要传感器网络具备对现有数据进行更新的算法,主要有LWF调度算法、RxW调度算法、Edge Side Includes(ESI)调度算法、数据广播算法与消费者查询应答算法等几种常用的更新算法,通过对这些算法来进行数据更新,能够使传感器网络具备更强的环境适应性,并且在很大程度上提高数据的实时性与准确性[2]。

四、信息广播系统中的数据调度

使信息广播系统具备数据调度的功能,主要是为了随时满足消费者的数据请求,这就需要将无线传感器网络所采集到的数据,在经过层次化服务器的传播之后,能够达到将最准确的数据、以最快的速度传递给消费者的目的。在进行数据调度的过程中,会产生很多影响因素,主要的影响因素体现在以下几个方面:①等待时间;②数据项的热度;③查询的未完成度;⑤选择方法。在进行数据调度这一过程中,根据具体的情况采用不同的算法,根据以往数据调度的规律,总结出消费者最常采用的查询方式、接受请求频率最高的数据项,以及消费者最关注的查询,最终根据这些数据信息的支持来选定算法[3]。

无线传感网的关键技术篇(4)

1.1物联网介绍

1.1.1物联网概念

物联网是指利用射频识别技术(RFID)、全球定位系统(GPS)、传感器等技术将物体与互联网连接在一起的技术,物联网可以实现信息交流与通信,是互联网技术的深入应用[2]。物联网被视为互联网未来发展趋势之一,其中物联网中的每个物体都是有标识、属性的个体,利用智能接口,按照一定的通信协议连接到互联网中。

1.1.2物联网主要特征

1)标识与感知。物联网可通过RFID、传感器等技术标识物体,并能通过上述技术感知或捕获研究目标,采集该物体的相关信息。

2)信息处理。物联网获取的信息可以利用计算机进行大数据计算与分析,从而获取极具价值的信息,以供决策与控制。

3)信息交流。物联网与互联网技术一样,可以实现数据的实时共享,及时将系统信息数据通过网络传输到系统中心。

1.1.3物联网关键技术

物联网技术一般可分为感知层、网络层以及应用层三大环节,每一个环节都对应有关键技术。感知层关键技术包含RFID技术、二维码、传感器技术等,利用上述技术能够实现对物体的标识与感知[4]。网络层关键技术包含计算机技术、互联网技术、云计算技术、大数据处理技术等,是信息处理、数据管理的核心。应用层关键技术包含智能芯片等,是信息处理的应用执行层面。近年来,随着物联网技术的不断发展,出现了许多新型技术或多种技术融合的综合性技术,如PML开发技术、嵌入式技术、传感器网络技术、信息安全技术等,这些技术的应用显著提升了物联网的性能。

1.2智能电网介绍

1.2.1智能电网概念

所谓智能电网,其本质是电网的智能化发展,以物理电网为基本框架,充分结合测量技术、传感技术、信息化处理技术、决策系统技术、计算机技术、互联网技术等智能化技术而形成的综合性智能电网。智能电网的应用,将资源开发、电能应用、电网管理等各个环节实现了智能化集成,不仅实现各个环节的无缝连接,而且提升了电网的工作效率及可靠性,因此,具有极大的经济效益。

1.2.2智能电网主要特征

1)自愈性。智能电网具备自我修复能力,当电网中出现故障,可以容错重组,实现系统自愈。

2)激励性。智能电网可以激发用户参与到电网的运作过程中,从而提高电网的工作效率。

3)安全性。智能电网相比普通电网具备更高的安全性,尤其是在利用智能化技术下,电网的抵御能力更强,电网安全性更高。

4)兼容性。智能电网可以兼容各种形式的发电、供电、蓄电,因此电网的兼容性更好。

5)优化性。智能电网能够优化各种电网设备的运行,降低电网的运行成本,优化性能优越。

1.2.3智能电网关键技术

智能电网未来发展趋势,是集合了多种技术于一体的综合性智能化系统工程。智能电网所包含的关键技术主要有可处理大量数据的信息处理技术;高效、实时的通信技术;电网能源分布式接入技术;系统容错技术;传感器网络技术;智能规划技术等。

2物联网技术与智能电网技术融合

物联网技术与智能电网技术的融合是信息化技术发展的必然,也是电网发展的趋势。采用物联网技术的智能电网,能够在资源整合、通信提升、电力信息化等方面的发展提供重要的支撑。此外,物联网技术的应用,能够提高智能电网的自动化、智能化,对提高智能电网的管理,提高电网的工作效率,降低运行成本等方面具有重要意义。为了研究物联网技术与智能电网技术的融合,笔者分别从感知层、网络层、应用层三方面进行介绍。

2.1感知层

感知层包含了各种传感器、智能芯片等信息识别与采集设备,从而实现对物体属性、行为的监测,并能够获取物体的基本信息数据,通过网络技术、通信技术将数据传输到数据处理中心。在智能电网中,采用物联网技术可以对输电线路、电气设备等电网目标进行识别与监控,并通过光纤通信技术或无线通信技术将获取的数据传输到数据处理中心。

2.2网络层

网络层是利用互联网技术实现数据传输与共享的关键环节。在智能电网中,主要以光纤网络为主要的网络层,并以无线通信网络、无线宽带网络为辅助,将感知层获取的数据进行实时传输。在智能电网的应用过程中,为了保证系统的安全性,因此对数据的传输提出了更高的要求,智能电网的信息传输主要通过电网系统的内部网络,只有在特殊环境下,才可以部分依靠公共网络。此外,为了保证智能电网的应用,电力系统的通信网络应该以骨干光纤网络为主,这样不仅能够保证数据传输的实时性,而且能够提高数据的容量。以光纤网络为主,辅助以无线宽带网络、电力线载波网络、无线数字通信网络等通信技术,实现双向宽带通信的智能电网与物联网的融合。

2.3应用层

应用层是物联网对相关信息或处理结果进行应用的层面,在智能电网中,应用层主要是各种电力基础设施、电力资源的应用等方面。电力基础设备将为物联网技术提供重要的信息数据,同时也为物联网技术提供数据处理与计算的基础设施,保证各种数据、设备的接口资源,为物联网提供各种适应性极强的应用。此外,应用物联网技术后,智能电网的在智能计算、大数据处理、模式识别等技术方面有了更有效的解决方案,能够应用物联网技术实现智能化决策,对提升电网的管理水平具有重要意义。

3物联网在智能电网中应用展望

物联网技术在物体识别与感知、信息处理、控制与决策等方面的能力,能够对智能电网的发展提供极大的推动作用。以目前的发展趋势来看,物联网技术与智能电网技术的结合与应用将不断的深入与完善,尤其是在以下几方面的应用,将成为物联网技术、智能电网技术融合的重要方向。

1)输电线路可视化。利用物联网技术的远程识别与感知技术,能够对输电线路进行可视化监控,结合无线通信技术、全球定位技术等,对输电线路冰冻、震动、故障等问题进行实时在线远程监控,提高智能电网输电线路的感知能力,缩减解决故障的反应时间。

2)电力生产智能化。利用物联网技术,能够实现电力生产的智能化管理,尤其是将RFID技术、传感器网络技术应用到电力现场作业,能够对误操作、非法进入等安全事件进行远程监管,可以对电力生产设备进行智能化管理,减少电力生产的安全隐患,结合用电信息情况,智能规划生产计划。

3)用电信息智能采集。传统用电信息通过电表人工采集,实时性、准确性均难以保证。应用物联网技术,可以建立远程用电信息采集系统,并将采集的数据通过通信网络实时反馈到管理中心,可实现用电信息的实时管理,提高智能电网的智能化,适时进行调峰调频,提升用电效率。除此之外,物联网技术还能在电力设备管理、电力设施全寿命周期管理、用电巡检等方面提供重要的应用技术保障,能够有效提高电网的可靠性,提升客户服务满意度。

4结语

无线传感网的关键技术篇(5)

关键词:无线传感器网络;智能交通系统;节点;系统模型

中图分类号:TN99 文献标识码:A 文章编号:2095-1302(2012)06-0025-03

0 引 言

智能交通系统(Intelligent Transportation System,ITS)是在传统的交通体系的基础上发展起来的新型交通系统,它将信息、通信、控制和计算机技术以及其他现代通信技术综合应用于交通领域,并将“人—车—路—环境”有机地结合在一起。事实上,在现有的交通设施中增加一种无线传感器网络技术,将能够从根本上缓解困扰现代交通的安全、通畅、节能和环保等问题,同时还可以提高交通工作效率[1]。因此,将无线传感器网络技术应用于智能交通系统已经成为近几年来的研究热点。

智能交通系统主要包括交通信息的采集、交通信息的传输、交通控制和诱导等几个方面。无线传感器网络可以为智能交通系统的信息采集和传输提供一种有效手段,以用来监测路面与路口各个方向上的车流量、车速等信息。它主要由信息采集输入、策略控制、输出执行、各子系统间的数据传输与通信等子系统组成。信息采集子系统主要通过传感器来采集车辆和路面信息,然后由策略控制子系统根据设定的目标,并运用计算方法计算出最佳方案,同时输出控制信号给执行子系统,以引导和控制车辆的通行,从而达到预设的目标[2]。

1 国内外无线传感器网络在智能交通中的应用研究

美国的马萨诸塞大学建立的UMass DieselNet智能公交系统主要包括公交车节点以及安装在路边的Throwboxes,可用于提高网络的连通性。美国加州大学伯克利分校的ATMIS项目,哈佛大学的CitySense项目都开展了无线传感器网络在道路交通监测方面的研究。瑞典有一段公路,利用太阳能供电传感器,可以对行驶车辆做出路面结冰、事故拥堵和其他危险情况的预警。

国内对车辆传感器网络的研究也在积极开展。武汉理工大学开展了无线传感器网络在火车车厢环境中的测控应用,对车厢内的空气质量、安全隐患等进行全程检测。中科院沈阳自动化所开展了基于无线传感器网络的高速公路交通监控系统研究,并利用此项技术来弥补传统设备能见度低、路面结冰时无法对高速路段进行有效监控等,从而提出了新的图像监视系统;此外,对一些天气突变性强的地区,该技术也能极大地降低汽车追尾等交通事故的发生。

无线传感器网络在智能交通中还可以用于交通信息、电子收费、车速测定、停车管理、综合信息服务平台、智能公交与轨道交通、交通诱导系统和综合信息平台等技术领域。

2 无线传感器网络在智能交通中的应用关键技术

2.1 节点技术

在无线传感器网络交通监控系统中,节点技术是最常见也是使用最多的一种技术,通常采用的普通节点、汇聚节点、网关节点等三类传感器节点的功能是[3]:

普通节点主要承担数据采集,并将感知的数据信息传递给近邻的节点;汇聚节点用于收集普通节点感知的信息,然后进行初步数据处理,并将处理结果传送到网关节点,汇聚节点之间可以互相通信;网关节点用于收集汇聚节点信息并通过3G网络将信息传送回控制中心,节点间不具备通信功能,也就是说,网关节点主要承担无线和有线信号转换,实现 Internet网络的接入功能。

根据各类节点功能上的不同,可对节点进行分层部署。首先,由普通节点将感知信息以单跳或多跳路由协议的方式把信息传送到距离其最近的汇聚节点,然后由汇聚节点采用相同的方式将信息传送给网关节点[4]。

2.2 地磁传感技术[5]

目前在道路上的绝大多数车辆都由大量的铁制成,这些钢铁比周围的空气更具有磁渗透性。地磁传感器可以分辨出地球磁场六千分之一的变化,而当车辆通过时,对地磁的影响可能达到地磁强度的几分之一,因此,可以利用地磁传感器来检测车辆的存在,并且其具有极高的灵敏度。地磁传感器就是通过探测车辆通过时对地球磁场产生的扰动来探测车辆的,传感器模块可以依据测量过往车辆对地磁场的干扰情况来检测车辆。此外,也可以根据不同车辆对地磁产生的扰动的不同来识别车辆类型。国外在这方面的应用已经非常广泛。

3 基于移动agent的道路交通网的算法系统模型

在图1所示的无线传感器网络中,底层是由数个车辆传感器装置的移动agent实体组成的(移动agent在交通网络中看作一个节点),底层可以从其他的agent上接收信息再传递信息到另外的移动agent。通过相互交换,它们可以获取城市交通网络中的不同信息,并通过对所得数据进行分析和处理得出结论,再传递给司机一些指示,从而指导司机在驾驶中选取正确的方向。车辆上的移动agent实体可以容易地进入和离开网络,所以,不需要额外的操作就能很容易地扩大网络的覆盖范围,提高整个网络的灵活性[6,7]。

4 交通信息的采集

信息采集主要是通过传感器来在道路上实时检测交通量、车速、车流密度和车道占有率等交通参数。在无线传感器网络结构中,安装在道路两旁的汇聚节点组成一个多跳的Mesh基础网络构架,终端节点与汇聚节点组成星型网络并进行通信,将最终数据汇聚到网关节点上。网关节点可集成安装在交叉路口的交通信号控制器内,通过信号控制器的专有网络将所采集到的数据发送到交管中心进行进一步处理。道路上的车辆安装传感器节点将动态地加入传感器网络在交通信息采集中,汇聚节点可安装在路边立柱、横杠等交通设施上[8]。终端节点可采用非接触式地磁传感器来定时收集和感知区域内车辆的速度和车辆间距等信息[9,10]。当车辆进入传感器的监控范围后,终端节点可通过磁力传感器来采集车辆的行驶速度等信息,并将信息传送给下一个定时醒来的节点。当下一个节点感应到该车辆时,结合车辆在两个传感器节点间的行驶时间估计,就可估算出车辆的平均速度。多个终端节点将各自采集并初步处理后的信息通过汇聚节点汇聚到网关节点,进行数据融合,获得道路车流量与车辆行驶速度等信息,从而为路通信号控制提供精确的输入信息。此外,通过给终端节点安装温湿度、光照度、气体检测等多种传感器,还可以进行路面状况、能见度、车辆尾气污染等检测。例如:在交叉路口由于视线被阻碍,容易发生车辆碰撞事故,而利用无线传感器网络采集交通信息,就可以设计车辆防碰撞机制,因而具有很大的现实意义。

5 测距与定位

在智能公交网系统中,公交车辆在无线传感器网络中的定位是一项复杂而重要的技术。公交车辆的位置是基于无线传感器网络的智能公交监控网的重要交通参数,它决定着该系统运行的好坏。采用基于测距的算法或不基于测距的算法,可对位于无线传感器网络中的公交车辆进行定位。

目前的定位技术主要有硬件技术与软件算法。硬件技术即是通过各种技术准确测出或者估算出两个节点之间的距离,这一技术是准确得到位置信息的基础。软件算法是在现有的各种测距技术的基础上,根据各种测距技术的特点,设计不同的算法来将已测出的距离信息计算成具置信息[11]。其中基于测距算法的测距方式分为基于到达角度的测距方式、基于到达时间的测距方式、基于接收信号强度的测距方式、基于到达时间差的测距方式和对称双边双路测距等。不基于测距的定位方式分为质心定位算法、DV-Hop定位算法和APIT定位算法等[3,12]。

目前,对于无线传感器网络本身的研究热点主要集中在3个关键技术上,即网络通信协议、网络管理技术和网络支撑技术[13]。其中节点定位问题属于网络支撑技术层的一项关键技术。

6 结 语

本文结合无线传感器网络在智能交通系统中的典型应用,阐述了无线传感器网络在智能交通中的关键技术。随着技术发展的日益成熟,无线传感器网络技术在智能交通系统中还将应用于更多的场合,例如电子收费、交通安全与自动驾驶、停车管理、交通诱导系统等,这将会更进一步推动智能交通系统的发展。

参 考 文 献

[1] 张振东.智能交通系统概述及国内外发展状况[J].科学之友,2010(6):97.

[2] 李硕,李文锋,陈维克.无线传感器网络在智能交通系统中的应用研究[J].机械与电子,2010(4):14-16.

[3] 张雄希.无线传感器网络在城市智能公交系统中的应用[J].重庆交通大学学报:自然科学版,2009(6):1063-1066.

[4] SAWANT H, TAN J D, YANG Q Y. A sensor networked approach for intelligent transportation systems//Proceedings of IEEE/RSJ Int Conf on Intelligent Robots and Systems[C]. Sendai (Japan): [s.n.], 2004:1796-1801.

[5] 张玲玉,张玉峰,李凤霞,等.用于智能交通系统的无线传感器网络[J].硅谷,2009(15):26-27.

[6] 纪江涛.基于传感器网络的智能交通系统模型应用研究[D].青岛:山东科技大学,2010.

[7] DU Xuedong. Application research of wireless sensor network in intelligent transportation system[C]. Advanced Materials Research Vols. 108-111 (2010) Trans Tech Publications, Switzerland.

[8] 唐宏,谢静,鲁玉芳.无线传感器原理及应用[M].北京:人民邮电出版社,2010.

[9] 张足生,王志奇.基于无线传感器网络的智能交通系统[J].先进技术研究通报,2010(6):37-42.

[10]黄武陵,艾云峰.无线传感器网络在智能交通系统中的应用[J].电子产品世界,2008(6):54-57.

[11]庄何.基于无线传感器网络的定位系统[D].大连:大连理工大学, 2010.

无线传感网的关键技术篇(6)

关键词:物联网;网关;ZigBee;RFID;M2M

中图分类号:TP317 文献标识码:A 文章编号:2095-1302(2012)03-0051-03

Study on the gateway for IOT

XUE Tao1, HUI Jian1,DU Jun-zhao2, 3, LIU Hui2, ZHANG Xiao-ping3, LIU Chuan-yi2, DENG Qing-zhe2, LI Xuan2, LI Xiao-jun2

(1.ZTE Corporation, Xi’an 710061, China; 2.Software Engineering Institute at Xidian University, Xi’an 710071, China;

3.Internet of Thing Institute of Shaanxi Province, Xi’an 710071, China)

Abstract: The background of gateway for IOT is introduced. The architecture of the gateway is illustrated and the key technique of the gateway is listed. The case study of the gateway is demonstrated. The research team is also introduced.

Keywords: IOT; gateway; ZigBee; RFID; M2M

0 引 言

随着传感器技术的不断发展成熟,成本的不断降低,多源感知系统将显著改变数据采集系统以及用户与便携式电子产品之间的界面。引导这种发展趋势的原始设备制造商已明确指出希望借助这些传感器在实现用户对信息随时随地动态感知的设想。这些现代传感器提供了设计工程师所需要的感知能力,改变了数据采集系统以及人机交互方式。

本研究为西安电子科技大学承担的中兴通讯公司的项目,主要研究基于中兴智能手机平台的新一代物联网的关键技术。旨在用于物联网关键技术的研发和验证,为中兴通讯研发新一代智能手机产品提供参考依据。通过中兴智能手机与整个物联网系统的通信,可以实现手机导航,移动订阅,环境监控,标签识别,目标感知与定位等功能。研究成果的产品将进一步拓展手机的功能,可广泛应用在工商业,家居生活等多领域。

1 总体方案

本项目是未来4G手机的概念平台,手机作为移动互联网与无线传感网的应用网关使用,在设备接入控制与数据交互中需要使用大量的接入协议与数据传输协议,通过对协议建模与仿真实验,文中提出了多协议融合的技术方案,以便于智能手机平台可在多种场合发挥作用。

本系统由智能移动信息汇集终端和中兴智能手机组成。通过无线网络,系统可实时采集与传输多源数据。手机可根据需要对多源数据进行采集与控制,使周围的无线传感器能与手机进行动态数据交换。

本设计结合无线传感器技术和嵌入式软硬件技术,采用RFID Reader、无线传感器终端模块、Wi-Fi模块[1]、WAPI模块、ZigBee模块[2]、GPS模块以外部扩展方式,确保利用中兴智能手机平台对周围无线传感器模块的实时采集。本研究采用高精度电压参考芯片为系统信号采集子系统提供参考电压基准,系统通过ZigBee模块完成现场温度、湿度等信息的感知;并采用蓝牙Bluetooth(IEEE 802.15)模块实现评估板多源信息到中兴智能手机的无线传输[3]。系统的主要支撑技术有嵌入式技术、无线局域组网技术、多协议处理、人机交互界面、RFID等,实现了以智能移动平台终端为核心的自动化、信息化的多功能信息感知应用系统。

2 系统架构

本系统的主要支撑技术有:嵌入式技术、无线局域组网技术、多协议处理、人机交互界面、RFID等,实现了以智能移动平台终端为核心的自动化、信息化的多功能信息感知应用系统。其系统网络结构如图1所示,该网络结构也是未来物联网发展的一个雏形。

图1 物联网网络结构图

在图1的系统结构中,手机作为一个重要终端,通过蓝牙设备到达网关设备,然后由网关设备对ZigBee网络、电子标签、3G网络、Wi-Fi/WAPI网络、北斗网络等网络和设备之间进行完美的网络融合和技术革新,充分体现了现实物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理这一物联理念。

嵌入式系统开发分为软件开发和硬件开发两部分。

硬件模块目前主要包括ARM9-S3C2440开发板、BC4 RS 232串口蓝牙适配器、RC500非接触式IC卡开发板、ZigBee模块、M2M模块、智能蓝牙手机。开发板上的核心是ARM处理器,处理器中有裁剪的Linux系统和相应的C语言程序,由于控制整个系统的设备运转以及处理各子网络的数据。SDRAM和FLASH与S3C2440相连,用作缓存和存储程序。分布在处理器周围的蓝牙无线传输接口,可通过虚拟串口通过蓝牙技术与中兴智能手机进行通信。ZigBee模块用于接收ARM处理器的指令,发送到ZigBee网络,同时可以接收ZigBee网络返回的消息。RFID接口模块[5-6]的作用类似于ZigBee的接口模块,同样用于接收处理器的指令和RFID网络返回的消息,并发送给另外一端。中兴Mu301通过USB接口与M2M模块连接。手机端通过J2ME开发的JAVA虚拟机上的应用程序利用蓝牙的虚拟串口通信协议与开发板上的蓝牙模块接口传递消息。

嵌入式系统在开发过程一般都采用 “宿主机/目标板”开发模式,即利用宿主机(PC机)上丰富的软硬件资源及良好的开发环境和调试工具来开发目标板上的软件,然后通过交叉编译环境生成目标代码和可执行文件,通过串口/USB/以太网等方式下载到目标板上,利用交叉调试器在监控程序运行,实时分析,最后,将程序下载固化到目标机上,完成整个开发过程。在软件设计上,为结合ARM硬件环境及ADS软件开发环境所设计的嵌入式系统开发流程图。整个开发过程基本包括以下几个步骤:

(1) 源代码编写:编写源C/C++及汇编程序;

(2) 程序编译:通过专用编译器编译程序;

(3) 软件仿真调试:在SDK中仿真软件运行情况;

(4) 程序下载:通过JTAG、USB、UART方式下载到目标板上;

(5) 软硬件测试、调试:通过JTAG等方式联合调试程序;

(6) 下载固化:程序无误,下载到产品上生产。

3 关键技术

本项目在设计与实现过程中,通常涉及以下一些关键技术:

(1) 本项目需要通过蓝牙技术,来实现手机平台和物联网网关的数据通信。研究手机平台和网关模块的通信机制,以及相关的协议的设计是一个关键问题;

(2) ZigBee协议栈[4]在CC2430芯片上集成了Z-Stack 的协议栈。因此,需要深入研究ARM Linux 和ZigBee 协议栈的深度结合机制;

(3) 在本项目中,通过手机平台让用户和ZigBee 网络进行交互,如何设计手机平台和ZigBee 协议的交互机制是一个研究重点;

(4) RFID模块可以实现对射频标签的读写的功能。因此要解决ARM Linux和RFID阅读器的结合问题,实现通过Linux 平台控制对RFID的读写等操作;

(5) 基于ARM Linux[7]和手机平台,作为RFID信息过滤器和事件规则处理引擎的关键技术研究;

(6) 研究ARM Linux和手机平台,与中兴TD-MU240模块的集成机制;

(7) 研究如何将应用于物联网的蓝牙技术与RFID安全认证技术有效结合。通过这项技术可以借助RFID快速安全建立蓝牙连接;

(8) 节能、可靠是无线传感网关注的两个重点,物联网无线传感网络中节能可靠路由协议研究也是本项目的一个关键。本项目提出一些路由协议可以有效减少无线传感网络的能耗、并提高网络的可靠性;

(9) 针对无线传感网络的被动故障检测方法[8]进行研究。本项目采取基于汇聚节点被动接收和BP神经网络相结合的无线传感器网络故障诊断方法。

4 应用场景

本项目所研制的物联网互操作平台和动态网络协议,具有灵敏度高、实用性好、模块化等特点,该技术的成功将增强智能手机的自动化程度,大幅度扩展无线传感器网络的应用范围,能在社会的各领域广泛使用。基于无线传感器网络的物联网应用,可节省大量布线,减少资源的浪费,从而为建设节约型社会做出积极贡献。

基于物联网的手机在我国还属于方兴未艾的新事物,智能化手机集成的多项功能、手机作为应用网关未来会成为社会发展的必然趋势,具有广阔的市场空间。据相关资料统计,未来5年中国的智能化小区将以30%的速度增长,预计到2020年,我国大中城市中的60%住宅要实现智能化。因此,可以预见,该预研项目涉及的新的手机产品具有广阔的产业化前景。目前所要实现的两个示范性应用分别是校园安全系统和机场智能领取行李系统。

基于物联网的校园安全演示系统,将先进的射频识别技术(RFID),无线传感技术(ZigBee)与互联网、移动网络结合,打造一个立体化的安全网络管理系统。系统采用RFID技术实时读取学生信息,在校门、教学楼等地布点通过ZigBee技术形成自组织的多跳网络,再由汇聚节点上传获取的信息,管理人员可通过手持设备在校园中随时随地查询管理。

基于物联网的智能领取行李系统,是将射频识别技术(RFID)、无线传感技术(ZigBee)与互联网、移动网络相结合,以便智能、高效地解决旅客在机场领取行李可能出现的问题。该系统凭借绑定在行李上的身份标签和可以作为读卡器的手机,乘客下了飞机之后可以很容易地在繁多的行李中找到属于自己的行李。并且领取行李之后,系统会匹配每个旅客的行李信息,避免出现少拿,多拿或者拿错行李的情况。

5 参与团队介绍

本项目课题组长期从事软件中间件以及传感/物联网方面的研究,对传感/物联网进行了长期研究,目前已完成或正在实施多个物联网、传感网的相关项目,包括自然科学基金和国家科技重大专项。撰写了多篇包括蓝牙通信安全,RFID身份验证,ZigBee网络诊断等相关的专利,在IEEE Transaction、ACM Transaction等期刊和国际学术会议上发表了30多篇论文[9-12]。目前还对移动传感/物联网,移动社会关系网络进行了大量研究工作。

在课题组实施的项目中,“基于中兴手机平台的新一代物联网关键技术研究”获得了2011年中兴通讯产学研合作论坛年会“2010年优秀合作项目”,并到深圳大梅沙参加表彰会。通过本项目的合作,进一步提升了本课题组师生的研究水平,这为本项目的成功实施提供了有力保证。

本文的课题组和美国Wayne State University、香港科技大学、香港理工大学、上海交通大学、西安交通大学、国防科技大学等研究者一直保持交流和合作。目前有4名教师,有30多名研究生在实验室从事研发工作,团队研发能力较强。

本研究通过中兴手机与整个物联网系统的通信,可以实现手机导航,移动订阅,环境监控,标签识别,目标感知与定位等功能。研究成果的产品将进一步拓展手机的功能,可广泛应用在工商业,家居生活等多领域。

6 结 语

2011年3月25日,经陕西省工信厅批复,陕西省物联网产业联盟正式成立。陕西省物联网产业联盟的成立,是陕西省大力扶持物联网产业的又一重要举措,有利于整合资源优势,提升陕西省物联网产业的知名度和竞争力。在陕西省物联网实验研究中心的积极努力下,西安电子科技大学成为联盟成员单位之一,陕西省物联网实验研究中心常务副主任张小平任联盟副秘书长和副理事长。

参 考 文 献

[1] IEEE 802.11, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. [S.l.]: IEEE, 1999.

[2]瞿雷,刘盛德,胡咸斌. ZigBee技术及应用[M].北京:北京航空航天大学出版社,2007.

[3] Bluetooth, CIG, specification of the bluetooth system, version 1.1[EB/OL]. [2001-02-22]. 省略/

[4] IEEE P802.15.4/D18, Draft standard: low rate wireless personal area networks[S]. [S.l.]: IEEE, 2003.

[5] FINKENZELLER Klaus. RFID handbook: fundamentals and applications in contactless smart cards and identification[M]. New York, NY: John Wiley & Sons, Inc., 2003.

[6] TAN C C, SHENG B, LI Q. Serverless search and authentication protocols for RFID[J]. Proceedings of Per. Com., 2007: 3-12.

[7]弓雷.ARM嵌入式Linux系统开发详解[M].北京:清华大学出版社,2010.

[8] LIU K, LI M, LIU Y. Passive diagnosis for wireless sensor networks [J]. Proc. of ACM Sen. Sys., 2008,18(4):1132-1144.

[9] LIU Jia, DU Jun-zhao, ZHANG Jie, et al. RANC: opportunistic multi-path routing protocol in WSNs using reality-aware network coding[C]. Xi’an, China: Proc. the 7th Int. Conference in Ubiquitous Intelligence and Computing (UIC 2010), 2010.

[10] MAO Lei, DU Jun-zhao, LIU Hui, et al. Two-stage target locating algorithm in three dimensional WSNs under typical deployment schemes[C]. Beijing, China: Proc. The Fifth International Conference on Wireless Algorithms, Systems, and Applications(WASA 2010), 2010.

无线传感网的关键技术篇(7)

关键词:物联网;射频识别;传感器;无线网络

中图分类号:TP391.44;TN929.5

1 物联网的概念

2005年11月,在突尼斯举行的信息社会世界峰会(WSIS)上,国际电信联盟(ITU)了《ITU互联网报告2005:物联网》,正式提出了“物联网”的概念。2009年,美国总统奥巴马将物联网上升至美国国家战略,由此引发了世界各国对物联网的追捧。由于世界各国都在投入巨资深入研究探索物联网技术,所以,时下的物联网被普遍认为与当年的“信息高速公路”一样,成为振兴经济、确立竞争优势的关键。美国权威咨询机构FORRESTER预测,到2020年,世界上物物互联的业务,跟人与人通信的业务相比,将达到30比1,因此,“物联网”被称为是下一个万亿级的通信业务。所有的迹象都表明,世界已经开始进入物联网时代。

物联网是指通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。

2 物联网的关键技术

2.1 射频识别技术

射频识别技术(Radio Frequency Identification,缩写RFID),是20世纪80年展起来的一种自动识别技术,利用射频信号及其空间耦合传输特性,实现对静态或移动物体的自动识别。RFID系统主要由电子标签、天线、读写器和主机组成。工作原理是由读写器通过发射天线发送特定频率的射频信号,当电子标签进入有效工作区域时产生感应电流,从而获得能量被激活,使得电子标签将自身编码信息通过内置天线发射出去;读写器的接收天线接收到从标签发送来的调制信号,经天线的调制器(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的,对静止或移动物体的自动识别。

射频识别技术具有防水、耐高温、使用寿命长、读取距离远、标签数据加密、存储数据容量大、存储信息随意修改、识别高速运动中的物体,识别多个标签,在恶劣环境下工作等优点。

2.2 传感器技术

传感器是一种检测装置,能够感受被测量信息,并能将检测感受到的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,它是实现自动检测和自动控制的首要环节,是物联网应用中的信息来源。

2.3 无线网络技术

无线网络技术丰富多样,根据距离不同,可以组成无线个域网、无线局域网、无线城域网和无线广域网。其中近距离的无线技术是物联网最为活跃的部分,因为物联网被称作是互联网的最后一公里,也称为末梢网络。根据应用的不同,其通信距离可能是几厘米到几百米之间,目前常用的技术主要有蓝牙、ZigBee、Z-wave、RFID、NFC、UWB、WI-FI等。

蓝牙(Bluetooth)是一种低成本、低功率、近距离无线连接技术标准,是实现数据与话音无线传输的开放性规范。蓝牙技术使用的工作频率为2.4G-2.5G之间,属于免费的ISM频段。蓝牙技术可以实现语音、视频和数据的传输,其最高的通信速率为1Mb/s,采用时分方式的全双工通信,通信距离为10m左右(如果配置功率放大器可以使通信距离达到100m)。

ZigBee技术是一种新兴的短距离无线通信技术,主要面向低速率无线个人区域网,典型特征是近距离、低功耗、低成本、低传输速率,主要适用于工业监控、远程控制、传感器网络、家庭监控、安全系统和玩具等领域,目的是为了满足小型廉价设备的无线联网和控制。Zigbee技术采用三种频段:2.4GHz、868MHz和915MHz。2.4GHz频段是全球通用频段,868MHz和915MHz则是用于美国和欧洲的ISM频段,这两个频段的引入避免了2.4GHz附近各种无线通信设备的相互干扰。

“UWB”(ultra wideband)是超宽带无线技术的缩写。UWB技术是一种使用1GHz以上带宽的无线通信技术。虽然是无线通信,但其通信速度可以达到几百Mbit/秒以上。

Wi-Fi(WirelessFidelity,无线高保真)属于无线局域网的一种,通常是指符合IEEE802.11b标准的网络产品,Wi-Fi可以将个人电脑、手持设备等终端以无线方式互相连接。

3 物联网的应用

物联网应用领域范围几乎覆盖了各行各业。目前,我国物联网应用已开展了一系列的试点和示范。为了推动物联网的健康发展,2012年国家工业和信息化部的《物联网产业十二五发展规划》确定了智能工业、智能农业、智能物流、智能交通、智能电网、智能环保、智能安防、智能医疗、智能家居9大重点示范应用领域。

智能工业是运用物联网技术,将劳动力从繁琐和机械的操作中解放出来,大幅提高工业制造效率,改善产品质量,降低产品成本和资源消耗。

智能农业是运用物联网技术,在微观尺度上直接与农业生产活动、生产管理相结合,创造新型的农业生产方式。

智能物流是指货物从供应者向需求者的智能移动过程,包括智能运输、智能仓储以及智能信息的获取、加工和处理等多项基本活动。

智能交通系统是将物联网技术进行有效地集成,实现高效、便捷、安全、环保、舒适、实时、准确的综合交通运输管理系统。

智能电网是电网的智能化,实现电网的可靠、安全、经济、高效、安全的目标,为新能源接入、电网防灾减灾、提高输电能力、激励用户参与电网调峰、提高资产管理效益等方面产生重要影响。

智能环保是运用物联网技术,构建全方位、多层次、全覆盖的生态环境监测网络,推动环境信息资源高效、精准的传递,促进污染减排与环境风险防范。

4 结束语

物联网以无线和移动技术为主要特征,通过智能感知、识别技术、云计算、泛在网络的有机融合,成为了第三次信息技术革命。目前物联网的发展仍处于起步阶段,许多关键技术有待突破,大规模的物联网的普遍应用还没有到来。我们必须抓住历史机遇,突破关键技术和核心技术,形成自主产权的成果和可持续竞争力,用心做大事,用力做小事,将感知中国、智慧地球都变为现实。

参考文献:

[1]温涛.物联网应用技术导论[M].大连:东软电子出版社,2013.