期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 光纤传输

光纤传输精品(七篇)

时间:2022-06-13 08:27:34

光纤传输篇(1)

关键词:光纤通信技术;光纤传输系统;现状;创新措施

引言

在现代电信网中,光纤通信是十分重要的现代通信方式,是现代通信的重要构成部分。光纤通信技术与传输系统主要是以光纤作为实际信息传输媒介实现的通信方式。在未来的光纤通信技术发展中,主要要实现更大容量的信息传输以及更长距离的通信传输,所以相关技术人员应当加强光纤通信技术与光纤传输系统的不断深入研究。

1我国当前光纤传输技术的现状

目前我国通信技术所采用的传输技术主要是双纤传输技术,该技术主要是使传输信号在两条不同光纤中进行数据信息传输,但是在传输设备的影响之下,光纤传输容量还有待提高,这就导致光纤资源的浪费。单纤双向传输技术的实现,可以为光纤网络进行光纤资源的有效节约,是未来发展的重要方向。就我国目前来说,该技术应用主要是采用光纤末端与设备相连的方式,例如单纤光收发器的研发。所以单纤双向传输技术的实现对于光纤通信实现未来发展是十分重要的。另外,现代化的光纤到户接入技术也是实现现代通信技术发展的重要标志,是在现代宽带业务传输工作的基础上,为充分满足用户需求而实现的现代化通信技术发展,光纤接入网的作用主要是进行信息传递。在当前的信息通信工作中,adsl技术的实现为信息接入网建立提供了基础,但同时其在具有未来发展优势的相关通信业务中的应用却存在缺失。比如在hdtv高清数字电视业务中,adsl技术依旧是采取传统的通信接入方式,难以实现信息传输速率的有效提高,不能满足当代用户的信息通信技术需求。所以实现光纤到户接入技术的发展与推广是十分重要的。

2光纤传输技术创新策略

(1)多波长通道建设。要实现光纤通信技术的不断发展,首先要将传统的单波长通道进行创新与改革,转向多波长通道建设。波分复用技术是实现信息容量大程度扩张的重要技术,促成多址复用的实现,其中空分复用是利用多条光纤进行相关通信信息传输,而单条光纤的复用则需要多种复用方式的共同实现。传统的以单波长通道为基础的单模光纤,主要是采用色散调节技术来实现传输效率的提升以及容量的扩展。但是在波分复合技术的实行以及光纤放大镜的运行中,会造成相关光纤的四波混合现象,造成新波长的出现,其对通信信号进行干扰,阻碍了波分复合技术的实际应用。为解决这种问题干扰,应当积极实现单波长通道向多波长通道的转变,进行超大容量下的波分复用系统光纤设计,实现波分复用技术的正常应用。(2)实现光网络的智能化建设。要实现我国通信行业的不断发展,光网络的智能化建设是十分重要的,是实现该行业目前发展甚至未来发展的重要途径。就我国过去以及目前的光纤通信发展状况来说,通信主线主要是以传输为主。但是,随着现代科学技术的不断发展,计算机技术被广泛应用至现代网络通信领域中,并实现重要作用,促进了我国网络通信技术的不断优化与改进。在当代光网络技术发展现状下,不断的实现自动连接控制技术、自动信息发现技术与保护恢复技术的优化与发展,加强光网络智能化建设,才是实现当代光纤通信技术发展的重要途径。(3)实现全光网络优化建设。全国网络建设是光纤通信技术未来发展的重要方向,主要是指利用光实现信号的传输与交换,电光或者光电的转换主要发生在进出网络时。就目前的光网络系统来说,虽然节点之间已经实现了全光化建设,但是位于网络节点的部位依旧是以电器元件为主。在这样的情况下,光纤通信的总容量被限制和影响。所以,对于未来的光纤通信技术来说,实现全光网络建设与优化是十分重要的。为实现光纤通信的全光网络建设,首先应当建立光网络层,其中主要以光转换以及WDM作为主要的实现技术,尽可能地避免电光瓶颈所造成的影响,最终实现高效的全光网络建设。实现全光网络建设发展,有助于实现网络信息传输速率的提升,更促进了网络资源的利用率不断提高,是实现光纤通信技术发展的重要举措。(4)推进光器件的集成化发展。为实现最终建设全光网络的发展,相关技术人员有必要不断推进光器件的集成化发展,这是实现全光网络建设的基础与重要的发展方向。在现代计算机科学技术不断发展的情况下,实际的信息传输要求已经不能仅仅利用传统的ADSL接入宽带技术来实现。要实现信息传输的效率有效提高,相关技术人员应当不断地优化光器件的特征与性能,这样不仅能满足信息传输的现代化需求,还能为光纤通信的全光网络建设铺平道路。所以为促进光纤通信技术的传输技术的未来化发展,有必要加强对光器件的集成化建设。(5)实现光弧子通信。光弧子属于一种较为特殊的ps数量级上的超短光脉冲,由于其在光纤的色散区,群速度色散以及非线性效益之间具有较强的平衡性,因此即使是通过光纤进行了长距离的传输,其速度与波形也都不会发生改变。而光弧子通信则是将光弧子作为通信的载体,并保证其在长距离传输之后不会出现畸变,以实现0误码。除此之外,光弧子通信还具备容量高、抗噪性能好等特点,因此在光纤通信研究领域受到了广泛的关注,并展开了相关的研究工作。当前我国的光弧子通信工作取得了一定的进展,研发出了能够20GBit/s、12000km传输距离的直通光弧子通信系统。但是由于其成本较高,且技术难度较大,因此在短期内是很难实现普及的,但是相信在未来,随着科技与通信技术的进步,光弧子通信能够在光纤通信领域占据重要的地位。(6)实现超大容量的通信。随着人们对网络通信需求的增加,现有的光纤传输技术在未来可能很难满足人们生产生活的需求,仅仅是以当前的OTDM与WDM来优化光通信系统的容量是远远不够的。经过试验证明,将多个OTDM信号波分复用,能够在很大程度上扩大传输的容量,使光通信的容量与速度得到拓展,以改善通信的效率。PDM技术能够降低相邻信道之间的相互作用。RZ编码信号在超高速通信系统中只需要占据很小的一部分空间,并且对色散管理分布的要求不是很高。再加上RZ编码对光纤的非线性与PMD具有很强的适应性,因此WDM/OTDM无论是在当下还是在未来都有很强的应用前景。(7)实现光通信的超高速发展。从通信领域的发展历程来看,随着社会的进步人们对网络容量的要求越来越高,并且也在不断采取创新措施来改善网络容量。但是在此过程中,网络传输的速度也难以跟上网络容量拓展的步伐,因此很难满足人们对高速、超高速网络传输速度的需求。经过实验证明,一旦数据传输的速率增加了4倍,就会使得传输成本下降,对该优化光通信的经济效益有着积极的促进作用。因此,为了满足人们对网络通信速率的需要以及促进光通信企业的发展,必须进一步改善光纤传输的速度,使之能够朝着超高速发展,并且衍生出多元化的新业务。(8)加强新光纤材料在光通信中的应用与研发。随着IP业务量的进一步增长,通信行业中传统的G.652单模光纤已经在长距离数据传输方面显露出了劣势。为了进一步优化光通信的性能,光纤本身也在不断进行更新换代,当前已经出现了两种新的光纤材料,即全波光纤与非零色散光纤,极大促进了光通信领域的发展。尽管在光纤材料方面获得了新的成果,但是这远远是不够的,在未来IP业务量还会继续增长。因此,需要继续加大光纤材料的研发力度,研制出更加高效、高质的光纤,以推动通信行业的不断发展,以满足不同用户群体的需求。

3结语

随着我国通信技术的不断发展,光纤通信已经成为现代重要的通信信息传输的重要方式,并且随着网络化发展的不断推进,光纤通信的发展也面临着更加严格的要求。所以,加强光纤通信技术的优化与发展,是当前光纤通信的重要发展方向。为了实现现代光纤通信技术的不断发展,相关技术人员应当进一步加强对现代光纤通信技术现状的深入研究与探讨,在现有技术的基础上不断实现相关技术与系统的完善与优化,促进光纤通信在未来的更好发展。

参考文献:

[1]刘威.光纤通信技术与光纤传输系统的研究[J].科技信息(学术研究),2008(19):68-69.

[2]张良,李建生.光纤通信技术与光纤传输系统的研究[J].信息通信,2013(6):220-221.

[3]张涵.光纤通信技术与光纤传输系统的分析与探讨[J].科技创新导报,2011(1):38-39.

光纤传输篇(2)

【关键词】微波信号;光纤通信;DFB激光器;预失真电路

微波光纤传输系统主要由电/光转换器件、光/电转换器件、微波驱动器件以及光缆组成;微波激光器及电光调制器完成微波信号的电光转换功能,光电探测器完成调制光信号的光电转换功能,微波驱动器件的作用是将微波信号驱动到合适的电平输出或调制,光缆是光调制信号的传输介质。

按照调制模式的不同,可以分为直接调制模式和外调制模式:直接调制方式是通过微波激光器以强度调制方式实现的,具有技术实现相对简单的优点,缺点是激光器会出现“chirp”啁啾效应,这使得传输距离受限;外调制方式是通过电光调制器实现的,优点是解决了“chirp”啁啾效应,可以实现较长距离的传输,缺点是技术复杂,成本昂贵,同时产生了“SBS”阈值问题。

1.微波光纤传输系统的关键技术

微波光纤传输系统的实现,主要应用以下三种关键技术:预失真补偿技术、激光器降噪技术以及“SBS”阈值控制技术。

1.1预失真补偿技术

因为微波信号光纤传输技术是模拟调制方式实现的,它是模拟通信技术,所以对电/光调制器的线性、动态范围等参数有严格的要求,否则将引起微波信号的严重失真。但实际电光转换器的调制特性呈非线性:LiNbO3调制器是COS函数关系,微波激光器是中间线性、两端是X2关系,所以通过预失真补偿技术,使微波光纤传输系统获得高OIP3、OIP2、SFDR 等指标。目前主要采用多项式预失真补偿技术,实现原理是在相应的频段产生二阶及偶数阶,三阶及奇数阶失真的电信号,并且与激光器本身的非线性失真大小相等、相位相反,从而相互抵消,实现微波信号的高线性传输。

1.2激光器降噪技术

因为电光转换器本身的噪声系数很大:1~18GHz 频段内达到 40~55dB,必须降低光纤链路的噪声以满足系统的要求,但链路噪声一般控制在 10~25dB。系统降噪的主要措施是,通过 APC(自动温度控制)、ATC(自动功率控制)技术,抑制激光器芯片的温度漂移,降低芯片的 RIN 噪声;以及通过熔接光的接口、采用 APC 模式的光纤活动接口、在激光器的输出端加隔离器等方式,降低链路的光反射,减少后向光反射对激光器噪声性能的影响,以满足系统对噪声系数的影响。

1.3“SBS”阈值控制技术

首先“SBS”阈值产生的原因有以下几个因素:激光器输出的光谱窄,光功率强以及特定的长波长(1550nm),采用这三种情况都是为了增加光信号的传输距离:光谱窄以减少色散的影响、光功率强增加传输距离、1550nm 波长损耗小,但这三项措施都与光纤的非线性相矛盾,产生了“SBS”阈值问题。所谓的“SBS”阈值,即当输出的 1550nm 波长的光调制信号功率超过该阈值时,系统的噪声、非线性严重恶化:从频谱上看,噪声功率谱密度、杂散信号的指标都会严重恶化。目前采取的解决措施是通过对电光调制器做适当的调相处理,使输出的光谱略微展宽,在色散与“SBS”阈值间优化处理,以达到增大光信号的传输距离的目的。

2.微波信号光纤传输技术的优势及应用领域

2.1优势

由于微波信号光纤传输技术是微波与光纤通信优势结合的通信技术,它具有以下特点:低损耗特性:由于光纤通信 0.2~0.35dB/km 的低损耗的特性,微波信号可以远距离传输,实现天线和数据中心分隔开,以增强各种通信、侦测系统的抗毁特性、隐蔽特性;宽带特性:最宽达 20GHz 的带宽,能够保证目前各类通信和电子信号不失真地进行远程传输,既使对波形要求苛刻的脉内调制信号也不例外,适合各种型号的通信、雷达和电子对抗系统的应用要求;大动态特性:高达90dB 以上的信号动态范围,能够同时兼顾系统的灵敏度和抗饱和特性要求,即不会因为光纤的远程传输而损失任何信息;安全、保密特性:尽享光纤传输所固有的信号不泄露,不易受到周围电磁环境扰动,全天候工作等优势,安全保密,稳定可靠。

2.2应用领域

在3G/4G移动通信中,微波光纤传输系统最主要的灵活应用就是宽带室内覆盖,如地铁、大型商场、火车站、机场、展览中心等,在这些大型建筑物中,为了提高信号的质量,有效的解决方法是在建筑物内建立一个中心基站和分布式天线系统,从而提高覆盖率。

3.各频段微波信号的特点及相应光端机产品

微波信号光纤传输技术产生的主要原因就是解决雷达信号长距离传输的问题,由于各频段雷达信号具有不同的特殊性,所以各频段光端机对技术指标有了不同程度偏重。短波频段雷达信号的最大特点是大信号、小信号同时并存,大信号幅度有时高达+15dBm,小的可能到-100dBm,这就要求短波频段光端机能够同时兼顾系统的灵敏度和抗饱和特性,只有当其输入、输出瞬时动态范围达到 120dB 时,才可以解决1~30MHz 内大动态短波雷达信号的长距离传输问题。超短波频段雷达信号的最大特点是多传输频段及小信号输入,在 30~1350MHz 频率范围内,可有多达7 个的传输频段,这就要求超短波频段光端机本身具有远的传输距离、小的噪声系数、高的线性指标,一般在超过 60km 传输距离的条件下,OIP3 大于 30dBm,OIP2 大于40dBm,NF小于 15dB,才可以解决超短波信号的小噪声、高线性以及长距离传输问题。

传统的更高频段雷达信号的远距离传输,均采用先下变频到超短波频段,然后再用密封波导、同轴电缆或者超短波频段光端机传输,这种先变频再传输的方式若采用电缆、波导做传输介质,在降低线损增加传输距离以及降低电缆成本方面,性能非常优越;但是若采用光纤做传输介质,传输损耗已不是主要矛盾,此时先变频再传输相对先传输再变频的传输方式而言,无论在设备管理,还是信号质量方面,都存在明显的不足;这种先变频再采用光纤传输方式的存在,主要是由于技术方面的原因,没有更高频段的光端机,为了解决这方面的问题,出现了更高频段(S、C、X、Ku)光端机。S、C、X、Ku 各频段的雷达信号最主要的共有特性是幅度小,一般在-30~-60 dBm,这就对微波光纤传输设备提出了高接收灵敏度、低噪声系数以及高可靠性的要求,所以,S、C、X、Ku 各频段光端机,必须采用内置光隔离器、ATC、APC 电路以及采用温度补偿技术,使它们具有灵敏度高、温度范围宽、抗干扰性强,频率稳定性好的特点,才能满足卫星、微波、雷达、广播电视等信号的无下变频的远距离传输要求。

4.结束语

作为一种新兴的通信技术,微波信号光纤传输技术受到了越来越多的关注。由于其低损、宽带、大动态以及安全保密的特性,在各频段雷达信号传输,电子战、电子对抗,3G/4G 移动通信信号覆盖以及其他有远程传输需求的商用、军用通信和电子系统中,必将有广阔的应用前景。

光纤传输篇(3)

【关键词】色散光纤密集波分复用调制码型

一、引言

2002年中国电信首次实现了国内第一个10Gb/s的WDM环网系统的商用建设,而近几年40Gb/s的长途传输WDM系统已基本上取代了10Gb/s系统,并且伴随着IP网流量的快速、持续增加,处于通信网底层的光纤传输网的传输速率不断的被提高,各个通信设备商,如华为、中兴、烽火、阿朗等,逐渐推出更高速率的100Gb/s传输系统,以适应不断发展的需求。同时,这也对负责光信号传输的光缆链路的技术参数提出了新的要求,如光纤色散(CD)、偏振模色散(PMD)、损耗、非线性性能等等。

其中,光纤色散对于光脉冲码率的影响越来越显著,如40Gb/s DWDM系统与10Gb/s DWDM系统相比光信噪比(OSNR)严格4倍、CD容限降低16倍等。虽然先进的光调制技术应用到波分系统中,但是仍需全部采用动态可调色散补偿技术。文章通过对长途传输系统中的光纤(G.655)链路积累的残余CD进行了对比和分析,给出了DWDM系统光纤链路中不同波道的残余CD变化情况。同时,提出静态色散补偿和动态色散补偿相结合的方案,以降低DWDM系统建设的建设成本和能耗。为以后的光纤传输网建设提供一定参考。

二、残余CD的产生和设计考虑

在DWDM系统中,色散补偿的技术中的较经济和常用的是采用DCF作为CD补偿光纤,图1为DWDM传输系统简图。然而常见的DCF大概在1550nm处可以实现零CD补偿,由于SMF和DCF自身的色散斜率的差异这样就必然导致光纤链路残余CD的产生。

本文对采用G.655光纤链路的40Gb/s DWDM系统的 CD变化情况进行了分析。其中,G.655光纤的色散值工程上常用的拟合公式[1]并取其平均值计算、长度为300km,DCF的CD值为-135ps/(nm・km)、色散斜率为0.21长度为10km,由于光纤链路的CD导致的光信号展宽情况如图2所示:

由图可以看出作为非零色散位移光纤一种的G.655光纤在C波段的1550nm处波道的CD得到了较好的补偿。而实际运行的40Gb/s DWDM系统中调制的光信号具有一定的色散容忍性能,即可以通过动态色散补偿使得某些波道在色散容限接受的范围内实现色散补偿[2],但是动态色散补偿需要采用复杂的控制系统,从而增加了传输网系统的建设成本。

三、结束语

文章通过对光纤链路色散进行分析,并对比40Gb/s DWDM系统常用的光信号调制码型的色散容限,得静态和动态相结合的色散补偿方案。即零色散点附近波道可通过静态色散补偿,其它波道考虑动态可调色散补偿。从而在一定程度上降低了DWDM系统中板卡的功耗和建设成本。同时,考虑传输网系统稳定性和维护余量的特点,对于采用静态CD补偿的波道应根据实际情况合理选择。

参考文献

[1]通信线路工程设计[B],人民邮电出版社,2008 10(1)p:47-54

[2]有线传输通信工程设计[B],人民邮电出版社,2010 8(1)p:198-222

光纤传输篇(4)

【关键词】:信息通讯;光纤通讯;应用

引言

随着大众需求的不断提升以及各行业的特性,光纤传输技术需要应对各类安装环境而且需要不断提升传输的容量,以保障客户的使用需求,尤其是信息传输的稳定性与快速性,为此应在未来发展中不断强化研究,以解决当今运用中的不足,进一步提升服务质量。

1、现代光纤通讯传输技术简述

1.1概念

现代光纤通讯传输技术就是将光作为数据信息传递载体,利用光纤自身具有的光传导性进行数据信息传递,从而塑造出的一种数据传输新技术,同时也是有线通讯技术中的一种新技术。经过调变之后光即具有携带信息的功能,进而借助光纤自身的传导性能实现信息在不同客户端之间的传递。因光纤带宽的差异,传递的信息量存在一定差异,带宽越大传递的数据量越庞大,而且数据传输的安全性相比传统方式更具安全性。同时,随着光纤传输技术的发展,避免了传统通讯传输技术的不足,信息传输的速度更快而且质量度更高,也进一步推动了光纤传输技术在通讯技术领域内的快速发展,使之成为了当今信息传输的主流方式。当今光纤传输技术的的发展已经融合了信息技术、网络技术、电子技术,需要传输的信息经过计算机设备发送至发送机中,经过调制处理之后信息被负载至载波上,再经过光纤的传输将之传递至接收客户端。我国光纤通讯传输技术最早起源于1980年,它的出现为我国通讯技术领域造成很大影响,同时对促进我国通讯技术领域发展有着特殊意义。

1.2特点

其一,光纤通讯传输技术的带宽受到多种因素的影响,尤其是光纤材料的影响最大。一般而言,光纤通讯传输的带宽为50000GHz,性能优越的材料可进一步拓展其带宽以传递更为庞大的数据。尤其是在当今人们对于服务质量要求日益提升的前提下,带宽是大众普遍关注的问题,高效、快速、稳定是大众对于通讯传输技术的主要要求。传统的通讯技术难以满足大众需求,已逐渐被淘汰。光纤通讯系统在进行单长波处理上,由于受到终端设备特性影响,使光纤在传递载波过程中无法发挥宽频带优势,所以在光纤通讯技术应用时要结合一些辅助技术,在基础上增加光纤通讯的信息传递量,其中最突出的就是密集波分复合技术的应用。其二,因石英材料低损耗性的特点,光纤传输过程中能量损耗得以进一步降低,尤其是对中长距离的传输过程中更具有优势,保障了信号传输的质量,利于提升网速。随着科技的发展,当今光纤通讯技术的损耗已经是实现了0.1Db/km之内,与传统通讯技术相比具有明显的优势,使长距离信号传输质量得以保障。根据相关技术统计,目前采用石英为材质的光纤传输最长距离达到了350km,是传统的通讯技术所不能比拟的。辅助与其他相关技术还可以进一步延长传输距离,此类传输方式大量运用于海底通讯以保障通讯的质量与安全。光纤传输技术采用的是石英作为基础材料,因具有一定的绝缘性能使整个光纤抗电磁信号干扰能力得以进一步提升。一方面,石英材料本身具备良好的绝缘性能而且不易损坏也即提升了光纤的质量;另一方面,光纤大都架设在室外,不可避免地会受到电离层、雷电、太阳黑子活动、电流等因素的影响,在一定程度上会降低光纤传输的质量。石英光纤是绝缘体材质,所以在使用过程中对自然电磁干扰抵抗能力上占有绝对优势,与其相邻近的高压电力设备以及铁路线路产生的电磁干扰也无法对其造成影响。

2、现代光纤通讯技术应用要点

2.1光复用技术

由于光纤传输技术具有高容量的优势,将之运用到社会生活与生产之中即可充分发挥出光纤传输的优势,提升工作效率。光纤传输技术运用中光电复用技术发展较为完善,实现了在同一光纤中使用多束激光传输不同波长的信息。为此,在光纤的设计与运用化解,应结合单模光纤的性质对低损耗窗口进行划分以给予不同信息同时传输的通道,同时还可以辅助波分复用器对不同波长的信息进行处理,之后再行传送各个客户端,以提升传输的质量。整个传输作业,需要利用波分陀闷鞒性赝瓿桑实现利用一根光纤进行多路复用传输,且可以满足高速率数字信号传输要求。常见的如波分复用技术、频分复用技术、光码分复用技术,不同技术所具有的特点不同,可根据实际情况选择。

2.2光弧子通讯技术

光纤传输具有一定的容量,影响容量的主要因素在于色散、损耗、传输距离等。一般而言,传输距离越长,损耗就越大。在光纤传输过程中,光信号随着传输距离的延伸,其能量处于不断递减状态。色散对于光纤传输的影响在于光波因频率不同,其传播速度存在一定的差异,甚至会导致信息传输到客户端时已经发生了失真现象,影响到客户的使用,久而久之导致用户对光纤传输失去信任。为有效提升光纤传输的容量以及延伸传输距离而且保障信号传输的安全性与质量度,可通过辅助分布式光放大器的方式,尽可能的减少光纤传输过程中的能量损耗。同时,应用预加重技术处理,选择色散位移光纤传输,可以增加中继距离,保证信号在长距离传输过程中,速度与波形不会受到影响。

2.3光纤接入技术

光纤接入为现代光纤通讯技术的要点,一般有主干传输网络和用户接入两部分组成宽带。接入网用户终端包括计算机、电话机、传真机等,通过光信号与电信号的转换,来实现局端与客户端信息的传输。光通讯系统的组成包括光纤、光检测器、光源等,彼此之间相辅相成,当发出电信号之后而发端光源紧接着发出相应的光信号,以完成两者之间的有效转换。

结语

综上所述,光纤传输技术是对传统通讯技术的突破,在当今通讯传输具有重要的作用,尤其是提升了信息传输的安全性与质量度。然而,任何技术均处于动态完善过程之中,光纤传输技术在使用过程中同样存在各类问题,需要在后续研究中进一步强化技术攻关,完善其性能。

光纤传输篇(5)

关键字:光纤通信;传输技术;应用;发展

引言

信息化时代的到来,促使光纤通信传输技术获得了较快发展。随着人们通信量的增加,人们对通信传输技术的要求越来越高,因此大力发展光纤通信技术是通信领域的必然趋势。相信在不久的将来,光纤通信传输技术会登上更高的台阶,更好的为人们提供传输服务。

1、现代光纤通信传输技术的主要特点

1.1频带相当宽与通信容量大

光纤和传统传输电缆相比,其传输带相对较宽。按照有关通信知识得知,在单波长的光纤通信系统中,其终端设备的电子瓶颈效应的产生难以发挥出频带宽卓越的技术性能,因此目前的光纤通信传输过程中,通常应用辅助设备增加通信传输容量。

1.2损耗低,能够实现远距离的传输

光纤主要由石英绝缘材料构成,其在传输过程中的损耗相对较低,研究表明,其损耗会低于20分贝/公里。因此光纤通信传输技术非常适合应用在远距离的传输中。另外,为了降低光纤通信传输的成本,可以适当减少中继站的数目。

1.3保密性好,无串音干扰

光纤通信传输过程中,光纤能够将光信号控制在内部,避免光信号被窃取,进而保证信息的私密性。另外,光纤内含环绕的绝缘层,该绝缘层能够很好的吸收泄露信号,保证多条光纤同时工作时,各条光纤互不影响,确保光纤通信传输过程中不会受到串音的干扰。

1.4抗干扰能力强

光纤通信材料属于绝缘体材的范畴,基本上不会出现损坏的现象,具备良好的绝缘性。在实际的应用过程当中,其受外界电流影响非常小,同时也不会受到电离层电流的制约,对电磁的“免疫力”比较理想。因此,光纤通信传输能够实现高压线路的平行架设,在军事、电信等行业应用广泛。

2、光纤通信传输技术的应用现状

2.1光纤到户接入技术

光纤用户接入技术是信息顺利进去各家各户的重要保障。目前,我国在宽带领域的研究逐渐深入,为了更好的满足用户需求,通信传输技术一定要具备主干传输网络,同时要具备光纤用户接入技术。大部分业内人士均认为,信息接入网是信息高速公路发展的“临门一脚”,在肯定了光纤到户接人技术的重要性的同时,也指出了信息通信领域的瓶颈所在。

2.2波分复用技术

波分复用技术又称WDM,其主要利用单模光纤低损耗的优势,实现增加宽带资源的作用。光纤通信传输过程中,可以根据不同传输信道光波的频率和波长来实现信息传输,从而分解低损耗窗口,并利用光波传输信息,波分复用器的作用是聚集并传输所有光波信息,并且在信息接收端需要利用波分复用器区分光波信号。在光波信号传输和区分过程中,不同波长和不同频率的光波信号均可以实现相对独立,即可以进行同一根光纤传输不同的光波信号,具有复用传输的作用。目前,我国对波分复用技术的研究逐渐深入,波分复用技术的应用也越来越广泛。

2.3单纤双向传输技术

应用单纤传输技术,全部的信号均在一根光纤当中完成传输。根据现代光纤传输理论可得知,光纤传输的容量是不存在上限的,但是目前,由于传输设备不够先进,导致光纤传输容量仍然处于较低的水平。随着我国对单纤双向传输技术的重视不断加大,单纤双向传输技术在单纤光收发器、无源光网络等光纤末端接入设备中获得了广泛应用。

2.4光传输与交换技术融合

光传输与交换技术融合,能够实现数据和信号利用光纤进行传输,其具有不需要光纤转换的特性。光传输组交换技术的融合,不仅能实现线路的灵活转换,还能够提高信息数据的传输速率。光传输与交换技术融合可以利用光复交叉连接器,进行双向信号的传输,继而进行光路传输通道的数据信息传输。

3、现代光纤通信技术的发展趋势

3.1波分复用系统

目前,波分复用技术已经应用在光纤通信传输中,但是其应用还存在一定的问题,波分复用系统是其未来的发展趋势。波分复用技术的特点主要是拥有超大容量与超长距离传输,因此在应用过程中能够大幅度使系统的传输量得到有效提高。该项技术会在将来的跨海光传输系统当中得到很好的应用,其具有很好的发展前景。另外,采用光时分复用技术能够提高单信道的传输速率,进而提高传输容量,光时分复用技术的单信道最高速率能够达到640Gbit/s,光时分复用技术是光纤传输技术的重要发展趋势。

3.2集成光器件

光器件集成化是全面提高光纤传输技术应用水平的重要方式,也是实现其余发展趋势的前提。在互联网技术高速发展的背景之下,现有的ADSL接入宽带已经难以满足实际的信息传输需求了,实现光器件的集成化,可显著改善光器件的工作性能,進而提高其传输信息的速度,推动光纤通信传输技术的发展进步。集成光器件的主要方向是采用成熟的工艺,在硅衬底之上制作光学器件,其中主要包括光纤祸合器、导波等重要无源器件的制作,一块硅芯片能够实现所有光学器件的集成处理。

3.3向超大容量WDM系统发展

目前波分复用技术的发展非常快速,其应用领域也非常广泛,因此光纤通信技术向超大容量WDM系统发展,具有非常明显的优势。光时复分技术与WDM可以通过增加传输信道提高传输容量,且同时提高传输速率。光纤通信技术应用波分复用系统可以增大容量、节约光纤成本、实现透明高度生存性的光联网发展。

3.4智能化光网络

智能化光网络是光纤通信传输技术的研究重点。在此之前,我国光纤通信的重点是传输。然而随着计算机技术的快速发展,它在网络通信中表现出卓越的作用,计算机技术的应用,促使网络通信技术不断进步。目前,在光网络技术发展过程中,计算机智能化技术的应用与日俱增,例如在信息自动发现技术与自动连接控制技术中的应用。

3.5全光网络

全光网络社会是光纤通信传输技术的最终目标。全光网络即网络信号在交换和传输过程中都以光的形式存在,只有在进、出网络时,才会发生电光或者光电装换。目前,我国部分光网络系统虽然在各个节点之间基本上实现了全光化,但是其网络结点的位置采用的依旧是电器件,而非光器件,这对光纤通信干线的总容量造成了较大的限制。因此,未来的光纤通信技术必须要实现全光网络。创建完善的光网络层,光网络层的核心技术为光转换技术与WDM技术两项,同时将电光瓶颈尽数消除,这是创建全光网的关键。另外,目前我国对光器件的研究日益成熟,市场上已经能够批量生产和应用源光器件和非源光器件,华为、光迅、中兴等电子科技产业代表了我国光器件生产的最高水平。

总结

总而言之,光纤通信技术是时代的产物,也是为满足人们通信质量要求的必然选择。因此,相关部门应掌握光纤通信传输技术的现状,将波分复用技术、光纤到户接入技术、单纤双向传输技术应用到人们的生活中,为人们的生活提供便利,同时,还要关注光纤通信传输的发展趋势,不断研究集成光器件、超大容量WDM系统、智能化光网络、全光网络等光纤通信传输新技术,促使光纤通信传输技术为社会做出更大的贡献。

参考文献

[1]岳晓钟.阐述光纤通信技术的应用现状及其发展趋势[J].中国新通信,2016,18(17):3-4.

光纤传输篇(6)

关键词:光纤 ;传输信号; 波形; 技术

随着信息技术的发展,我国的网络覆盖率越发广泛。运营商所具备的光纤传输资源极为丰富,显著加快了光纤传输信号波形技术的应用。在高容量信息技术所需的发展下,光纤传输信号波形技术体积较小、重量较轻、具备了频宽带的特征,通过波形与光学技术的融合,产生了光纤传输信号波形技术。对于脉冲辐射场信号的测量而言,通过光纤的使用将同轴电缆给予代替,以此加快了信号在传输体系中所使用的时间。

1 信号在光纤传输中的特征

进行物理测试时,大多数状态下,脉冲辐射探测器的输出基本为电信号,光纤只能够进行光信号的传输。所以在光线代替同轴电缆以前,应当将电-光相结合,也就是说,探测器在进行输出时,其电流脉冲经由激光二极管乃至发光二极管,从线性转换成光脉_信号,之后再通过光纤进行传输。这些系统被称之为有源光纤传输系统。对于物理测试而言,尤其在近区测试当中,有的辐射转换体能够直接将脉冲辐射变为符合光纤在传输中的光信号。契仑柯夫转换体不仅将光纤作为辐射-发光转换体,并且还成为了光的传输线。当γ辐射与光纤介质在直接作用的状态下,会产生康普顿电子,就传播速度而言,在光纤超过光纤介质时,可以通过契仑柯夫对于光的发射角度而引发的具有连续光谱的契仑柯夫光,并且通过与光纤给予耦合,将光的信号经由光纤直达到终端处,并且记录下光导系统的配合情况,从而缔造出新的脉冲辐射场测量体系,通常将这样的测量方式称之为无源光纤传输体系。

2 光纤传输的特点

光纤传输在特点方面大多呈现出衰减与色散两方面。就衰减而言,其特征作为光线的一个主要特点,体现出光在纤维内传输一段时间以后,体现出的传输能量在耗损方面的程度。吸收耗损则变成了广播在传输过程中,经由纯石英材质形成的本征吸收耗损与经由杂质损耗构成的非本征吸收耗损。散射与辐射损耗则意为在传输当中,光波向着包层外泄露且朝着反方向进行折回,以此构成了逆转传输中的耗损。

3 光纤传输信号波形技术

光纤的耗损与波形的变动相关,石英光纤进行传输时,耗损会通过长度而更改曲线。例如当长波是1.31μm与1.55μm时,衰减值则会较低,前一波长的衰减值为0.35db/km,后一波长的衰减值则为0.2db/km。大多情况下,多模纤维远远比单模光纤更加耗费。在测试当中,绝不可将敷设的光纤进行弯曲,这是因为当光纤一旦被弯曲,则会造成弯曲耗损。光纤在弯曲时,内部与外部的压力并不相同,压力的差异会导致折射率出现变动,因为光纤中包层内的一些光波会辐射出来,构成弯曲损耗。为了最大限度将弯曲的损耗降低,在施工当中,平洞竖井进行物理测试时,弯曲会导致光纤的折弯半径相较于光纤直径高出100倍,弯曲半径则应当超过30cm。

色散的特征更加显著地体现在光纤传输的脉冲信号当中。色散指的是传输信号中具备的信号频率乃至不同形式的光波在光纤中传播的速度不同,因此并不会同一时间到达输出端,从而则会变成所输出的波形与输入波形相比较,变形有所更改,令信号处于失真的状态。当所传输的信号是数字式的脉冲,进行解调后,信息会在宽度方面进行延续。所调制的波形如果是模拟式信号,检波之后,电平则会随着信号的频率的上升而降低,这一带宽的特征则属于光纤的色散。在多模色散不会出现在单模光纤中,多模光纤就色散而言则最为明显。

在辐射场的辐射状态下,金属壳体内产生的电磁场度,较难运用普通的同轴电缆进行传输。这是由于在同轴电缆的传输过程中,较易受到核辐照与康普顿电流的干扰,所测得的电磁脉冲极其微弱,但是脉冲在上升时却极为迅速。为了处理这一问题,可以通过光纤传输的方式进行。因为光线传输系统的频带较宽,基本不会被电磁场所左右。将瞬变波形改变为LD或LED后,输出光的功率通过输入信号的度进行改变,形成光电的转换,再通过1000多米的光纤传输以后,通过光探测器探寻接收光电的转变,光电转变之后的弱信号,在低噪音放大至一定的幅度之后,则能够进行显示、测量和记录。光纤从系统方面而言,大多通过三个方面所形成,也就是光的发射机、纤传输体系以及接收机。发射机为了保障系统可以更加迅速的给出反应,则可以挑选脉冲反应较快的激光器LD,以此作为发射机的光源。在快速调制脉冲方面,以LD特征而言,激光器并不能担负较大的功率。这是由于在信号到来前,4μs阈值信号由于在脉冲中较宽,所以设置在调制器内,以便可以使得激光器在工作时处于脉冲状态。为了能够令所传输的信号能够更加正确的进行运转,LD工作的点应当处于线性的中心,从而解决了温度漂移导致的误差和工作补偿。在比例测试信号方面并不稳妥,由于测试信号具备了其应有的直观性,将传输信号出现的同时触及与拾取跟随器在分辨正、负以后产生的固定幅度的标准信号给予对比,将其添加至信号输入的端口内,并处于传输信号的后侧。光接收机是在光探测器以及低噪音带宽放大器中产生的。经由光纤传输到终端的信号内,通过光探测器给予接收并将其变成信号,信号经由放大之后再透过两个显示管给予记录。示波器可以记录到被检测的信号乃至校准的信号中全波形情况,经过对比,直接把被测的信号幅值进行读取。台阶脉冲当中,核信号的存在与否完全取决于被测的波形。在物理测验中,假如未出现被测信号,则台阶脉冲内也会具有十分准确的信号进行输出。如果更改为同步触发,则能够令正确的信号变为系统的审核信号。

4 结束语

光纤传输特征令光纤传输信号波形的技术运用愈发普遍,由于传输资源与光缆资源极为丰富,令其在信号传输中具有显著的效果。所以在提升信号传输上具有良好的水准。近些年,通过光缆资源与传送网本地传送等不同形式的应用,令传输的效果更佳精良。

参考文献:

光纤传输篇(7)

关键词:现代;光纤通信;传输;技术;运用

前言

随着我国科学技术的发展和进步,互联网出现在人们的视野中,并且为人们的生活和工作提供了非常多的便利,其中三网融合与3G产品的发展就是非常令人瞩目的。而针对于光纤通信技术来说,容量大、距离长、速度快是其长久的发展过程中一直在追求的主要目标。光纤通信技术也是现代社会在信息传输中非常重要的一项技术内容。因此随着网络时代的到来,人们在工作和生活上的需求也对光纤通信技术提出了越来越多的要求,由此可见,大力发展光纤通信传输技术也是未来社会上发展的一个必然趋势。

一、现代光纤通信传输技术的主要特点

(一)传输容量比较大

针对现阶段光纤通信传输技术的使用手段和应用现状能够看出,在传输的过程中,光纤自身的容量大也是人们重点需求的内容,同时也是现代光纤通信传输技术的主要特点。同时这项内容也成为这一技在发展过程中的重要优势展现。这种传输技术其主要的特点就是能够通过现代的光纤技术,针对比较大的信息和内容进行整合,并且快速的进行传输,做到这一点主要就是依赖其本身所具有的传输容量。同时这一点优势对于现阶段社会发展中对光纤传输技术的需求也是非常符合要求的。

(二)抗干扰能力比较强

现代光纤通信传输技术在使用的阶段,主要还表现出来了非常明显的抵抗外界干扰的能力,这种能够的存在,能够在根本上改善信息在传输过程中的质量,同时也能够准确的在信息传输的过程中回避比较大的干扰。而这种抗干扰能够在现阶段人们使用光纤通信传输技术过程中也在根本上发挥出了自身存在的比较强的积极性作用。这也是人们现阶段较多使用光纤通信传输技术的重要因素。

(三)中继距离较长

在现代光纤传输的技术使用情况上能够看出,其自身所自带的中继距离比较长也是非常突出的一项优点,这一优点具有其自己的使用价值,同时中继距离主要指的就是,在人们的信息传输的过程中,对于信息所产生的损耗相对是非常小的,这种小型的损耗情况也能够有效的提升传输过程中的中继距离。甚至相关人员针对这一情况还展开过实验调查,并且通过实际的动手实践,证明了中继较长这一特点能够保证信息在传输的过程中被良好的控制,以此保证信息的安全性和准确性。

二、现代光纤通信传输技术的使用

(一)单纤双向传输

针对现代光纤通信传输技术来说,其中单纤双向传输主要就是信息传播过程中一种应用情况的展现。同时这种单纤双向传输技术在其字面的意思上能够了解到,指的就是在传播的过程中,仅仅使用一根光纤对信息的内容进行传输,并且在不进行双向分离的基础上,保证信息传输的准确性和实效性。而实现了这一传输手段之后,能够避免传统传输过程中容量小,传输速度慢的现象,在根本山提高了光纤通信传输工作中的信息传输速度,这也是光纤通信传输技术发展过程中一项非常重要的内容[1]。

(二)光纤到户传输

随着现阶段网络在社会中的偶记,人们针对宽带业务也给予了越来越高的要求,其中主要包括,宽带在使用的过程中传播速度要快、信息容量要大、对于信息的保密性要高等等。但是由于传统的宽带收到一定科学技术的制约,导致很难满足客户的要求,特别实在传播的速度和信息的容量方面,现代光纤还需要在根本上进行优化,这样才能够保证具有良好的服务效果。同时对于光纤到户传输模式的用户来说,在使用的过程中,不仅仅需要有效的展现出传输效率和容量的优势,还需要在根本上保证其具有比传统宽带更多的优势,这样才能够保证现代光纤技术的快速发展[2]。

(三)骨干节点的应用

针对现阶段光纤通信传输技术的使用来看,其中骨干接点的使用也在其发展过程中呈现出非常良好的价值,一般情况下,骨干接点的使用主要表现在光纤的交换过程中,这种技术在这一工作中的使用能够有效的避免传统的电线中存在的缺点和不足之处,也能够在根本上加快光纤传输的速度和效率,同时骨干节点的使用也能够在根本上促进光纤信号的交换和升级,甚至能够在根本上降低光纤传输技术中的能源损耗情况,具有非常高的使用价值。

(四)电力通信过程中的使用

在现阶段的社会中,电力通信也是我国在发展过程中非常重要的一项内容,并且在根本上促进了我国社会的发展和进步,针对电力通信中的光纤通信传输技术来说,用户在使用的过程中依然能够良好的感受到传输的速度和传输的容量,给予用户一个良好的体验感觉。特别是电力通信过程中与之相关的沟通工作来说,其中所存在和具有的应用价值依然是比较理想的。当然了在现阶段的网络环境中,对于光纤传输技术的优化和升级,更能够展现出光纤技术使用中存在的有事,为用户提供更加良好的感受[3]。

结论

根据以上探索和分析的内容能够看出,全网时代已经到来,网络成为人们生活和生产中必不可少的一项内容,同时也在根本上促进了社会的发展和进步。因此现代光纤通信传输技术的发展也是现阶段社会中一项非常重要的技术内容。随着网络时代的发展,人们对于光纤网络和通信技术不断提出越来越高的要求,所以还需要在了解光纤网络发展现状的基础上,找到其中存在的问题,以此按照最新的方向发展,才能够大力的促进光纤信息传输技术的发展和进步。在本文内容中能够看出,现代光纤通信传输技术在未来的生活和生产中一定能够取代其他的信息传输方式,并且成为社会中信息通信领域上的主流,为社会的发展和科技的进步作出贡献。

参考文献:

[1]鲁鹏,杨欣欣,张建峰.基于现代技术角度下对光纤通信传输技术的研究[J].中国新通信,2016,13:54-55.

[2]李艳武,赵琪.基于现代技术角度下对光纤通信传输技术的研究[J].黑龙江科学,2014,07:255.

友情链接