期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 卫星通信论文

卫星通信论文精品(七篇)

时间:2022-09-25 21:43:57

卫星通信论文

卫星通信论文篇(1)

3GPP(The3rdGenerationPartnershipProject,第三代合作伙伴计划)的LTE(LongTermEvolution,长期演进)标准是4G移动通信的主要技术方案之一。文献[1-2]针对星上功率放大器引起的非线性失真、大时延特性和时间分集对LTE空中接口进行改进。文献[3]通过分析卫星信道物理特性,并将信道物理特性作为依据对LTE的空中接口进行改进,增强了卫星信道传输的可靠性。上述文献都提出了LTE空中接口适应卫星通信系统可能会遇到的典型问题,并给出了主流的改进策略,但并没有在理论上详细探究LTE空中接口在卫星系统上的可行性,并且没有将WCDMA与OFDMA两种空中接口在卫星信道下对比分析。

文中首先系统性的阐述了以WCDMA和OFDMA为典型代表的地面3G、4G移动通信空中接口,研究了卫星移动通信系统的架构和特点,然后从信噪比门限、误码率、功放非线性影响这3个方面对比了WCDMA和OFDMA作为卫星系统空中接口的可行性,最后总结了现有文献基于LTE在卫星系统中使用的改进方案,为未来卫星移动通信系统空中接口的制定起到了一定的指导作用。

1地面空中接口概述

WCDMA和OFDMA分别是地面3G、4G标准的空中接口,本节分别对两种空中接口的特点、信道、调制编码方式等方面进行了概述。

1.1WCDMA空中接口

WCDMA是通用移动通信系统(UniversalMobileTelecommunicationsSystem,UMTS)的空中接口标准,而UMTS是国际标准化组织3GPP制定的全球3G标准之一。WCDMA基于直扩序列码分多址(DS-CDMA)技术,采用QPSK调制,载波带宽为5MHz,工作模式是FDD双工,并且支持不同数据速率的业务传输,最高可达2Mbps。在UMTS标准的后续版本引入新的链路层技术,支持更高的数据速率服务,具有更好的功率/带宽效率,如增强版本是高速分组接入(HighSpeedPacketAccess,HSPA),HSPA包括高速下行分组接入(HSDPA)和高速上行分组接入(HSUPA)。HSDPA引入高速下行链路共享信道(HighSpeedDownlinkSharedChannel,HS-DSCH),支持突发性、非对称和高速率的分组数据业务。它支持QPSK/16QAM的调制方式,使用基本速率为1/3的并行级联卷积Turbo码(ParallelConcatenatedConvolutionalCode,PCCC),速率匹配通过打孔或重传实现。HSUPA引入增强型专用信道(EnhancedDedicatedChannel,E-DCH),支持更高的上行数据传输速率。该信道使用BPSK调制和正交可变扩频因子(OrthogonalVariableSpreadingFactor,OVSF)码。

1.2OFDMA空中接口

4G移动通信比较成熟的标准有3GPPLTE标准和IEEE移动WiMAX标准,两者均为基于正交频分多址接入(OrthogonalFrequencyDivisionMultiplexingAccess,OFDMA)技术的空中接口,具有抗频率衰落和灵活分配子载波的特点。LTE和移动WiMAX的每个用户需要进行时间-频率子载波分配,支持可扩展的带宽,FDD/TDD双工,提供高数据传输速率和高频谱利用率的业务。

LTE和WiMAX标准之间存在差异。LTE标准与HSPA标准类似,使用了基本速率为1/3、可进行速率匹配的并行级联卷积Turbo码(PCCC),而移动WiMAX标准规定了各种FEC码,如双二进制卷积Turbo码。另外,它们具有不同的帧结构、系统参数和子载波复用方式。LTE的上行链路采用了DFT扩频OFDMA,而WiMAX的上行链路和下行链路直接采用OFDMA。图1描述了HSPA、LTE和移动WiMAX这3个地面移动通信标准的演进过程。

2卫星移动通信系统架构及特点

从上世纪90年代开始,卫星移动通信系统已经取得了的长足的发展。卫星移动通信系统与地面移动通信系统的关键优势是其大的覆盖面积,而固有的大衰落、长时延、高成本又给卫星移动通信系统带来了挑战。卫星移动通信系统可以支持单个或多个卫星,且每一颗卫星可以提供单点波束或多点波束的覆盖。用户终端通过卫星连接到网络,无线信号被指向发往或来自某个网关,系统根据运营商的要求制定一个集中分布或分散分布的网关。卫星环境下,信号由于传输途中受到建筑物或地势遮挡而衰弱。为了确保覆盖的连续性,利用地面补充部分(ComplementaryGroundComponents,CGC)进行信号重传。卫星移动通信系统架构如图2所示,用户终端可以直接与卫星之间收发信号,也可以通过CGC进行信号重传。由于卫星信道与地面移动信道在物理特性有较大差异,在对卫星移动通信系统的设计过程需要关注传输特性的改进,需要充分考虑卫星信道的影响,卫星信道主要有以下几个特点:

1)大衰落

随着收发端之间环境的变化,信号在长的传播途中缓慢变化,除了自由空间传播损耗外,雨衰的影响也很大。除了考虑来自卫星的直射信号之外,还需要考虑多径衰落的影响,多径衰落能使接收信号在短距离或短时间内的快速变化。

2)长时延

大传输时延是卫星通信的固有缺陷,主要是由于星地距离较大造成的,这对时间同步造成一定的挑战。另外,由于OFDM系统对频偏非常敏感,而卫星链路还会产生较大的频率偏差,这都将对系统产生严重影响。

3)多普勒频移

由于多普勒频移的存在会降低信号传输的可靠度,对卫星系统性能造成较大影响,因此在编码、调制、信道估计等多个环节都需要检测估计出多普勒频移信息,对其进行补偿。

3可行性对比

在针对WCDMA和OFDMA两种空中接口可行性研究的基础上,本章从信噪比门限、误码率性能、功放非线性容限三个方面对上述接口进行了分析和对比,研究结果发现OFDMA空中接口在卫星系统中具有更好的链路性能。WCDMA作为卫星空中接口的可行性研究主要包括:1)MSS系统采用WCDMA可扩充UMTS容量。2)允许与地面UMTS网络技术上的协同性。3)启用所有波束和卫星的全频率复用。4)支持大区域广播/组播服务。5)对由于商业原因未部署网络覆盖的地区、需扩展网络容量的地区、由于自然灾害造成地面网络被损坏的地区提供了网络服务[4]。OFDM作为卫星空中接口的可行性研究主要包括:1)尽管具有大的峰均功率比(PAPR),OFDM信号还是能够在非线性卫星链路上有效传输。2)预失真设计和前向纠错编码是互补的。3)卫星视距(LOS)传播条件下可以实现正确接收;卫星非视距(NLOS)传播条件下,由于存在负的链路余量,手持终端无法实现正确的业务接收[5]。

两种空中接口均有其应用优势,但在多径信道下,OFDM的频谱利用率较WCDMA更高;而WCDMA接收机的载噪比高于OFDM[5]。为了完善两种空中接口可行性研究,下面从信噪比门限、误码率性能、功放非线性容限三个角度比较了两者在卫星信道下的链路性能[6]。

1)信噪比门限

卫星宽带衰落信道存在稳定的传播时延,HSPA与LTE/WiMAX的Eb/N0门限值是可比的。然而,HSDPA采用了地面中继,对微弱卫星信号进行增强,因此比LTE/WiMAX需要的Eb/N0门限低。

2)误码率

卫星信道的大时延会造成码正交性的显著降低,成为HSDPA高速数据传输的严重制约因素。当HSDPA传输速率为2.4Mbps时,误码率在Eb/N0为4~5dB时达到最低,却仍达不到10-3。3)功放非线性影响功放非线性会使链路性能受到一定程度的降级。其中,HSDPA在单码传输时功放非线性对链路性能影响非常小,而多码传输则会使PAPR增加,性能降低;LTE的上行链路使用SC-FDMA,这种调制方式对功放非线性的敏感性较小;WiMAX的上行链路则直接使用OFDMA,对功放非线性的敏感性较大。另外,文献[7]证明了回退和数字预失真结合的方法可以减小放大器非线性的影响。综上,可以得出以下结论:①卫星宽带衰落信道环境下,HSDPA与LTE/WiMAX的Eb/N0门限是可比的。②大传播时延的卫星信道环境下,HSDPA比LTE/WiMAX的Eb/N0门限低。③大传播时延的卫星信道环境下,码正交性的损失构成了HSDPA高速数据传输正确性的严重限制因素。④所有空中接口的链路性能都会因为放大器的非线性受到一定程度的降低。其中:-HSPA:在多码传输时PAPR增加。-LTE/WiMAX:OFDM的IFFT处理导致PAPR增加。其中,LTE上行链路使用SC-FDMA,受影响小;而WiMAX上行链路直接使用OFDMA,受影响大。因此,LTE和WiMAX空中接口在卫星信道下表现的链路性能比HSPA更可靠。然而,不论是WCDMA或是OFDMA空中接口都缺少TTI的有效时间分集,从而缺少了时间交织增益,使性能至少损失了5dB。同时,由于卫星系统的功率受限和大时延的存在会使短TTI失去优势。

4基于LTE的改进方案

前文已对卫星移动通信系统特点以及两种地面空中接口在卫星系统下的可行性对比进行了研究,得出LTE空中接口在卫星信道下表现出更好的链路性能的结论。由于LTE标准中所规定的传输时间间隔(TTI)较小,因此在大时延的卫星链路下无法得到好的时间分集。另外,卫星链路产生的大频偏和衰落,对OFDM产生严重的影响,而传统OFDM技术的峰均比(PAPR)较大,会导致严重失真。因此,要想将LTE空中接口应用到卫星系统,则需要针对卫星信道环境的大时延、大衰落特性带来的约束,对LTE空中接口进行改进。针对这些问题,需要调整接口以补偿卫星系统的大往返时延和大衰落,目前已有几种主流的改进方法,如频率复用技术、卫星链路同步技术、PAPR降低技术和自适应编码调制与交织技术。

4.1频率复用技术

由于频谱资源有限,在卫星系统中需要提高卫地信道的频谱利用率,频率复用是一种较好的解决方案,可以很好的促进地面网与卫星网的融合。

对于采用WCDMA的多点波束卫星系统,可通过给相邻波束分配不同的扩展码来实现频率复用。而对于OFDMA,则一般采用小数倍频率复用(fractionalfrequencyreuse,FFR),采用该技术可以改善基于OFDMA的多点波束卫星系统的频谱利用率,有效复用卫星频率。

图3显示了基于OFDMA的多波束卫星系统的频率复用模式。每一波束分为中心和边缘区域,每一帧分为两个时段T1和T2。时段T1被分配给波束半径为R1的点波束中心的终端,该时间段能被多有子载波利用。时段T2被分配给波束边缘的终端,该时间段只能被单个子载波利用。然而,为防止相邻点波束之间的干扰,两个区域的用户信号不能同时传输。频谱利用率与点波束中心区域大小有关,如果设置点波束中心区域的半径比点波束半径的一半还要大时,即R1>R2/2,则可以获得比传统方案更高的频谱利用率。

4.2卫星链路同步接收技术

从物理层角度出发,卫星链路中存在大时延会造成严重张曼倩,等地面空中接口在卫星移动通信的适用性研究的载波间干扰(ICI)和符号间干扰(ISI),其中以频偏影响更为严重。一些传统的同步算法可以应用到卫星系统,但效率不高。目前相关研究组提出了一种基于莱斯信道模型的频偏估计算法,该算法利用时域恒包络零自相关(CAZAC)序列进行符号同步和整数频偏估计,相对现有算法更加快速可靠。在地面OFDMA系统,上行链路帧同步可由随机接入过程获得。由于小区内的用户之间的延迟差比子帧长短,子帧长相当于LTE系统的传输时间间隔(TTI)。在这种情形下,用户传输一个前导告知基站自己的位置,然后基站在一个TTI内给用户分配资源。然而,卫星系统一个波束内用户之间的时延差比1个TTI长,这需要修改LTE系统的上行链路定时同步或资源分配方案,使适用于卫星环境。

如果考虑只修改LTE系统中的上行链路定时同步方案,资源分配方案不变,这表示上行链路信号应在卫星端同时接收。因此,同一波束内的所有用户都将利用一定的延迟,在同一时刻到达卫星。该方案会造成有效时间资源的浪费,达到了数十毫秒,并直接影响系统吞吐量和延迟敏感业务的QoS。为了解决该问题,需要将上行链路定时同步与修改的资源分配方案相结合,上行链路定时同步方案与传统LTE一致,以保留与LTE系统物理层的最大兼容性[8]。例如,UE1和UE2分别代表了位于点波束边缘和点波束中心的终端,即UE1和UE2分别具有最大和最小的往返时延(RTD)。设定UE1延迟时间为参照,即UE1一旦接收到下行链路的资源分配信息,就会立即传输上行链路信号,等待时间D1=0。那么其余UEj的Dj可以通过修改的资源分配方案计算。实际上,卫星事先通过随机接入方案可以得到每一个UE的位置信息,并根据位置信息分配资源。该方案中,可以保证最大的时延Dj不超过一个子帧时间,从而增强了整个系统的吞吐量,降低了时延。

4.3PAPR降低技术

OFDM因具有较高的频谱利用率和较好的抗多径衰落能力而被广泛应用于卫星通信系统中,但其较大的PAPR使得信号非线性容抗较差,要求系统内的部件具有很大的线性动态范围,否则出现非线性产生多载波互调噪声干扰,所以,降低PAPR是提高卫星系统传输性能的一个重要研究方向。目前已经有很多降低PAPR的方法,如限幅滤波、编码、有效星座扩展(ACE)、多信号表示法等,其中较为常用的有:LTE上行链路采用SC-FDMA调制,通过增加DFT和IDFT提高传输的准确性,降低传输时延;部分格状成形技术不仅能有效降低OFDM信号的PAPR,而且在保持较高信息率的情况下灵活地与纠错编码相结合,大大改善OFDM卫星通信系统的误码率性能[3];分数阶傅里叶变换(FRFT)代替传统OFDM系统中的FFT,在改善OFDM系统误码率性能的同时有效降低了PAPR[3]。

4.4自适应编码调制与TTI交织技术

自适应编码调制技术(AMC)是一种对抗信道衰减的技术,其使用受限是由于卫星系统的大往返时延造成的。文献[8]提到了一种有效的功率控制和符号卷积结合的AMC方案,适用于基于LTE的卫星移动通信系统,该方案相对传统AMC方案有高达10.2%的频谱效率增益和高达8dB的功率增益。

当终端移动速度降低到一定程度时,信道编码抵抗衰落效果将会不明显。卫星链路具有大的环路延迟和缓慢的长衰落[9],LTE标准中的TTI机制无法产生较好的时间分集效果。利用现有混合自动重传请求(HARQ)的灵活性降低信道的相关性,把LTE发射机同一环路缓存中的数据映射到不同TTI中,达到时间分集的目的。

5结束语

卫星通信论文篇(2)

本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。

计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。

2应用举例

卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。

3结束语

卫星通信论文篇(3)

信道群时延响应是相位频率响应的导数,用于表示相位频率响应的畸变程度,在信道频带的边缘由滤波器过渡带抑制变化引起的相位畸变尤其严重。式(1)中,θ(w)为相位频率响应,群时延响应τ(w)可以表示为:τ(相位噪声采用在频域模拟的方法,为了使仿真相位噪声情况更为接近实际的相位噪声,按分辨率1Hz产生数字相位噪声。假定其他信道参数为理想情况下,仿真了3种相位噪声对卫星通信系统性能的影响,仿真条件如表5所示。仿真发现在相位噪声值1的情况下会出现误码平台,在相位噪声值2和相位噪声值3的情况下,传输性能损失小于0.2dB。

2综合仿真及系统指标建议

假设功率放大器在不同非线性工作点的群时延特性、幅频特性和相位噪声特性是一致的,选择带宽36MHz卫星转发器,依据上述仿真参数对信道群时延特性、幅频特性、相位噪声特性和非线性失真进行综合仿真。将卫星转发器的放大器的输入功率相对饱和点回退10dB,保证功率放大器工作在近似线性状态。对卫星信道的群时延特性、相位噪声特性及幅频特性进行综合仿真,仿真结果表明,当误码率1×10-6时传输性能损失约11dB。将转发器的放大器的输入功率相对饱和点回退0dB(即饱和)、2dB、5dB和10dB时,综合仿真卫星通信系统的群时延特性、相位噪声特性、幅频特性对系统传输性能的影响,仿真结果如表7所示。

参考综合仿真结果,对系统指标分配提出如下建议:当转发器的功率放大器工作于饱和点时,接收机射频指标在中频指标的基础上增加大于2.3dB;在功率放大器的输入功率回退2dB的情况下,接收机射频指标在中频指标的基础上增加大于1.6dB;在功率放大器的输入功率回退5dB的情况下,接收机射频指标在中频指标的基础上增加大于1.3dB;在功率放大器的输入功率回退10dB的情况下,即在功率放大器工作于线性状态下,接收机射频指标应在中频指标的基础上增加大于1.1dB。

3结束语

卫星通信论文篇(4)

1卫星通信技术引进的必要性

我厂在2008年“5.12”特大地震发生后,微波站房屋损坏、电源中断,蓄电池损坏,铁塔倾斜;光缆全被打断,通信机房倒塌等所有通信系统全部损坏。六月初首先在映站建立一个卫星小站,在整个抗震救灾过程中,保障了通信畅通,使救灾工作得以顺利进行。但在使用过程中,该卫星通信系统有明显不足:①延时太大,无法及时进行相互交流,让人很难受;②经常无故“死机”,需重新启动语音网关才能恢复正常通信;③小到中雨就中断通信。虽然有这些缺点,但是在震后,泥石流频发,通信线路经常被打断,或是道路被冲毁(故地埋通信光缆也不现实),危险性太大根本无法架设线路,卫星通信的优势就非常明显地体现出来。在恢复重建中,这是一种不可或缺的重要通信手段,我们把缺点尽量进行完善,来满足人们的通信需求。比如延时大的问题,就可由双跳改为单跳,延时就会明显改善,让人能够接受。还有将天线尺寸加大,只要不是暴雨,通信还是能保障畅通。总之卫星通信对震后恢复重建中的我厂来说,还是一种重要的通信方式,对及时了解灾情,指挥救灾能起到关键作用。

2卫星通信在我厂的应用

卫星通信论文篇(5)

1.1幅频及群时延特性卫星通信系统信道传输特性的系统函数可以表示为:在仿真中,通过调整∑h(k)的参数获得相应的幅频响应畸变特性,k必须选取大于0的正整数,以保证线性相位特征[4,5]。信道群时延响应是相位频率响应的导数,用于表示相位频率响应的畸变程度,在信道频带的边缘由滤波器过渡带抑制变化引起的相位畸变尤其严重。式(1)中,θ(w)为相位频率响应。实际信道中的群时延响应是非线性的,当非单一信号传输时必然引起信号畸变。在传输数据速率高、码元周期短及频带宽的情况下,群时延畸变的影响就比较明显。一般来说,带内群时延分为抛物线群时延、线性群时延以及波动群时延。假定其他信道参数为理想的情况下,带宽36MHz卫星转发器典型幅频特性仿真条件如表1所示,仿真结果如表2所示。假定其他信道参数为理想情况下,分别仿真了10MHz和36MHz两个转发器的抛物线群时延特性对卫星通信系统的影响,卫星转发器典型抛物线群时延特性仿真条件如表3所示,仿真结果如表4所示。

1.2相位噪声理想情况下,卫星通信系统中的本振输出信号的频谱应该是一根无限窄的谱线。但是在实际的通信系统中,由于射频硬件(比如振荡器)不是理想的,因此振荡器产生的载波也不是理想的,表现为相位不稳定(即相位噪声)。式中,θ(t)为一个随机过程,这种本地振荡器的频谱不再是期望的在频率ω0处的一根线。由于相位噪声的存在,由这样的本振生成的载波信号的频谱将被展宽,带有相位噪声的载波的功率谱形状如图2所示。为了便于分析和对数字通信系统进行仿真,可用一个维纳随机过程作为相位噪声的模型。它是一个零均值的高斯随机变量。Δn的方差决定了随着频率的增加,载波相位噪声下降的速度。相位噪声采用在频域模拟的方法,为了使仿真相位噪声情况更为接近实际的相位噪声,按分辨率1Hz产生数字相位噪声。假定其他信道参数为理想情况下,仿真了3种相位噪声对卫星通信系统性能的影响,仿真条件如表5所示。仿真发现在相位噪声值1的情况下会出现误码平台,在相位噪声值2和相位噪声值3的情况下,传输性能损失小于0.2dB2.3非线性失真功率放大器的非线性失真会引起调制信号幅相特性的变化,在接近饱和点工作时影响最大。星上功率放大器(行波管放大器,TWTA)是一个非线性器件,该器件将引起包括幅度(AM/AM)和相位(AM/PM)在内的非线性失真。如果输入信号表示为。

2综合仿真及系统指标建议

假设功率放大器在不同非线性工作点的群时延特性、幅频特性和相位噪声特性是一致的,选择带宽36MHz卫星转发器,依据上述仿真参数对信道群时延特性、幅频特性、相位噪声特性和非线性失真进行综合仿真。将卫星转发器的放大器的输入功率相对饱和点回退10dB,保证功率放大器工作在近似线性状态。对卫星信道的群时延特性、相位噪声特性及幅频特性进行综合仿真,仿真结果表明,当误码率1×10-6时传输性能损失约11dB。将转发器的放大器的输入功率相对饱和点回退0dB(即饱和)、2dB、5dB和10dB时,综合仿真卫星通信系统的群时延特性、相位噪声特性、幅频特性对系统传输性能的影响,仿真结果如表7所示。参考综合仿真结果,对系统指标分配提出如下建议:当转发器的功率放大器工作于饱和点时,接收机射频指标在中频指标的基础上增加大于2.3dB;在功率放大器的输入功率回退2dB的情况下,接收机射频指标在中频指标的基础上增加大于1.6dB;在功率放大器的输入功率回退5dB的情况下,接收机射频指标在中频指标的基础上增加大于1.3dB;在功率放大器的输入功率回退10dB的情况下,即在功率放大器工作于线性状态下,接收机射频指标应在中频指标的基础上增加大于1.1dB。

3结束语

卫星通信论文篇(6)

关键词 移动卫星通信;系统技术;卫星技术;终端技术

中图分类号TN91 文献标识码A 文章编号 1674-6708(2014)122-0223-02

0 引言

移动卫星通信系统的最大特点是通过卫星通信的多址传输方式,可以向全球用户提供大跨度、大范围、远距离的漫游和机动、灵活的移动通信服务。

1 移动卫星通信的特点

1.1卫星通信

卫星通信[1],是一种利用人造地球卫星作为中继站来转发无线电波而进行的两个或多个地球站之间的通信方式,具有覆盖范围广、建站成本和通信成本与距离无关、站点开通时间短等优点,特别适合广播通信业务以及难以敷设有线通信设施地区的通信需求。

1.2 移动卫星通信

移动卫星通信是指依靠卫星通信的特点,在移动载体上集成了卫星通信系统或者卫星通信终端设备,从而可以实现载体在移动中不间断的卫星通信。根据卫星通信环境和系统功能的要求,移动载体既可以是飞行器和地面移动装备,还可以是海上移动载体和移动单兵,这就大大扩展了卫星通信的使用范围和环境适应性。

当前,移动卫星通信的发展呈现多样化的发展趋势,但移动终端小型化和通信业务宽带化的是其比较显著的特点。

2 移动卫星通信的关键技术

早期和当代相比,移动卫星通信的发展呈现出移动终端小型化和通信业务宽带化两个特点。其中,移动终端小型化是指移动卫星通信的各种终端设备的逐步小型化。通信业务宽带化是指移动卫星通信系统能够提供传统的窄带话音服务和流畅的视频服务以及高速的数据业务等多种服务。

一般来说,和固定卫星通信相比,移动卫星通信具有以下几个技术特点:

1)天线低增益与卫星功率的有限性之间存在突出矛盾;

2)低增益天线存在多径效应和多普勒频移等传播信道问题;

3)众多终端用户共享有限的功率资源和卫星频率;

4)机动性、小型化和漫游管理等要求。

根据移动卫星通信今后的发展趋势,可以将移动卫星通信的关键技术分为系统技术、卫星技术和地面技术三个方面。下面将从这三个方面分别进行论述。

2.1系统技术

移动卫星通信最重要的是系统技术,主要包括系统的体系结构和通信体制,以及移动载体的管理和网络之间的互联互通。

移动卫星通信系统在进行体系结构设计的时候,需要考虑地面实现与管理的问题和用户对系统的要求和使用问题。其中,地面实现与管理问题是指在系统设计时,在确定了空间卫星问题的同时,需要综合考虑是采用分布式管理还是集中管理的问题;用户对系统的要求和使用问题是指在进行移动卫星通信系统设计时,要综合考虑使用多少种终端类型以及系统的模型采用单模还是多模以及卫星网络和地面网络的兼容和融合成本问题。

移动卫星通信系统在进行通信体制设计的时候,既可以选用传统的TDMA方式,也可以选用目前较为常用的CDMA方式,还可以选用上行为CDMA和下行为TDMA的混合体制方式。

移动卫星通信系统在进行移动载体的管理设计的时候,主要需要考虑移动载体的动态特性和终端设备的环境适应性,同时,由于移动通信卫星发展的趋势是波束宽度越来越窄,因此,要求移动载体的管理设计更加严格和有效。

移动卫星通信系统在进行网络互联互通设计的时候,不但要考虑现有的卫星通信系统的体系结构和通信体制等,还要保证现有的网络结构和新设计的网络结构可以实现网络互联互通。

2.2卫星技术

移动通信卫星技术的关键技术主要集中卫星载荷技术和卫星与地面移动通信系统的融合设计[2]等方面。

2.2.1卫星载荷技术

移动卫星通信需要满足的条件是波束多点覆盖、用户间的单跳/双跳通信以及多星组网通信等业务需求,重点是星载大型可展开天线、星上处理与交换以及星间链路等。

为了有效支持地面的移动终端并克服由于传播距离长而导致的信号衰减、卫星上的发射功率有限等问题,移动通信卫星系统需要借助大型星载天线技术以及多波束技术来有效的提高波束的有效全向辐射功率。

一般来说,星上处理与交换技术主要包括全透明转发、全处理和透明处理转发三种模式。全透明转发的特点是技术体制适应性强,风险较小,但双跳通信的服务实时性比较差;全处理的特点是一般通过数字方式实现,其优点是服务实施性好且抗干扰能力强,但其技术体制适应性较弱且容易受空间辐射的影响。透明处理转发特点是折中了二者优缺点。

星间链路主要由微波和激光两种实现方式。目前,主要采用微波通信技术,但由于受到频带宽度、体积、重量、功耗等方面的限制,不可能无限制的提高传输速率和容量;激光通信方式在优势明显,但技术实现难度较大。

2.2.2卫星与地面移动通信系统的融合设计

卫星通信移动网络与地面移动通信网络作为对等的网络,需要进行融合设计[3],实现用户网络之间的漫游和互通。

2.3终端技术

随着卫星通信技术的发展进步,卫星通信终端将来的发展趋势为小型化和手持化。

当前,以甚小口径卫星终端站(VSAT)为代表的卫星通信终端得到了广泛的应用[4]。VSAT 系统在卫星通信中的特点是可靠性高、灵活性强和使用方便,因此,对VSAT用户来说,数据终端可以直接和计算机联网,从而完成图像传输、数据传递和文件交换等通信任务。

同VSAT系统等小型化的卫星通信终端一样,卫星通信终端的应用正在向多媒体、宽带化和嵌入式方向发展,主要涉及的技术有天线和射频模块小型化技术以及通信体制的革新。

3 结论

未来,随着卫星通信技术的快速发展、业务领域的不断拓展和用户需求的不断增长,移动卫星通信技术将会在各个应用领域得到更广泛的应用。

参考文献

[1]宋立军,杨锐,等.商用卫星通信发展综述[J].电信技术,2010,4.

[2]刘剑锋,秦红祥,等.卫星移动通信系统关键技术研究[C].第九届中国卫星通信广播电视.

技术国际研讨会暨新设备展示会,2011.

卫星通信论文篇(7)

世界上第一颗人造卫星上天至今年刚好半个世纪,随着科学技术的发展,而今人造卫星被广泛应用于科学、气象、地球物理、军事和其它研究用途,掌握卫星应用技术多少及卫星科技含量的高低,是象征一个国家是否迈向世界强国的标志。而广播卫星(BS)缘于通信卫星(CS)还要晚几年,而实用的广播卫星应用于70年代,80年代卫星直播电视、高清晰电视等进入实际使用阶段。90年初数字技术的成熟推动了卫星数字电视的迅猛发展。我国和亚洲地区较西方发达国家在卫星领域又要晚一、二十多年。我国的卫星广播起源于70年代初,而作为后起之秀的卫星大国,中国在卫星领域有研发现代卫星的能力,长征系列运载火箭及东方红卫星3号、4号卫星平台就是例证,现在同世界卫星大国的差距是越来越小。

而我们今天谈的卫星广播电视(简称卫星电视),就是人造卫星中的同步卫星(又称静止卫星)在卫星通信电话、电报、数据等电信业务中的一种主要用途,是用来传送声音和图象的广播电视卫星。它位于赤道上空35786km,绕地球同步运转,地面观察者看卫星是相对静止,俗称同步卫星,运行的轨道为同步轨道或静止轨道。静止卫星其实就是一个高空定点微波差转台,可实现点到点、点到面的卫星通信。早期的通信卫星转发器功率较小,地面站接收天线需几十米大的天线。进入广播卫星时代,地面站接收天线达到实用阶段。现代的直播卫星地面站0.5米以下天线是标准配置。就Intelsat卫星现在也发展到第九代了,现代卫星集通信卫星、广播卫星、直播卫星为一体,全面担负卫星通信的工作。由地面无线传输、有线传输和卫星传输三大主流传输电视信号,组成完善的电视信号服务系统。而卫星电视广播具有覆盖面广、传输距离远、信息量大、信号质量高、不受地理条件限制等优点,近几年发展迅速。特别是直播卫星数字电视(简称DTH-TV或DBS-TV)用户使用很小的天线,安装维护简单,可靠性高是卫星电视发展的方向、个体接收用户的首选。今后Q波段(40.5-42.5GHz)以上V波段(84-86GHz)卫星广播频段的开通应用,卫星天线还会小许多,名副其实碟形将会出现。

本文作者在少年时代就痴迷于无线电,70年代始我国的第一颗人造卫星上天,就购过第一本卫星书籍,《同步卫星》的科普读物。也曾记得中美建交美国总统访华,为了进行实况转播美国自带上星设备,电视信号直接在北京上星,后听说这套设备还赠送了我国,而当时的我才第一次见到黑白电视的模样。此后一直关注我国的卫星发展,84年“东方红二号”同步卫星上天,标志作我国的广播电视卫星的开始,85年租用国际通信卫星开始向全国转播CCTV-1模拟电视信号,以后“东二甲”上天,亚洲一号的播出,购买漂来的卫星(中星5号),教育、中央、省市台的模拟电视信号上天了,90年代中期中央、省市台开始了卫星数字电视广播。至今已基本实现中央、省市卫星电视数字化,上百套数字电视在自已的几颗广播卫星上播出,也即将启用我国的直播卫星数字电视和高清电视。

而我国个体电视接收(TVRO)源于80年代初714荧光屏的L波段,也算我国卫视发烧的起源。90年代初亚洲一号升空,掀起了卫星电视实用收视热潮,有着电子爱好又一直从事这方面工作的我,自然是会赶时髦、凑热闹、随大潮紧跟形势走。随着90年代中期亚洲上空数字电视的不断增多,从C波段向Ku波段迅速发展,小型Ku天线出现,Ku波段无疑是广播卫星、直播卫星的最佳选择,面对国内直播卫星启用在即(如果不是鑫诺2号卫星故障,已经启用),国家广电部门、器材制造商也作好了充分准备,发烧友期待个体卫星接收的解禁。国家129号令对规范市场曾起过积极的促进作用,随着科技进步与市场发展,修改129号令的呼声不断。现实的状况是在有线电视没覆盖地区,卫星收视国内信号是禁而不止,一大批卫星电视发烧友不论城镇乡村,为探索卫星接收技术,确实是悄然存在。面对卫星电视的普及发展,卫星电视接收技术也不再是广电部门、卫星电视发烧友掌握的专利,而要向电子爱好者、卫星电视用户普及这方面的科学知识。科学技术的发展即便你是卫视领域的专家教授,也得要不断地学习新的技术,况且卫星广播电视是门年轻学科。前些年卫星电视接收技术的专业类书籍相当贫乏,只有报刊杂志卫视器材商的零碎介绍,加之卫视器材制造商的技术封锁和高得出奇的价格,使普通人诸如一般电子爱好者很难有机会探索卫星电视接收的奥秘。现在的情况与昔日完全不同,互联网上可查到卫星电视的最新信息,专业书刊不再难求,普通卫星接收器材也非当初,昔日你喜爱电子技术、有点电工基础,或从事家电行业,学点卫星电视接收的专业知识,会很快掌握卫星电视接收技术,达到一个较高的接收水平。

四年前,作者写过几篇小烧文章,一搁笔四年没再推出新作,干嘛去了?其实这几年也没闲着。在此期间拥有令其它烧友羡慕寻星设备,用SVEC2.4米网状极轴卫星天线,一网打尽了从东(174E)到西(36E)四十多颗卫星上的C、Ku信号,创造了亚洲2.4米天线收视卫星之最;在本地(东径104°、北纬29.5°)首次收下了日星及东北亚波束,为内地收视这些卫星和波束提供了一手资料。网上常见到本人身影,一直在某论坛任版主,零碎介绍了一些接收知识,也透露一些发烧成果,可也没多少人在意,在意之人也少有哼声。用现有的条件、设备,及自己一直从事电子方面知识和经验,致力于在业余条件下,用简单的常用设备,试图探索一套卫视接收的常用方法,几年来应当说初有成效。同时利用工余时间认真地读了点卫视专业书籍,结合以前发烧实践和自身的动手能力,通盘细研卫星电视实用接收技术。在网上仔细查找亚洲上空广播卫星的场强与波束,判断试收的可能性,用常用的卫视接收设备,探索卫星电视实用接收技术,有资料查询、简单收视计算、发烧创作整一套业余收视实用方法。搞清楚卫星收视器材的原理及主要参数,发烧制作收视附件,动手最多的是馈源改研技术,做到有理有据不要被卫视专家及同行笑话,还得经受读者的检验和历史的考验。回头再看我以前写过的文章,卫视理论上得重新检讨认识。

近几个月几经思索决定把这几年的卫视发烧经验、部分花了大量心血研制首次面世的发烧制作首次面世,以多篇连载文章刊出,同卫视界及发烧友作一实用技术交流,而以前发表的技术文章(包括网上)中的创作的实用的技术成果,虽没申请专利保护尽可共享,但发明创造权不能被他人据为己有,在此也有必要澄清 。连载文章通俗易懂,没有卫视专家教授级冗繁原理推导及复杂的公式计算,有点简单原理和计算,所用是普通设备,收视实践及发烧制作尽力给出精确数据、图片、图纸以便参考制作,文章追求原理性、启发性、实用性,一看就懂,人人会做。全文是浅谈卫星电视接收技术,如果读者需要深入研究,建议去阅读专业的卫视书籍弄个明白。连载文章主要内容有卫星波束与场强、卫星电视接收器材、馈源技术三大部分,卫星波束与场强,简介卫星广播信号发射技术,波束场强的形成,以及获取卫星接收资料的方法;卫星电视接收器材分卫星天线、降频器(LNB)、接收机三个部分,简单介绍原理与结构,着重介绍某些实用参数与性能,深入了解卫星器材,解决收视迷惑。馈源技术简单介绍馈源原理及构造,再又分三个部分,分别是圆极化波接收技术、正馈天线Ku波段接收技术和偏馈天线C波段接收技术。以上在卫视发烧界称为高手玩家的活儿,我们再作进一步的理论与实践的探讨,希望某些争论不休问题了解馈源技术后划上句号。本文作者在艰苦的业余条件下对馈源研究前后也有八年之久,设计制作点经典作品也不足为奇,发表的作品经过本人严格的业余测试。连载文章不涉及有条件接收,可能涉及境外卫星电视,全文以纯技术性来探讨卫星电视收视,共享我这些年的发烧成果,共同提高卫星电视接收水平就是作者创作本意。同时以发表文章的形势来感谢这些年支持我卫视发烧的业界朋友。

同步静止轨道卫星波束与场强

同步静止轨道卫星由星体、转发器及其接收、发射天线、太阳能电源糸统、姿态控制与轨道控制糸统、遥测与遥控糸统等组成。转发器接收地面发来的电视信号(上行信号),将其变频并放大到足够的功率,大功率的功率放大管由行波管担任。现代大功率广播卫星C波段行波管放大器功率超过55W、Ku波段功率更高达150W以上。现代大功率卫星有数十个转发器,通过技术处理用多工器将各频道的下行信号遥测合并,再经环行器送到发射天线(卫星发射天线属通信类定向天线)向地面覆盖区转发卫星电视信号(下行信号),为提高地面卫星信号强度,有效利用下行信号资源,发射天线的方向图应根据地面服务区的形状来确定。卫星发射天线按其覆盖区的大小,可分为全球波束天线(覆盖地球面积的42.4%)、点波束天线、区域波束(覆盖地球面积的10%)、半球波束天线(覆盖地球面积的20%)、赋形波束天线,卫星波束示意图见图1 。卫星发射天线其形状属喇叭口馈源外加反射器形成定向发射天线,其张角的大小决定波束面积的大小,对广播卫星而言,全球波束的半功率宽度约17.4°、点波束的半功率宽度只有几度或更小、而赋形波束天线,覆盖区轮廓不规则,视服区的边界而定。为使波束成形,通过修改反射器或用多个馈源从不同方向经反射器产生多波束的组合来实现。在大容量广播卫星中往往用多副天线产生多个波束,还备用了可移动波束及波束扩展技术,提供给卫星用户更多更便利的服务。

卫星信号传送的极化方式有两种标准:线极化和圆极化,利用垂直极化(V)与水平极化(H)、左旋圆极化(L)和右旋圆极化(R)相互隔离之特性传送不同的电视节目,即采用频率复用技术以提高卫星的传输容量。这两种极化有各自的优缺点。圆极化雨、雪衰减小,穿透电离层能力强,不受地球两极磁场产生的法拉地效应,安装调试简单(不用调整极化);制造性能较好的线极化LNB比圆极化容易的多,其效率较高,线极化10GHz以上频段法拉地效应甚微,在中纬度地区广泛应用,缺点需调整极化。这也就不难理解,俄星C波段用圆极化,Ku波段用线极化的原因。而我国即将启用的直播卫星采用的是圆极化,一是国际规定受保护的波束、频段、极化方式避免可能引起的干扰,二还有降低雨、雪及电离层的衰减。

广播卫星通过转发器-发射天线,将电视信号传达地面。其强度,技术用语定义是等效全向辐射功率,简称场强(EIRP),其功率大小值单位用dbw表示。由于卫星发射天线定向地面发射,功率分布并不均匀、再加“自由空间路经损失”,因此卫星覆盖区域中心位置的功率,要大于其边缘位置的功率。我们将这些相同与不同糸例EIRP等值线重叠在地图上,得到一个完整的波束覆盖图,简称场强图。典型的场强见图2。卫星信号场强图的作用,是为接收者提供接收参考。通常我们看到的卫星场强图都是理想值,即单一转发器的最大功率。

有些卫星场强图提供的数据,实际接收时感觉误差较大,这与上行、下行信号的功率有关,而影响功率的因素多多。如卫星器件的老化,电力供应等。必须指出:卫星数字信号的强度,EIRP值小于模拟卫星信号值,在于数字信号压缩、打包过程对数字信号的隔离功率损失(编者注:是这样的原因吗?)。在使用单载波(SCPC)同一转发器、或使用多载波(MCPC)不同转发器,各频点信号强度都有差值,我们俗称前者(单载波)为频点误差,后者(多载波)为转发器误差。(编者注:此观点值得商榷)一般广播卫星正常情况下,同一波束通常频率低端信号较高,各转发器频点误差在1~2db属正常,而超过3db以上就值得怀疑卫星传送网络及各转发器的功率等问题。而在波束边缘收视时,个别卫星场强值与实际收视值误差较大。

由于C频段(3.4~4.2GHz)与地面微波共用同一频段,为防止相互干扰,限制C频段广播卫星地面场强在40dbw左右,也限制了小型接收天线(1米以下)接收C频段的可能,(编者注:是这么回事吗?)这种情况近年发射的大功率卫星地面场强限制有所突破,90°E的俄星及今年升空的中星6B、鑫诺3号其C波段中心场强都超过了40dbw,甚至高达45dbw左右,为小型接收天线创造了收视条件。而Ku频段地面场强就不受此限制,现代直播卫星的Ku场强高达55dbw以上,直播场强覆盖区用0.35米天线就可满意接收。