期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 电气化铁道论文

电气化铁道论文精品(七篇)

时间:2022-07-08 18:45:33

电气化铁道论文

电气化铁道论文篇(1)

关键词:电气化 铁道 供电系统 技术 安全监控 分析

中图分类号:TP2 文献标识码:A 文章编号:1672-3791(2013)02(c)-0145-01

1 电气化铁道供电系统技术分析

从我国电气化铁路供电系统的发展角度上来说,自电气化铁道项目发展之初,我国在供电系统方面所选取的电流制式极为同一时期技术条件支持下发展最为成熟与先进的25 kV工频单相交流电流制。与此同时,此种电流制式下可以较高的电压供应面向铁道电力机车进行持续性供电。在此种供电制式方式作用之下,变电所内部所涉及到的供电设备结构配置相对简单,且接触导线截面较小,在控制建设投资及后期运行管理费用开支的同时,实现了对电能损失的合理控制与减少,具备极为突出的综合应用优势。

在当前技术条件支持下,适用于我国电气化铁道供电系统所采取的供电方式主要可以分为TR模式、BT模式以及AT模式这三种类型。其中,TR模式是指以直流供电为中心的供电方式,BT模式是指在吸流变压器与回流线作用之下所运行的供电方式,AT模式是指以自耦变压器设备为中心的供电方式。然而,伴随着铁道电气化发展的不断成熟以及铁道干线化发展趋势的持续凸显。在这一发展背景作用之下,为最大限度的控制因通信线路迁改工程量而造成的铁路电气化工程造价增高问题,引入了对BT模式的应用。在此基础之上,结合电气化铁道线路运量以及牵引定数的发展趋势,通过对AT模式及其相关设备的综合引入,最大限度的保障了我国电气化铁道供电系统的安全与稳定运行。据相关数据资料显示:在当前技术条件支持下,我国电气化铁道的远动控制率以达到了90%以上,成为我国电气化铁道供电系统调度与管理的最关键技术设备。

2 电气化铁道供电安全监控系统分析

实践研究证实,可能导致电气化铁道供电系统自身运行稳定性产生影响的因素不但涉及到系统自身运行可靠性的因素,同时也涉及到的外部自然环境条件对系统的干预与影响。

见图1即为当前技术条件支持下,整个电气化铁道供电系统所对应的安全监控系统。电气化铁道供电调度系统与监控系统相互之间,借助于网桥的方式实现有效连接,能够针对有关电气化铁道沿线各类设施的运行情况及状态进行全方位的安全监测。为在不影响对电气化铁道供电安全监测性能的前提条件下,最大限度的保障整个监控系统结构配备的整体性,应用的合理性以及经济性优势充分发挥,需要在原则上防止安全监控系统下属各个监测设备与装置同传输通道之间处于重复性设置关系下,由此在提高数据响应速度的同时,确保对整个安全监控系统基本层次结构的有效规范。具体可分为如下两层。

第一层:对于包括风速以及地震在内的各种预警信息而言,要求安全监控系统采取综合性的考量思路。按照列车站点以及控制中心这两个层级进行结构配置。具体的实施方式在于:需要将列车站点所划定区域范围之内配备的各监测点集中归纳在一个具体的子系统当中,并将该子系统作为列车站点监控层层级中的组成部分之一。在此基础之上,将该列车站点监控层层级以单元的方式合并至安全监控系统当中,为后续相关数据的处理提供必要的支持与保障。

第二层:对于其他仅针对子系统自身运行产生影响,且局域性覆盖较小的信息纳入与之相对应的系统结构当中。在针对上述监测数据信息进行处理的基础之上,需要按照控制等级的差异性,将其输入监控系统当中,形成子系统数据处理层级。确保安全监控系统所监控对象的有效性与稳定性。

在电气化铁道供电安全监控系统的运行过程当中,安全监控系统控制中心设备需要以调度系统设备为核心,在网桥设备作用之下实现对综合控制系统中心设备的网络连接。在整个铁道供电系统的运行过程当中,所产生的相关灾害监测信息需要在传递至调度子系统控制中心之后,进行必要的数据处理,按照数据处理的方式,划分灾害监测信息所对应的控制级别要求,并将这部分要求在网桥设备的作用之下,实现与综合安全监控系统之间的有效互联。更加关键的一点是,综合调度子系统通过网桥设备传输方式所接受到灾害监测信息之后,可通过电子邮件的方式实现系统与系统之间的信息共享与互传。

3 结语

现阶段,不论试从设计方面、科研方面还是施工方面来说,各相关行业工作人员均积极投入到对快速铁路相关技术的研究与开发过程当中,电气化铁道实现全方位的快速运行指日可待。在此过程当中,自主创新技术的应用将不断推动我国电气化铁道供电系统技术发展更加的完善,从而取得更大的成功。

参考文献

电气化铁道论文篇(2)

关键词:教学改革;铁路特色专业;电气工程及其自动化

作者简介:苏宏升(1969-),男,甘肃靖远人,兰州交通大学自动化与电气工程学院电气工程系副主任,教授;董海鹰(1966-),男,陕西临潼人,兰州交通大学自动化与电气工程学院副院长,教授。(甘肃 兰州 730070)

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)33-0027-03

一、历史沿革

兰州交通大学电气工程及其自动化专业的前身是1958年由姜嘉猷教授等一批电机工程专家组建的电力机车专业和1959年组建的电力机车供电专业。1999年,学校根据国家新的本科专业目录,设立了电气工程及其自动化本科专业,并于同年开始招生。2000年,该专业被教育部列入国家管理的专业点名单,并于2004年获得了财政部的中央与地方共建高校专项资金资助。[1]

电气工程及其自动化专业自成立以来,沿袭兰州交通大学(兰州铁道学院)多年优良的办学传统,本着服务铁路和面向地方电力系统领域进行人才培养的原则,已为国家培养了1000多名铁道电气化工程领域的专业技术人才,为国家建设,特别是西部铁路建设作出了重要贡献。

二、专业定位

随着高等教育教学改革的发展,我国高校高等教育已从精英教育时期转变为大众化教育时期,而大众化教育所面临的最大问题是毕业生的就业分配问题。严峻的就业形势已经演变成一个备受关注的社会问题,而这仅仅通过提升教学质量,狠抓教学水平的努力是难以办到的。因此必须从社会分析做起,正确定位,找好高校人才培养和社会需求的结合点,做好高等教育的专业教学改革,完成高校肩负的三项主要职能:人才培养、科研转化和服务社会。

电气工程及其自动化专业是我国工科院校普遍设立的一个专业,专业规模相对庞大,就业竞争异常激烈。如前所述,兰州交通大学如何能够培养出适应时代需求的学生,在当前诸多高校中占有一席之地,是关系到该专业生存发展的重要问题。为此,兰州交通大学电气工程系在对当前该专业深入分析的基础上,结合原铁路院校类特色,进行了大胆的尝试和改革,即将兰州交通大学电气工程及其自动化专业定位于铁路特色专业,在原电气工程及其自动化专业原有方向的基础上设立了电气化铁道牵引供电和接触网工程两个特色专业方向,一方面拓展了学生的就业渠道,进一步明确了教学目标,另一方面兼顾了学生的学习兴趣。经过两年的专业尝试,证明电气工程系将电气工程及其自动化专业定位于铁路特色专业的实践是完全正确的,出现了毕业生供不应求的局面,不少人已在本职岗位上取得了良好成绩,深受用人单位欢迎。

三、特色专业方向的设立

教育部《普通高等学校专业设置的规定》明确规定:“普通高等学校根据社会特殊需要及自身优势和特点,可在完成基础课教学后,在现设专业范围内自主审定专业方向”。在此规则指导下,兰州交通大学电气工程系开展了在电气工程及其自动化专业下设立特色专业方向的探讨和研究工作。

1.电气专业宽口径下的问题分析

纵观当前电气工程及其自动化专业的状况,所存在的问题主要表现在:一是人才培养目标不够明确。部分高校沿袭着我国高等教育中重理论、轻知识传授的教育理念,忽略了人自身的教育,又缺乏明确的专业定位,导致培养目标过大而无法适应时代需求,也不能适应社会对人才的多层次需求。二是人才培养模式落后,缺乏创新。教学以具体专业为导向,将相应的专业知识灌输给学生,较少考虑学生是否能将所学知识完全消化,是否形成了合理的知识结构,是否能够运用这些专业知识解决实际问题。随着信息技术的高速发展,技术专业化日益突出,培养更加专业的电气方面人才是社会发展的必然。

2.铁路特色专业方向建立的可行性和必然性

我国能源资源分布的不均衡以及越来越多的外出务工人员,决定了我国铁路交通运输在未来国民经济发展中仍将占据十分重要的地位,而铁路电力牵引相比其他牵引方式在高速、重载、环保等方面具有很大的优越性,因而是未来铁路交通运输行业主要发展的牵引模式。“九五”后期,随着一批时速超过200km的客货共线铁路和200~350km的客运专线铁路的建成,我国铁路进入高速发展期,加上这些铁路多采用信息技术控制和管理,客观上决定了对铁路牵引供电专业的更高要求:要求电气专业对铁道知识有深入的理解和掌握;要求作为铁路自动化、现代化和科技化代表的牵引供电系统要从可靠性到先进性满足高速铁路建设的要求;要求现代的电力牵引供电要向专业化、科技化和信息化的方向发展。

目前我国铁路建设掀起了新一轮高潮,且正在向新疆、等边远地区渗透,而这些铁路建设的特点是高起点和高标准,急需大量掌握现代科学知识的铁路供电和接触网方面的人才,从事与牵引变电所与接触网有关的运营维护工作,确保大动脉的安全畅通。另外,由于兰州交通大学电气专业培养目标不够明朗或培养计划满足不了高速铁路发展的要求,致使人才培养与社会需求脱节,毕业生就业困难。

根据我们在乌鲁木齐、呼和浩特、哈尔滨、武汉、郑州、兰州等铁路局和青藏铁路公司,以及南车、北车等铁路机车车辆制造企业的调查而得出的结论来看,这些企业每年对牵引供电专业毕业生的人才需求是学校能够提供的三分之一,缺口达一半以上,而且这些铁路企业对牵引供电的人才需求还将继续增长。

一方面是宽口径下电气专业学生由于技能欠缺和诸多高校学生人数日益增多带来的就业压力;另一方面是铁路牵引供电专业的人才匮乏,出现了多家用人单位提前到学校争抢人才而无法满足人才需求的局面。鉴于此,根据兰州交通大学原铁路类院校特色,兰州交通大学电气工程系决定在电气工程及其自动化专业下开辟牵引供电专业方向。同时,考虑到接触网是电力牵引必不可少的载体,与运营维护工作往往纠结在一起,密不可分,因此又设立了接触网工程方向。这样和原来的电力系统自动化专业方向一起,兰州交通大学电气工程及其自动化专业共有三个专业方向,即两个铁路特色专业方向和一个传统专业方向,较好地满足了用人单位的需求,也给学生提供了更多的选择空间。

四、铁路特色专业方向改革的具体措施

电气工程系铁路特色专业方向一经确定就成为兰州交通大学的一个重要专业方向,这也是甘肃省乃至西北地区唯一的一个有该方向的本科院校。为了满足铁路特色专业方向(即铁道供电和接触网方向)的教学要求,院系两级在人才培养模式、课程设置、教材选取和平台建设等方面成立了专门的课题研究小组,并得到了学校的大力资助。

1.教学计划的修订和课程设置的完善

电气工程系原有的教学计划和大纲是针对电气工程及其自动化本科专业而设置的,具有课程门类比较齐全,覆盖面广的特点。缺点是缺乏特色,定向模糊,培养目标不清晰,导致毕业生就业困难。为了能和铁路特色专业培养目标相匹配,必须对现有的教学计划进行调整,使之既能符合电气工程及其自动化专业的培养计划,又能体现铁路特色供电专业的培养目标。为此,研究小组认为:新教学计划的制定应该体现知识的完整性和连贯性;充分反映本课程方向的新技术和发展前景;删减就繁,除旧布新,突出重点;理论联系实际,注重实践能力的培养。正是基于这样的原则,结合大纲对原教学计划从公共基础课程教学平台、专业基础课程教学平台、专业课程教学平台以及工程实践能力教学平台四个方面进行了修订。[2]

(1)公共基础课程教学平台的修订。除执行全校公共基础课程体系外,学院还构建了由14门课程组成的计算机应用能力平台:“程序设计基础”、“数据结构”、“离散数学”、“微机原理”、“单片机原理及系统设计”、“数值计算与MATLAB方法”、“嵌入式系统设计”、“计算机导论”、“DSP技术及应用”、“数字信号处理”、“软件开发技术基础”、“数据库技术及应用”、“Web技术及应用”、“计算机网络”,为学生今后的发展奠定了基础。

鉴于铁路特色专业方向对数学有较高的要求,因此在修订计划时增加了工程数学教学方面的内容,包括“数学物理方程”、“矢量分析与场论”、“概率与数理统计”、“复变函数与积分变换”课程,为学生专业方向课程的学习中打下厚实的基础。

这样学生既能在大电类基础课程教学平台的宽口径下学习,又能掌握特色专业方向课的基础课教学内容,为以后分专业方向学习奠定了坚实的基础。

(2)专业基础课程教学平台的修订。电气工程及其自动化专业基础课程教学平台包括“电路分析”、“电路实验”、“电子技术”、“电子技术实验”、“工程电磁场”、“自动控制原理”、“电机学”、“电气工程导论”、“电力系统分析”、“电力系统通信与网络技术”10门课程,与公共基础课程共同构成大电类基础课程教学大平台。

由于接触网专业对机械和力学知识有较严格的要求,因此在专业基础平台中增加了“机械设计基础”和“工程力学”课程,丰富了学生的专业知识面,也为以后学好接触网专业方向奠定了基础。

(3)专业课程教学平台的修订。电气工程及其自动化专业课程教学平台主要涉及“高电压技术”、“电力电子技术”、“电力系统继电保护原理”、“电气测试技术”、“电器控制与可编程控制器”、“电力系统自动化”、“专业英语阅读与写作”、“电气设备状态监测与故障诊断”、“配电网络自动化”等课程,与毕业设计、课程设计一起构建专业技能获取平台。

专业课程教学平台的修订对确保铁路特色专业方向成功至关重要,因此做了较大的调整。针对电气化铁道牵引供电专业方向,增加了“电气化铁道供电系统与设计”、“电气化铁道供电系统及装备”、“城市轨道交通供电系统”、“牵引供电所设计与施工”课程以及这些课的课程设计。针对接触网工程专业方向,增加了“接触网工程与设计”、“接触网规程与规则”、“接触网施工”、“接触网检测”以及“接触网工程与设计课程设计”。上述两个特色方向除必修课外,均有9个学分的选修课。表1是调整后电气工程及其自动化铁路特色专业方向课程教学计划。

(4)工程实践能力教学平台的修订。工程实践能力教学平台的调整主要基于两方面:一是调整工程实践平台本身的实训内容,如认识实习由参观刘家峡水电站改为参观兰州铁路局供电段兰东牵引变电所,生产实习由原来的兰州电机厂实习改为兰州铁路局职工培训站陇西分站接触网实训基地实习。二是开辟新的实训内容或实训基地,如增加了有关牵引供电系统和接触网专业方向的零部件拆装实习,以及开辟了兰州铁路局供电段电调中心实习基地。此外,学院还定期聘请各大铁路局、设计院、中铁电气化公司、青藏铁路公司等现场专业人员来学院任课或作报告,使得学生们不出校门就能学习到现场的知识。

2.师资队伍建设的研究

电气工程及其自动化专业铁路特色专业方向是一个崭新的方向,师资力量的配备直接影响到专业建设的成败。在优化师资配置资源的基础上,必须加大师资培训,提高教师的专业水平。具体措施:一是安排教师到相关院校进行实习培训,加强学习交流。如2008年安排张廷荣、李红两位青年教师去华东交通大学学习,安排李亚宁教师去铁道部第一设计院学习,2009年安排张廷荣、李红去铁道部第一设计院兰州分院学习,2010年安排闵永智教师去西南交通大学学习,提高了教师的理论水平。除了每年安排相关教师进修实习外,学院还着力出台了“1+2”研修计划和“1+1”帮带计划。二是鼓励教师利用暑、寒期到工厂或铁路建设现场实地考察,与现场工人、技师交流学习,做到真正实践学习。三是在院内积极开展铁路特色专业方向方面的科研工作,加大对科研方面的投入。通过承担和参与科研项目,提高教师发现和解决工程实际问题的能力,丰富教师的工程实践经验。四是强化教师专业队伍,引进高水平人才,要特别加强从企业引进具有较高学术水平和丰富工程实践经验的高级专业技术人才,提高师资队伍的整体工程实践能力和水平。

3.实验室建设和实习基地的建立

实验是教学的重要环节,相应的实验室建设对于专业发展尤为重要。铁道电力牵引供电系统和接触网专业方向建立之前,我们就对实验室建设进行了大量的考察和论证工作,一经专业方向确立就开始了实验室建设工作。由于铁路特色专业方向的特殊性和庞大性,所需建设资金缺口较大,研究如何利用有限的资金完成有代表性的实验设备从而完成实验室建设,满足日常教学需求,帮助学生理解和接受所学专业知识提高学生学习主动性异常重要。学校采取了以自我建设为主的方式,同时加强外来资金的引入。一方面,学校利用日元贷款大力建设铁路特色专业方向实验室,先期建成电气化铁道供电系统模型实验室,包括一个电力系统沙盘及一个牵引供电系统沙盘;全部偿、半补偿及接触网简单悬挂模型;断路器、隔开关、互感器、避雷器等牵引变电所电力设备模型;AT、BT及接触网直供方式下的挂板模型;牵引所二次回路、直流操作电源的挂板模型,满足铁路特色专业方向学生学习的基本需求。另一方面,利用财政部与地方共建实验室和特色办学机会,争取国家财政支持。通过各方积极努力,获得财政部数百万元建设基金,建立了远动及综合自动化实验室。最后利用现有的实验设备,学校投入配套资金进行二次开发,展开对遥测、遥信和遥控系统的深入研究,完善实验室设备和技术。[3]

关于实习基地的建设问题,接触网专业方向要求学生必须通过相应的安全规程测试,合格后方能上岗,其特殊性决定了实习的重要性。利用现有条件和依托相关企业单位建设新的实习基地是我们必须思考的问题。学校利用兰州铁路局职工培训站接触网实习基地的优势,在实习阶段将学生送到接触网实习基地进行接触网零部件拆装练习,并设法考取上岗证。另外,和企业积极联合,建立新的实习基地。如与兰州铁路局兰东供电段达成就业实习协议,给学生一个熟悉和实习的机会,做到理论和实践相结合。

4.教学方式多样化,注重学生能力培养

为了增加学生的学习兴趣,电气工程及其自动化专业铁路特色专业方向的课程从内容到形式上都进行了不断地尝试,目的是寻求利于学生学习和能力提高的最佳结合点。

教学内容上不再采取单纯的灌输式教学,而是丰富教学内容。首先在教材的选取上采用“三位一体”的教材,再经过大量的比对,选取最好、最先进的教材。对不恰当的教材经过教师和专业技术人员的共同努力进行修正;课堂采取不同的教学方法,利用多媒体课件教学,一方面从交流单位引进录像,另一方面根据需要去现场实地制作教学录像,提高了学生的学习兴趣。

课堂教学注重能力培养。为了提高学生能力,充分发挥学生的学习主动性,一些课程采取了教师讲授、学生参与的方式。例如,对于轨道交通概论,任课教师讲完部分课件后,布置学生课后通过资料查取完成一定任务,并让学生们课堂讲解。由于学生查阅的知识多种多样,不仅丰富了学生的视野,而且教师在其中也可以学到不少知识,共同受益。提高了学生的学习主动性、自学能力。

五、铁路特色专业方向取得的实效

兰州交通大学电气工程及其自动化专业铁路特色专业方向一经开始就显示了极其强大的生命力和发展潜力。在校内受到领导和广大教师的支持,为学生提供了一个新的就业机会和选择。经过两年的建设和发展,得到了铁路局、设计院、中铁电气化局、中铁建和机车车辆制造企业的认可和好评。目前除部分毕业生考取研究生外,大部分学生已走上工作岗位,总体呈现出供不应求的局面。在最近连续三届的毕业生就业分配中,无1人待业。在最近连续两年的高考中,报考该专业学习的学生数量大大增加。该专业与铁路信号、机车控制两个专业配套,构造了“三位一体”的学科优势,填补了学科专业建设的空白。

六、结束语

自1999年电气工程及其自动化专业恢复招生以来,历经10年有余。在校、院两级领导的支持下,电气工程系教师孜孜不倦、呕心沥血,建立了国家特色专业和省级实验示范中心两个平台,设立了电气工程一级硕士学位授权点和一个工程硕士学位授权点,并吸引了大连交通大学、西南交通大学、华东交通大学、宁夏大学、兰州理工大学、兰州工业专科学校、河西学院、陇东学院、甘肃工业职业技术学院、酒泉工业职业技术学院、乌克兰克列门丘格国立大学和斯洛伐克马捷贝尔大学等院校教师来中心参观、学习,取得了令人瞩目的成绩。

参考文献:

[1]苏宏升.电气工程及其自动化铁路特色专业建设的研究与实践[J].中国科教创新导刊,2011,(5):193-195.

电气化铁道论文篇(3)

(郑州铁路职业技术学院 河南 郑州 450052)

摘要:“线校交替”人才培养模式即电气化铁道技术专业的人才培养过程自始至终在电气化铁路沿线工作场所与职业院校学习场所之间交替进行,该模式融入了“工学结合”的教育思想,适应了电气化铁路供电运营企业运行模式和岗位工作特征,取得了明显的成效。

关键词 :人才培养模式;线校交替;校企合作

中图分类号:G717 文献标识码:A 文章编号:1672-5727(2014)12-0043-03

随着电气化铁路建成运营和技术改造,对电气化铁道技术专业原有岗位的技术需求发生了很大变化。郑州铁路职业技术学院积极应对,探索实践了“线校交替”人才培养模式,先后完成郑州、武汉、南昌、昆明、上海、成都、太原、南宁、广州、青藏铁路公司等铁路局,广州、深圳、武汉、无锡、南宁、西安等地铁公司订单培养任务,学生专业对口就业率达100%。毕业学生深受用人单位的欢迎和认可。

“线校交替”人才培养模式的内涵

“线校交替”人才培养模式是从电气化铁路供电运营企业运行模式和岗位工作特征出发,在校企双方的共同参与下,使人才培养全过程在电气化铁路沿线与学校之间交替进行:按照就业岗位训练、职业资格证书培养划分教学阶段,形成分段式教学组织;按照“职业岗位—职业资格证书—课程”三者对应的原则,构建“运维一体、岗证衔接”的课程体系。依据教学内容和教学目标,合理分配课业引导教学与项目化教学的比例,形成“课业+项目”教学模式。详见图1。

“线校交替”人才培养模式包括了两个层面的具体要求。

第一个层面:把学生在校的3个学年分为2个阶段,包括第一、第二、第三学期的以学校为主导的基础平台学习阶段和第四、第五、第六学期的以企业为主导的专业培养学习阶段。在基础平台学习阶段,以道德修养、文化素质、机电基础三个模块开设课程。在专业培养学习阶段,根据企业的个性化需求,开设教学项目,实施人才培养。

第二个层面:在以企业为主导的专业培养学习阶段,依据“运维一体、岗证衔接”的目标,进行分阶段的教学组织,教学地点在电气化铁路沿线与学校交替进行,实现“线校交替”。专业培养学习阶段由6个培养阶段构成。其一,对应高压试验工岗位、接触网工岗位、变电工岗位、维修电工岗位等4个专业岗位项目形成4个培养阶段,分段授课与实训,并与高压试验工、接触网工、变电工、维修电工职业技能鉴定相结合。其二,在顶岗实习(含毕业设计)环节中,按照高速铁路供电企业管理模式,对应高速铁路供电综合检修车间的接触网工区、变电工区两个部门,形成两个培养阶段。依据企业的个性化需求,对各个阶段实施弹性调整。

“线校交替”人才培养模式的整体设计

(一)“运维一体、岗证衔接”的课程体系

电气化铁路供电系统 “周期检测、限度管理、寿命管理、状态检修”管理理念,将该职业工作过程中设备的运用、测试、监控和设备的检修、维护、抢修融为一体。因此,“基于工作过程”原则开发的专业课程,其教学内容的设置既要兼顾设备结构原理、技术细节的理解与应用,又要着力培养学生的设备运用维护操作技能,即运行管理与维护抢修融于一体。

以电气化铁路行业标准为基础,按照“职业岗位—职业资格证书—课程”三者对应的原则,将接触网工、变电工、维修电工、电气试验工、电力调度员的国家职业资格标准融入专业课程教学内容,将源于铁路牵引供电系统运营维护现场一线的工作项目贯穿课程学习的整个过程,逐步形成“运维一体、岗证衔接”的课程体系。主要就业岗位和职业资格证书对应关系如表1所示,课程体系如图2所示。

(二)“课业+项目”的课程教学模式

依据课程教学内容和教学目标,将其划分为不同类型,采取不同的教学模式。

“接触网”、“电力牵引供变电技术”、“继电保护”、“高电压技术”等课程,以“课业+项目”方法实施教学组织。设备结构与原理部分强调教师引导,以作业形式交付学生学习任务,使学生可以主动到课程资源库阅读资料,相互交流、相互评价,完成学习。设备运用维护与检修部分,学生根据相关指导书以及课程资源库提供的检修工艺流程标准,按照项目进行个人或团体的实作训练。教学在多媒体教室、实训室、企业车间等场地交叉进行。

“电气控制与PLC”、“电力内外线工程”等课程实行全部在“教学做一体化”教室(实训室)上课的强化训练方式,引入工程项目并进行教学化处理,使之成为适合教学的学习型项目。以学习型项目为载体,将知识点融入到各项目之中,在实训室内按项目(或任务)组织实施教学,通过边教边学、边学边练、学做合一“教、学、练、做”有机融合的一体化教学过程,实现岗位技能培养,提高学生分析、解决实际问题的能力。

(三)融入式分阶段实践教学体系

“线校交替”人才培养模式是将电气化铁道技术专业的实践教学贯穿于教学全过程,并按各项技能训练内容的深浅度与综合程度以及职业岗位角色内容的不同,由浅到深、由易到难、由分散到综合,分为三个阶段完成。

第一阶段:专业认知 第一、第二两个学期,校内开设“就业指导”、“铁道概论”等课程,组织学生到电气化铁路沿线的接触网、牵引变电所以及供电检修车间参观,使学生了解铁路,认知职业,实地体验轨道交通运营企业文化,初步认识轨道交通运营企业检修作业和企业管理特点。

第二阶段:专项训练 安排在第三、第四、第五学期。“理实一体”的专业及专业基础课程按照“课业+项目”的模式组织教学。按照不同课程所对应的不同工种和岗位,组织学生有针对性地进入电气化铁路沿线,观摩现场设备的操作、巡视、维护、试验、检修、抢修等工作过程,收集整理设备运行数据,运用所学理论分析数据判别设备状态。例如,通过收集接触网导高、拉出值等参数,判别该处接触网是否需要检调、如何检调等。校内整周实训的教学项目设计以某项生产任务作为工作任务,将知识、技能整合排序后开展教学,围绕核心职业能力的养成,使学生以任务承担者的角色在职业情境中学习,实现理论、实践一体化的教学模式。根据教学项目的需求,分别在校内实训基地和铁路供电分校练兵场进行,校企双方共同指导与考核。

第三阶段:顶岗实习 一般安排在第六学期。实习在电气化铁路沿线,按照工种和岗位分阶段进行。第一阶段完成接触网工、变电值班工技能训练并由企业组织相应工种的实作技能考核,考取中级工等级证书;第二阶段完成接触网工区值班、接触网设备测量巡视检修、变电所值班、变电所设备巡视检修等岗位实习,由企业考核并出具实习考核鉴定意见。

“线校交替”人才培养模式的合理性分析

电气化铁道技术专业的培养目标:面向电气化铁路供电运营与维护生产一线,培养掌握铁路接触网和牵引变电所检修、调试、故障处理和生产组织管理业务,从事接触网工、变电维修工、变电值班员、电气设备试验工等岗位工作,具有供电系统状态数据检测、分析能力,敬业爱岗、开拓创新与团队协作精神的高端技能型专门人才。

该专业的职业岗位、工作环境具有“四高一大”的特征,即“运行速度高(120~300km/h)、工作电压高(25kV)、工作位置高(6m以上高空作业)、设备集成度高、工作电流大”。接触网检修工区、牵引变电所等工作场所分散布置于电气化铁路沿线,绵延数百公里。校内的模拟、仿真设备难以再现其运行环境和工作状态,传统的仅在毕业前进入电气化铁路沿线参观实习的模式,无法满足高端技能型专门人才的培养需求。

“线校交替”人才培养模式正是在这种特殊的专业背景下,融入“工学结合”的教育思想,逐步探索形成的。人才培养过程自始至终在电气化铁路沿线工作场所与职业院校学习场所之间交替地进行。

人才培养模式的实施需要良好的校企合作关系以保证充足的校外实训基地数量及企业指导师傅的数量和质量;“线校交替”人才培养模式实施了仿真教学、教学做一体化教学、现场教学和顶岗实习结合的教学形式,工学结合贯穿于整个培养过程及每一门核心课程之中。

“线校交替”人才培养模式符合循序渐进的认知规律 在整体思路上体现了“入学初期,走入铁路,感知职业;入学中期,深入铁路,熟悉工作;毕业前期,融入铁路,胜任岗位”的职业素养与职业能力培养的递进过程。对学生的培养从熟悉现场的整体认知入手,经过模型或真实设备的操作训练,然后过渡到生产现场的学徒制训练,最后是生产现场的独立操作,环境上交替确保了能力上的螺旋递进。

“线校交替”人才培养模式体现了全面素质培养的教育观念 人才培养模式的培养过程注重专业能力、社会能力和方法能力的全面培养。专业能力培养贯穿于整个培养过程的专业理论知识和操作技能的 “理实”一体化学习;社会能力(团结协作、劳动纪律、工作态度等)则通过一体化教学阶段的分组学习、顶岗实习阶段的准员工身份要求等予以培养;方法能力(分析和解决问题等方面)是顶岗实习和生产现场教学阶段的主要训练内容。

“线校交替”人才培养模式符合“能力本位、就业导向”的高职办学方针 人才培养模式以培养“零距离”上岗的准员工为目标,无疑使学生具有较强的就业竞争力;第一、第二、第三学期的基础平台学习阶段在学校与郑州铁路供电段之间交替进行,第四、第五、第六学期专业培养学习阶段,在学校与学生的就业单位之间交替进行,专业能力培养贯穿于整个培养过程的专业理论知识和操作技能的理实一体化学习;社会能力(团结协作、劳动纪律、工作态度等)则通过一体化教学阶段的分组学习、顶岗实习阶段的准员工身份要求等予以培养;方法能力(分析和解决问题等方面)是顶岗实习和生产现场教学阶段的主要训练内容,将学生的综合能力培养与就业融于一体。

参考文献:

[1]马树超,郭扬.高等职业教育的跨越、转型、提升[M].北京:高等教育出版社,2008.

[2]董泽芳.高校人才培养模式的概念界定与要素解析[J].大学教育科学,2012(3).

电气化铁道论文篇(4)

【关键词】地铁电客车 牵引系统 特点 组件 控制

中图分类号:U231+.3 文献标识码:A 文章编号:

地铁电客车特定的环境和操作特性,需要频繁的列车牵引和适当的减速处理。牵引系统是地铁电客车上的高电压,高电流,高功率电路。牵引系统的牵引条件,主要是必要的牵引车辆的牵引,在电动制动条件下,车辆的动能传递到变电站的电气制动力,最终实现电力转换和传输,这就是地铁电客车的牵引系统。

1.地铁电客车牵引系统的特点

地铁电客车的制动装置是使所述车辆减速,停车,装置是必不可少的,以保证地铁电客车安全运行。在移动车辆,拖车中所提供具有制动装置,使得操作的列车需要减速或停止的预定距离内。除了传统的机械制动,城市轨道车辆制动装置的要求与电制动函数,并应充分发挥电制动能力,电制动和机械制动的协调。列车的牵引系统,保持在车辆减速和制动,以减少车辆纵向冲动,自动调节的制动力量的变化,以及紧急制动能力,除了在紧急情况下可能是列车紧急制动自动当车辆分离危及运行安全的事件发生在司机采取紧急制动的车辆以外的操作。城市轨道交通车辆制动摩擦制动和电动制动压缩空气为摩擦制动器,盘式制动器,以及铁路制动电磁铁和轨道电磁制动器的力量,电气制动与再生制动电阻制动。车辆的制动牵引电机成为发电机列车动能转化为电能,再生制动能量回馈到电网提供其他列车使用电阻制动电网的不能吸收的能量通过电阻将其转换成热量排放到大气中。摩擦制动功率供应的压缩空气的气体供给系统的车辆。由空气压缩机,干燥过滤器,压力控制装置和管道组件的气体供给系统,也需要压缩空气的空气弹簧设施气体供给。

2. 地铁电客车牵引系统的组件

车辆,包括当前车辆牵引系统和各种电气设备和控制电路。通过当前的三轨流动和受电弓转换器的选择主要取决于电源电压。电源电压一般使用铁路,减少对城市景观的影响;电源电压一般采用电气接触线电压降低的优势,减少能源损失,同时需要牵引少变压站。地铁电客车的牵引系统采用直流牵引电机,尽管它有一个重,体积大等大量的维护缺点,但是因为方便和快捷,已被广泛应用。随着社会交通事业的快速发展,电力电子技术和微电子技术,交流调频调压器技术,效率高,性能好,几乎所有车辆都用交流牵引电动机和变频调速器控制的交流传动地铁电客车的牵引系统。直流的地铁电客车的牵引系统,控制凸轮换档发展的斩波微调转变,他们的车辆的动能转化为电能消耗在电阻,是一种浪费能源的缺点。随着电子技术的发展,在直流牵引系统控制模式的发展为微机控制斩波器换档模式,车辆的动能转化为电能储存在反应器中,然后反馈给电网。变速直流斩波的变速方式的特点主要表现为只有当地铁电客车的制动电网不能被吸收的电阻可再生能源发电消耗,节约能源,除此之外,小电机电流的波动以改善粘附能力,结构简单,维修方便,也是其主要优点。

3. 地铁电客车牵引系统的矢量控制

作为牵引系统的核心,牵引逆变器系统在牵引控制单元的控制下可实现如下控制功能:接受并执行司机操纵指令;进行牵引电机转矩控制,混合电制动控制,防冲击控制,空转滑行控制,空重车控制,牵引/制动切换控制等反转保护;通过与空气制动控制系统交换数据,实现电空制动的联合控制;进行系统控制逻辑检测和故障诊断、显示、记录,并与列车监视系统交换数据等,根据故障严重程度分类实施保护动作。采用矢量控制方法,具有快速响应和高精度的特点。通过采用矢量控制对电机转矩进行精确的控制,能实现防冲击控制,从而实现平稳的加速和制动。在牵引工况中,当轮对发生空转与滑行时,通过矢量控制对电机的转矩进行快速而精确的控制,能有效抑制空转及滑行,迅速恢复轮轨间的黏着。利用矢量控制方式实现空转/滑行控制,能充分的发挥轮轨间的黏着力利用,可以稳定地铁电客车的加速和制动,并避免空转和滑行对轮轨的损坏。

4.地铁电客车牵引系统的牵引控制

当再生制动不能进行由制动斩波器,功率消耗在制动电阻器,并转换成热耗散。随着城市轨道交通车辆,地铁电客车的安全性,舒适性的新要求的不断更新,辅助电源系统的功能也越来越多。牵引系统,当直流逆变成三相交流电流,由受电弓牵引电动机的起动,加速,滤波电路的电流的波动,在电网电压的稳定的逆变器和斩波器和减少谐波。

牵引逆变器接收由司机控制器发出的牵引指令及给定值,并根据从制动控制装置接收的列车空重车信号,对列车进行牵引及其输出转矩控制。系统设有速度限制功能。地铁电客车的速度超过限定值时,系统进行牵引封锁,将牵引力变为零,直至速度恢复。另外当ATP切除时,牵引系统也可提供车辆限速功能。另外,地铁电客车牵引系统还具有高加速功能,在坡道救援起动时,利用该功能可增大地铁电客车的起动牵引力,将停靠于最大坡道的故障列车推过坡道。地铁电客车设有洗车运行模式。当采用该模式运行时,本系统控制牵引在规定速度区间自动施加或切除。

5.结束语

牵引系统是地铁电客车的关键技术之一。只要采取适当的牵引控制策略,我们就可以很快确定​​地铁电客车的工作状态,及时调整地铁电客车的车轮和轨道之间的附着力,以便于使用牵引系统的地铁电客车顺利发挥其牵引,地面测试工作对牵引系统在地铁电客车的广泛应用奠定了坚实的理论和实践基础。

【参考文献】

[1] 陈英,陈燕.成都地铁1号线车辆电气牵引系统[J].铁道机车车辆,2009.

[2] 袁登科,朱小娟,周俊龙.地铁车辆电气牵引系统直流侧电流谐波分析[J].同济大学学报(自然科学版),2012.

电气化铁道论文篇(5)

[关键字]高速铁路 节能环保效果 效益

[中图分类号] TE08 [文献码] B [文章编号] 1000-405X(2013)-3-191-1

高速铁路又称高铁,是一种根据不同国家的不同地形、人口以及经济基础等不同情况作为参考资料而建设并是用的交通工具,主要以客运为主。近几年来我国一直在发展高铁事业,到目前为止我国最新建成的高速铁路最高时速可以达到三百千米以上,可以说十分便利和快捷。作为世界铁路发展的主要潮流,高速铁路不但具有十分明显的环保效果更可以做到节能减排,因为现代的高速铁路大多数都是使用电力作为主要能源,也就是所谓的以电代油,高速铁路的出现让铁路系统对于石油的依赖性慢慢的降低,让能耗结构产生优化,同时减少了油的使用便让碳的排放量降低,对于能源的节约以及环境保护都十分有利。

1论述高铁的节能环保效果

1.1有效解放土地减少占地面积

和公路交通系统相比,铁路系统载客量相对较多,同时占地面积也较小,一般来讲,铁路设施的占地面积多为公路系统占地面积的四分之一。以法国的TGV高速铁路为例,高速铁路的路基宽十四米,而相对于法国的高速公路的车道宽度,其高速铁路的宽度折合为占地面积之后也仅仅知识高速公路的四分之一左右,相当于一条高铁的运送效率等同于四条公路,效率十分高。另外如果将高铁和航空系统相比较来讲,航空系统的机场占地面积更为庞大,仍然以法国的巴黎戴高乐机场为例,刨去机场的建造复杂程度以及经费问题,光考虑面积相比较的话,戴高乐机场总面积为三万平方米,整整占据了巴黎市区面积的三分之一,而相对于机场,巴黎的铁路却仅仅是二点四万平方米,占地面积方面,高铁胜出。

在我国为了防止铁路系统对于城市产生切割效果,耗费大量土地,我国使用的桥梁建设方案获得了良好的效果,以桥代路的方式更加让高速铁路占地面积小的优势完全显露出来,以我国的京津铁路为例,这一段高速铁路建设直接节约了三千余平米,因此可以了解到,高速铁路具有极高的改进潜力,其占地面积较小,符合节能环保的要求。

1.2使用可再生能源以及新能源,节能高效

以我国的京津城际铁路为例,铁路系统中北京以及天津两个站点都使用钢化玻璃的顶棚,同时采用透光处理,白天利用自然的阳光进行照明,从一点一滴进行节能。同时北京站采用的热电冷三联供以及污水源热泵技术,节能效果明显,每一年可节约能源资金六百万余元,同时本站采用太阳能电池板辅助发电,每年的发电量为十八万千瓦时,节约了气势吨的煤炭。

1.3新能源使用,以电代油

随着科学技术的进步,石油的短缺带给人们更加深刻的反思,能源的危机想要化解就只能改善能源结构,大力开发新能源,作为交通行业的一种,高速铁路是一种开发新能源的十分理想的交通系统。我国一直进行研究的以电代油政策已经开始逐步实施,通过使用现代化的电气来带动列车前进,通过使用电气作为燃料来代替传统的石油能源,全面推进高速铁路电气化的发展,已经成为了世界公认的节能方法。我国近些年来铁路电气化推进速度在不断的加快,这几年电气化铁路已经增加了五千余千米,电气化铁路的工作量也在不断的上升,可以说进展十分顺利。

2高铁与其他交通方式环保程度比较

2.1能源消耗比较

高速铁路最主要的运输方式便是使用电气作为燃料,店里是一种新的能源,清洁可以随时更新,同样如此的能源也包括水利、太阳能以及核能。通过调查表明,高速铁路的你那个号和小汽车以及飞机相比,其能耗比例分别为一比五点三比五点六,高铁完胜其他交通工具。另外如果将高铁和公路和航空相比,按照每个旅客小号一单位的燃料行驶路程作为基础进行比较,那么三者的比例分别为1:0362:0.26,可以看出高速铁路的运输效率以及节能方式均比其他两种运输方式要理想。同时高铁的能耗也并不高,可以说是陆路运输中的佼佼者,同时使用高速铁路,推广电气化可以让人们对于石油的依赖性逐渐减少,环节石油的短缺危机,同时也可以推动二次能源的开发和利用,高铁的环境优势也明显高于汽车和飞机,节能效果十分显著。

2.2大气污染程度比较

相比较无时无刻不在释放二氧化碳等废气公路交通和航空运输产业,以电力作为主要能源的高速铁路可以说是一种十分清洁的运输工具,甚至高速铁路可以做到有害气体的零排放标准,是一种绿色的运输方式,对于空气的污染也是最轻的。使用电力的高速铁路可以有效的消除粉尘,防止煤烟的排放同时也有效的防止其他的废气污染,相比较高速铁路的环保效果,一架飞机可以做到每小时排放大量的有害气体,甚至包括形成酸雨的硫化物,给生态平衡以及公共建筑带来巨大的伤害,经过日本的一些专家研究表明,相比较于高速铁路的环保效果,汽车和飞机的废气排放量分别是高速铁路的五倍和六倍多。

3高速铁路的经济效益以及社会效益

相比较公路运输以及航空运输,高速铁路运输具有运载量大,效率高,速度快的优点,高速铁路的票价相对飞机要低,同时比客车迅速,更加舒适,十分容易吸引乘客的目光,据调查显示,大多数人出行更愿意做高速铁路而不是做飞机和汽车,拿日本的新干线为例,每年新干线可以创造九千多亿日元的经济效益。

高铁的出现可以代替传统铁路,速度更快,载客量更大,可以有效的让地区的经济发展得到平衡,同时提高交通以及物流的环境,让区域化逐渐消失,沟通区域之间的联系,解决了许多社会问题,有效的提高社会效益。

总之,高速铁路不仅速度快,效率高,还具有十分明显的节能减排效果,无论是经济效益或者社会效益都满足我国的需求,更是对于我国的可持续发展政策具有推动意义,对于视线社会经济的可持续发展具有重要的战略意义。

参考文献

电气化铁道论文篇(6)

关键词:AT供电方式铁道牵引网应用

Key words: AT power supply mode;railway; traction network; application

中图分类号:U223文献标识码: A 文章编号:

1.引言

高速铁路在我国正处于快速发展阶段,修建高速铁路符合我国经济发展的需求。而供电系统作为电气化铁道的一个重要组成因素,供电方式也是备受工程师的重视,国内外目前通常使用的有AT供电方式和BT供电方式。其中由于AT供电方式具有自身的优越性,越来越受到我国科研人员以及工程师们的关注[1-2]。

2.铁道牵引网AT供电系统分析

2.1 铁道牵引网供电系统故障统计和分析

由于牵引网长期暴露在环境恶劣的户外,并且受到电力机车受电弓的机械冲击等各种情况影响,牵引网沿线的高压电器和线路经常出现短路、断路、高阻(闪络性)故障。此外,风吹雨打、飞鸟栖息、风筝搭线等等,都可能引起意外、危险的故障。如表2-1-1所示为2002-2007年全路牵引供电故障统计结果。

表2-1-1 2002-2007年全路牵引供电故障统计表

从该表可以看出,在历年牵引供电故障中,因牵引网自身引起的故障始终占有较重的分量,而由机车引起的故障则非常少。通过对牵引网故障的分析表明:无论牵引网结构如何复杂,一臂牵引网接地总是相间短路,这是牵引供电系统中最常见的故障形式,因此故障量的求解也按两相短路来计算;两相短路不存在零序电流的通路,故一臂牵引网接地短路时,不向电力系统输送零序电流;牵引供电系统是含地系统,故障电流很大;发生故障时,线路上有行波自故障点向两端传播;牵引网中发生T-R短路故障的几率最多,平均每月发生一次故障。牵引网故障可分为永久性故障和瞬时性故障,在发生瞬时性故障后,通过线路的重合闸操作,故障可自行消失,但瞬时性故障往往发生在系统最薄弱的环节,若不及时进行处理,日积月累易形成永久性故障。永久性故障主要有短路和断路两种形式,发生断路故障时,牵引网线路供电中断,沿线机车不能通行,严重影响到整个铁道线机车的调度和运输能力,易造成安全事故和较大的经济损失。自发生短路故障时,短路点及附近电力设备中流过的短路电流可能达到额定电流的几倍乃至几十倍,将对沿线电气设备造成严重损坏。

2.2牵引网供电系统分析

牵引网AT供电系统如图2-2-1所示。

图2-2-1AT供电系统示意图

如图2-1-1所示,SS为牵引变电所,其输出电压为2×27.5kV,AT1、AT2、AT3为自耦变压器,变比为2:l,W2:W1=l:l,其一端与牵引网连接,另一端与正馈线连接,中点与轨道连接。两自耦变压器之间的距离一般为10km左右。实际AT间隔按对通信线防干扰及牵引供电要求核算后确定。

若AT阻抗为零,且电力机车位于AT2处,此时机车电流将被AT2全部吸上,根据变压器磁势平衡原理,流经AT2的W2与W1的电流必大小相等、方向相反,且为I/2,根据节点电流定律,流经牵引网和正馈线电流也必为I/2,且该电流由牵引变电所沿牵引网流出,沿正馈线流回牵引变电所。轨道中的电流为零。由于牵引网与正馈线中的电流大小相等,方向相反,两者之间的距离相对很小,所以两者的交变磁场相互抵消,不存在牵引电流对邻近通信线路的电磁干扰影响。实际上AT存在着很小的阻抗,因此在全供电臂内将有部分牵引电流流经轨道(大地)返回变电所[3]。

3.总结与展望

本文在分析了铁路牵引网故障的基础上,论述了AT供电方式的优越性。由于AT供电方式存在自身的优点,它可以使建设成本得到极大的节约,而且充分的节约了电能,所以AT供电方式是目前我们国内在铁路供电系统中使用最为广泛的方式之一。本文中提出的AT所大致每10km分部一个,我们将在以后的研究中更加努力,期望建立两个变电所相隔距离更大的供电模式,以更远更优的方式进行对铁路系统供电。

参考文献:

[1] 贺威俊,简克良. 电气化铁道供变电工程[M] 1 北京: 中国铁道出版社, 1982

[2] 于万聚.高速电气化铁路接触网[M].西南交通大学出版社.2002

电气化铁道论文篇(7)

关键词:电磁型悬浮列车; 动力学; 综述; 弹性轨道

在磁悬浮列车系统中,列车和轨道是互相作用的, 稳定的悬浮状态[ 1 ] 。1939 年,Braunbek 对此作了物理悬浮气隙的变化量由气隙传感器测出传给控制系统, 剖析:唯有抗磁性材料才能依靠选择恰当的永久磁铁控制系统调整磁铁电压,使电磁力相应变化,实现悬浮结构与相应的磁场分布实现稳定悬浮[ 2 ,3 ] 。为使磁力气隙调整。正常运行时,电磁型悬浮列车的悬浮高度能够用于稳定的自由悬浮,必须根据物体的悬浮状态不超过1 cm , 对气隙的波动非常敏感。然而,由于负连续不断地调节磁场。利用受控的磁吸引力来进行悬载变化、驱动加速度或减速力、空气动力、轨道弯度、坡浮是由 Graeminger 首次提出的。电磁型悬浮列车是道和不平整等原因产生的外部扰动力,以及控制系统利用受控直流电磁铁进行悬浮,这一技术是目前世界本身固有的非线性及传感器的测量误差等原因产生的上最先进的。它不仅用于磁悬浮列车系统,还可用在内部扰动力,都会引起气隙的变化。因此,将磁悬浮列轴承、陀螺以及磁悬挂天平等磁悬浮装置中。车和轨道作为一个整体来研究是十分必要的。下面就电磁型悬浮列车在车体内装有电磁铁,轨道为导电磁力、转向架、列车与轨道耦合动力及稳定性方面的磁体,车辆和轨道构成长定子同步电机,车辆为转子, 问题阐述如下。电磁铁绕组中的电流大小根据气隙传感器的信号进行调节,悬浮力的大小与车速无关,任何速时均能保持稳定的悬浮。车身前进的动力由直线感 1842 年,Earnshow 证明了仅仅用永久磁体是不应电机(或直线同步电机) 提供。因此,电磁铁的电磁能使一个铁磁体在所有6 个自由度上都保持在自由、力和力矩特性对列车的影响是基本的。

1 磁场与承载能力

1 .1 波器的输出电流; 另外,热损耗、漏磁通、磁心和导轨中的磁阻也会影响单铁力的大小。文献[4 ] 针对轨道转弯处或轨道不平处电磁铁与导磁轨发生倾斜的情况,提出了小滚动下电磁铁的计算公式。文献[ 5 ] , 以保角变换和无穷级数理论为基础,在电磁铁为无限大导磁率的非饱和磁性材料、电磁铁与反应板表面磁势为常值的假设下,提出了在较大滚动条件下升力、侧向力及滚动力矩计算的新方法。

2 转向架

磁悬浮列车进入实用阶段,不可避免的问题是转向问题。日本关于HSST21001 型磁悬浮列车进展报告中[ 6 ] ,有近1/ 4 的篇幅涉及转向架机构,但目前几乎看不到有关的理论分析和设计资料, 仅有一些概述[ 7 ,8 ] 。悬浮系统与车厢的支撑关系,经历了3 个研究阶“飞行器结构”“ 磁轮结构”及“ 转向架模块结段:、构”[ 9 ] 。早期的悬浮理论是建立在飞行器的运行原理上,把磁悬浮列车看作为刚体自由度运动,在车厢底板上直接固定4 块电磁铁,用偏航、仰俯、滚动等概念来描述和控制磁浮列车运动。德国的TR201 型、日本的HSST201 型、我国的KDC2I 型都采用了这种理论。这种结构在低速时,矛盾并不突出,但速度稍有提高时, 问题就很严重,如TR204 型,原设计速度为250 km/ h , 但速度临近200 km/ h 就发生严重的振动、摇摆,出现悬浮不稳定的现象。“ 磁轮结构”的磁浮列车,每个悬浮单元在悬挂方向上是自由的,可由悬浮控制系统独立控制,能够适应不同的轨道平面,如德国的TR205 型、TR206 型磁浮列车。“ 磁轮”结构完全保证了电磁铁之间的运动解耦,同时也保证了车辆的曲线通过能力。在一定程度上,

“ 磁轮”概念是在“ 飞行器结构”概念碰壁以后从一个极端走到另一个极端。“ 转向架模块结构”是前二者的折衷,如HSST 型的悬浮系统,在悬浮方向和导向方向无机械的约束,日本HSST203 型实现了5 个自由度模块悬挂。TR207 型和TR208 型也采用了这一概念。

H. Yoshioka 等在文献[ 10~13 ] 中介绍了山梨磁悬浮试验线ML X01 型磁浮列车车辆结构的有关细节,给出了试验车辆转向架简图,并进行了两组车试验,分析了车辆动力学性能,包括悬浮性能、横向定位及稳定性能。

赵志苏等分析比较了磁悬浮列车3 单元、4 单元、5 单元转向架的几何结构和转弯时的运动关系[ 14 ] ,认为: ① 在同一车厢长度的条件下,应选用5 单元结构转向架; ② 从简化结构和缩短导向滑槽长度角度,应选用3 单元结构转向架; ③ 从减小进入弯道时的冲击角度应选用4 单元结构转向架。上海磁悬浮列车是德国TR208 型的改进型,每节车由4 个完全相同的磁浮架连接而成,每个磁浮架由2 个相同的模块组成,每个模块上由4 个电磁铁和一个推进电机组成,具有独立悬浮、导向与推进功能[15~17 ] 。

3 磁悬浮列车2轨道动力学

在磁悬浮列车推进技术研究中,人们发现许多磁悬浮列车特有的现象,例如:德国的TR204 型及日本的HSST204 型在实验中发现: ① 运行时车体发生结构振动; ② 双面直线电机引起侧向不平衡; ③ 在钢架桥上悬浮时与桥架一起振动,而在混凝土桥上则无此现象[ 18 ,19 ] 。上海磁悬浮试验车在调试时,就发现了车辆与钢梁共振的现象。

认为轨道是刚体,列车悬浮系统与轨道之间没有耦合关系,故不考虑轨道对车的影响,这在轨道刚度系数很大的实验室内模型车分析时具有足够的精度。但实际线路中,轨道是有弹性的,轨道存在振动。引起振动的原因有: ① 当磁浮车通过轨道时,引起轨道在垂直方向上的静态弯曲; ② 由于轨道梁和悬浮系统间相互作用而引起的轨道动态弯曲; ③ 由于轨道梁的连接和轨道表面引起的几何不规则。因此,轨道的弹性振动和动态变形必须要考虑。

友情链接