期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 光纤通信技术论文

光纤通信技术论文精品(七篇)

时间:2023-03-13 11:15:51

光纤通信技术论文

光纤通信技术论文篇(1)

1.1PDH光纤通信在铁路通信系统中的应用

光纤通信技术之所以在铁路通信系统里发挥重要作用,是因为当前对光纤通信技术的划分十分精细,在各个铁路通信系统里都会使用相应的光纤通信技术,达到最理想的通信效果。PDH光纤通信作为十分重要和关键的方面,能有效清除铁路通信系统里存在的隐患以及漏洞,确保铁路通信系统的正常与稳定。但PDH存在标准不一、复用结构过于复杂以及网络管理功能较弱的问题,所以其难以得到长远、有效的发展。

1.2SDH光纤通信在铁路通信系统中的应用

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.3DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

2结语

光纤通信技术论文篇(2)

关键词:光纤通信技术特点发展趋势光纤链路现场测试

一、光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。

二、光纤通信技术的特点

2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。

2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。

2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。

三、不断发展的光纤通信技术

3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。

3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。

3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。

3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。

3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。

综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。

四、光纤链路的现场测试

4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。

4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。

虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).

光纤通信技术论文篇(3)

1.1在电力通信系统中,网络具有复杂性

电力系统中的通信需要使用各种不同的设备,可是设备不同,接口的方式和转换的方式也就不同了,例如,用户线的延伸、中继线的传输等。除此之外,各种通信手段在电力系统中使用,增加了电力通信系统的复杂性。

1.2电力系统传输信息实时性强

电力通信系统中传输的信息有继电保护信号、话音信号、电力负荷检测的信息和图像等,这些信息的量不大,可是实时性很强。

1.3电力通信系统通信的范围很广

电力通信系统的主要服务对象有发电厂、供电局、变电站、电管所等,所以电力通信系统的通信系统非常的广,对光纤技术提出了更高的要求。

1.4电力通信系统要求可靠性和灵活性较高的通信

电力系统对人们的生产和生活有很重要的影响,它的重要任务就是维持电力供应的稳定。为了维持电力通信系统的正常运作,就要避免间断或者突况的发生,所以要具有较高灵活性和可靠性的电力通信,为了满足这种需求就要应用光纤通信。

1.5为了满足电力通信系统的需求,通信技术要有很强的抗冲击能力

电力系统如果突然发生故障,就会波及很大的范围,造成通信的业务量短时间内增加很多,所以电力通信系统要求通信技术具备很强的抗冲击能力,为了满足这种需求,就要应用光纤通信。

2电力通信系统中经常用的光纤

在我国,电力通信系统是不同的,想要建设一个光纤通信网是非常困难和复杂的,时代的发展对电力通信提出了更高的要求,在通信网中也就要求更加先进的光纤。目前经常用的电力通信光纤有光纤复合地线、光纤复合相线等。

2.1光纤复合地线

光纤复合地线指的是电力传输线路中的地线中有一定的具有地线作用和光纤优点,同时可靠性强和不需要进行特殊维护的管线单元。同时想要应用光纤复合线需要很大的投资,它主要应用于建设新线路和更新旧线路。主要作用就是防止输电线路被雷击,同时也可以通过地线中的光纤进行信息传输,将地线架空。

2.2自承式光缆

自承式光缆主要分为两种,即金属自承式光缆和全介质自承式光缆。全介质自承式光缆的质量很轻、直径很小、结构式全绝缘的,尤其是它的光学性能非常的稳定,就能够降低停电造成的损失,这种光纤非常的特殊;金属自承式光缆具有简单的结构、较低的成本,应用与电力系统时不需要将短路电流和热容量考虑在内。

2.3光纤复合地线

光纤复合地线指的是输电线路中一种电力光缆,这种光缆将光纤单元复合在输电线路相线中。光纤复合地线将电力系统的线路资源进行充分的利用,防止和外界发生矛盾,这是电力通信系统应用的一种新型光缆,对解决架空线路受限问题非常有效,也可以防止发生雷击时间,除此之外,在使用光纤复合相线以后,使地线绝缘的运行更加稳定,也节省了电能。

3对电力系统光纤通信网的维护

目前,电力系统中广泛应用光纤通信技术,而光纤通信技术不断加大网络规模和网络结构的复杂性。良好的维护电力系统光纤通信网是电力系统更加安全和可靠的保证。第一,要提高电力系统工作人员的专业技能和综合素质,需要对他们就行全面的培训;第二,积极引进先进设备,更新技术和设备,维持光纤通信网络的正常运行。

4电力通信中光纤通信技术的发展方向

4.1光接入网

最近的几年,网络技术不断的创新和发展,网络的交换和传输不断的更新换代。将来,网络的发展趋势就是智能化网络,具有网络主宰、高度集成、数字化的特点。目前网络的接入主要是通过双绞线,虽然双绞线具有较好的传输质量,可是和光纤还是存在很大的差距。如果应用光接入网,管理和维护网络的成本就会降低,甚至可以建立光透明网络,实现真正的多媒体。

4.2使用新型的光纤

现在,IP的业务量不断增加,电信网络也要不断的创新和发展,光纤正是其发展的基础。现在的信号传输都是远距离,并且有很高的质量要求,原来的单模光纤已经不能满足发展的要求,所以对光纤进行开发和研究是电力系统发展的需要。目前,随着不断提高的干线网要求和不断发展的城域网建设,两种新型的光纤已经得到社会各界的认可,这两种分别是非零色散光纤和无水吸收峰光纤。因为光纤的先进性,他们的应用与发展也会非常广泛。

4.3光联网

光联网以后光网络具有很大的容量、很多的网络节点、很大的网络范围,同时网络的透明度也会增加,有效的将不同的信号连接起来,提高了网络的灵活性。除此之外,网络的恢复速度也会加快、恢复时间也会缩短,也不会影响电力系统的正常运行。很多发达国家已经投入资金、人力和物力在光联网之上,我国也将逐步迈向这条路。光联网将会在将来的通信中发挥巨大的作用,促进电力通信的发展。

5结束语

光纤通信技术论文篇(4)

笔者认为,光纤通信技术尚有很大的发展空间,今后会有很大的需求和市场。主要是:光纤到家庭FTTH、光交换和集成光电子器件方面会有较大的发展。在此主要讨论光纤通信的发展趋势和市场。

光纤通信的发展趋势

1、光纤到家庭(FTTH)的发展

FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3倍。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。

发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。日本NTT发展FTTH最早,现在已经有近200万用户。目前中国FTTH处于试点阶段。

FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。FTTH目前大量推广受制约。

对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,AD8L就难以满足。尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。正在用H.264技术开发,可压缩到5~6Mbps。通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。可以认为HDTV是FTTH的主要推动力。即HDTV业务到来时,非FTTH不可。

FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。

F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。

PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。(按照目前市场价格,PEP比PON经济)。

PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3)OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,0EPON是千兆毕以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。

发达国家发展FTTH的计划和技术方案,根据各国具体情况有所不同。美国主要采用A-PON,因为ATM交换在美国应用广泛。日本NTT有一个B-FLETts计划,采用P2P-MC、B-PON、G-EPON、SCM-PON等多种技术。SCM-PON:是采用副载波调制作为多信道复用的PON。

中国ATM使用远比STM的SDH少,一般不考虑APON。我们可以考虑的是P2P、GPON和EPON。P2P方案的优缺点前面已经说过,目前比较经济,使用灵活,传输距离远等;宜采用。而比较GPON和EPON,各有利弊。GPON:采用GFP技术网络效率高;可以有电话,适合SDH网络,与IP结合没有EPON好,但目前GPON技术不很成熟。EPON:与IP结合好,可用户电话,如用电话需要借助lAD技术。目前,中国的FTTH试点采用EPON比较多。FTTH技术方案的采用,还需要根据用户的具体情况不同而不同。

近来,无线接入技术发展迅速。可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已可商用。如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEES02.11g是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。FTTH+无线接入是未来的发展趋势。

2、光交换的发展什么是通信?

实际上可表示为:通信输+交换。

光纤只是解决传输问题,还需要解决光的交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。合理的方法应该采用光交换。但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。显然是不合理的办法,是效串不高和不经济的。正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。一般要在低次群中实现电子交换。而光交换可实现高速XGbDs的交换。当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的

大容量的光交换。当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。包的颗粒比较小,可采用电子交换。然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。目前,少通道大容量的光交换已有实用。如用于保护、下路和小量通路调度等。一般采用机械光开关、热光开关来实现。目前,由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。

电子交换一般有“空分”和“时分”方式。在光交换中有“空分”、“时分”和“波长交换”。光纤通信很少采用光时分交换。

光空分交换:一般采用光开关可以把光信号从某一光纤转到另一光纤。空分的光开关有机械的、半导体的和热光开关等。近来,采用集成技术,开发出MEM微电机光开关,其体积小到mm。已开发出1296x1296MEM光交换机(Lucent),属于试验性质的。

光波长交换:是对各交换对象赋于1个特定的波长。于是,发送某1特定波长就可对某特定对象通信。实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。已开发出640x640半导体光开关+AWG的空分与波长的相结合的交叉连接试验系统(corning)。采用光空分和光波分可构成非常灵活的光交换网。日本NTT在Chitose市进行了采用波长路由交换的现场试验,半径5公里,共有43个终端节,(试用5个节点),速率为2.5Gbps。

自动交换的光网,称为ASON,是进一步发展的方向。

3、集成光电子器件的发展

如同电子器件那样,光电子器件也要走向集成化。虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件组装于其上,也可以直接集成为一个光电子器件。要实现FTTH也好,ASON也好,都需要有新的、体积小的和廉价的和集成的光电子器件。

日本NTT采用PLO技术研制出16x16热光开关;1x128热光开关阵列;用集成和混合集成工艺把32通路的AWG+可变光衰减器+光功率监测集成在一起;8波长每波速串为80Gbps的WDM的复用和去复用分别集成在1块芯片上,尺寸仅15x7mm,如图1。NTT采用以上集成器件构成32通路的OADM。其中有些已经商用。近几年,集成光电子器件有比较大的改进。

中国的集成光电子器件也有一定进展。集成的小通道光开关和属于PLO技术的AWG有所突破。但与发达国家尚有较大差距。如果我们不迎头赶上,就会重复如同微电子落后的被动局面。

光纤通信的市场

众所周知,2000年IT行业泡沫,使光纤通信产业生产规模爆炸性地发展,产品生产过剩。无论是光传输设备,光电子器件和光纤的价格都狂跌。特别是光纤,每公里泡沫时期价格为羊1200,现在价格Y100左右1公里,比铜线还便宜。光纤通信的市场何时能恢复?根据RHK的对北美通信产业投入的统计和预测,如图2.在2002年是最低谷,相当于倒退4年。现在有所回升,但还不能恢复。按此推测,在2007-2008年才能复元。光纤通信的市场也随IT市场好转。这些好转,在相当大的程度是由FTTH和宽带数字电视所带动的。

光纤通信技术论文篇(5)

关键词:光纤通讯技术;优势;分类

所谓的光导纤维通信是指通过利用光导纤维的方式,发射出信息数据传输信号,是一种常见的通讯方式,我们一般将其称之为光纤通讯,这种光纤通信方式不仅能够快速的将信息数据传输给接收端,还能充分保证信息数据的安全稳定性,对于通讯行业的生存和发展有着重要的影响。然而,我国目前光纤通讯技术中仍旧存在很多的不足和问题,使得光纤通讯技术无法得到进一步提升。那么,本文就以光纤通讯技术为重点研究内容,对光纤通信技术的特点进行详细分析,总结出一些自身的见解。

1. 光纤通信技术

光纤通信技术是将光作为信息数据的承载者,以光纤的方式进行数据的传输。并且,在整个通讯系统中,光纤通讯系统中的光波频率大大超过了电波频率,这时,光缆的损耗程度将会逐渐降低,从而确保数据传输的连续性和实用性。通常情况下,由于光纤的组成大多是以玻璃材料为主,其本身具备较强的绝缘性能,可以对接地回路问题进行有效的控制,再加之光纤通信技术能够对数据进行严密的保护,从而避免了数据发生泄漏、被盗等情况。此外,光缆的直径很小,占地面积小,很适合在一些地下管道工程中应用。

2. 光纤通信技术的优势

(1) 频带极宽,通信容量大。

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。

(2) 损耗低,中继距离长。

目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。

由于光纤的原材料是一种绝缘性能较高的材料,有着很好的耐腐蚀能力,最为突出的一个特点就是光波导能够充分抵抗其他电磁波的干扰,不会轻易受到雷电或不确定因素的影响,更是对认为的电磁干扰有一定的免疫力,形成非常牢固安全的光缆,这对于通讯系统的正常运行起到了重要的作用,在我国军事领域中,光纤通信技术同样受到了广泛的应用。

(4)无串音干扰,保密性好。

电波在进行实际的传输过程中,由于受到其他因素的干扰,常常导致电磁波发生泄漏,使得每一个传输管道受到影响,很容易使数据在传输过程中被窃听,造成非常严重的后果。但是,光纤通讯技术的出现,能够彻底解决这一问题,这是因为光波导结构能够及时将光信号控制在合理范围内,其发生泄漏的射线会被光纤包皮迅速吸收,这样就会有效防止了光波的泄漏,从而避免了其他传输管道出现串扰的现象,再加之光缆是处于光纤的外部,无法再对光线中的数据进行窃听,起到了严密的保护作用。

3. 光纤通信技术的分类

3.1光纤光缆技术。

光纤技术的进步可以从两个方而来说明:一是通信系统所用的光纤;二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口) 、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及s波段窗日。其别重要是无水峰的全波窗日。这些窗日开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。

3.2光有源器件。

我国对于光有源器件的研发给予了高度的重视与支持,也取得了非常好的成绩,但是,随着社会体制的不断变革,越来越多新技术的出现,以往传统的光有源器件已经无法在满足于现代光纤通信技术的要求,这无疑会对光有源器件的活动范围产生一定的影响。再加之超晶格结构材料与量子阱器件的完美结合,形成了一种新型的光有源器件,相关制造工艺也逐渐完善,得到了通讯行业的广泛应用。

3.3光无源器件。

光无源器件与光有源器件同样是不可缺少的。由于光纤接入网及全光网络的发展,导致光无源器件的发展空前地热门。常规的常用器件已达到一定的产业规模,品种和性能也得到了极大的扩展和改善。所谓光无源器件就是指光能量消耗型器件、其种类繁多、功能各异。早期的几种光无源器件已商品化,其中,光纤活动连接器无论在品种和产量方面都已有相当大的规模,不仅满足国内需要,而且有少量出口。

3.4光复用技术。

光复用技术种类很多,其中最为重要的是波分复用技术和光时分复用技术。光复用技术是当今光纤通信技术中最为活跃的一个领域,它的技术进步极大地推动光纤通信事业的发展,给传输技术带来了革命性的变革。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长,近期的潜在水平为几千个波长,理论极限约为15000个波长。

3.5光放大技术。

光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可白接室现光信号放大。

4. 结束语

综上所述,我们大概对光纤通讯技术有了一个全面的掌握,在现代通讯系统中,光纤通讯技术是一种常用的通信方式,由于其具备高效率、低消耗、传输速度快的优点,受到了广大用户的青睐,不仅能够确保数据的传输质量,还可以有效防止数据在传输过程中受到破坏,造成用户的巨大损失,本文也具体论述了光纤通讯技术的优势以及分类,从中我们可以看出,光纤通讯技术已经成为必然的发展趋势,逐渐成为人们生活中不可或缺的一部分。因此,要不断加强和完善光纤通讯技术,逐步提高光纤通讯技术水平,促进光纤通讯技术长期稳定的发展。■

参考文献

光纤通信技术论文篇(6)

关键词:DWDM,光分波/合波器,光放大器

 

1.引言

随着话音业务的飞速增长和各种新业务的不断涌现,特别是IP技术的日新月异,网络容量将会受到严重的挑战。随着EDFA进入实用阶段,DWDM――目前解决通信网络容量危机的最佳方案--复用波分技术得到了极大的发展。

波分复用(WDM)技术,尤其是其中的密集波分复用(DMDM)技术除了能经济地使光网络获得超大传输容量外,还有应用灵活方便的优点。因为DMDM系统各信道上的光信号可以具有彼此独立的比特率和体系。用一根光纤能够同时传输不同体系、不同速率(低速、高速、超高速)、不同业务类型(图像、语音、数据)的多种信号。至2000年,DWDM技术已在全球范围内得到了广泛应用,该技术正迈向成熟。

2.光波分复用的基本概念

WDM是指在一根光纤中同时传输多波长光信号的一项技术。

DWDM指在同一窗口中信道间隔较小的波分复用。该系统是在1550nm波长区段内(见图1),同时用8,16或更多个波长,在一对光纤上(也可采用单光纤)构成的光通信系统,其中每个波长之间的间隔为1.6nm,0.8nm或更低,其对应的带宽约为200GHz,100GHz或更窄。

现在,也有用WDM来称呼DWDM系统的。从本质上讲,DWDM只是WDM的一种形式,WDM更具有普遍性,DWDM缺乏很明确和准确的定义。一般情况下,如果不特指1310nm/1550nm的两波分WDM系统,人们谈论的WDM系统就是指DWDM系统。

3.光波分复用的关键技术

DWDM技术把光波作为信号的载波,在发送端采用波分复用器(合波器)将规定的不同波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由波分解复用器(分波器)将这些不同波长承载不同信号的光载波分开的复用方式。根据波分复用器的不同,可以复用的波长数也不同。如图1所示。论文格式,光放大器。。

DWDM系统中的光电器件主要包括激光器、波分复用/解复用器和光纤放大器。

图 1 DWDM技术

3.1波分复用系统对光纤光源的要求

由于单模光纤具有内部损耗低、带宽大、易于升级扩容和成本低的优点,国际上已一致认同DWDM系统将只使用单模光纤作为传输媒质。目前,ITU-T已经在G.652、G.653、G.654和G.655建议中分别定义了4种不同设计的单模光纤。

波分系统的光源的两个基本要求是:①光源有标准的、稳定的光波长。②光源需要满足长距离传输要求。

目前最适合传输DWDM系统的光纤是G.655光纤,但在我国因为大量铺设的是G.652尾纤,所以在上10G及以上速率的信号时,需要用色散补偿。

3.2波分复用系统关键器件--分波/合波器

波分系统的关键器件是分波/合波器。论文格式,光放大器。。合波器的主要作用是将多个信号波长合在一根光纤中传输;分波器的主要作用是将在一根光纤中传输的多个波长信号分离。

3.3 光放大技术

光放大技术的发展和实际应用是DWDM技术得以应用的主要因素。

在光纤通信中光信号不失真地传送得越远越好。由于光纤存在一定的损耗和色散,从而限制了光纤通信系统的传送距离。为实现长距离的光纤传输,需要采用光放大器。

迄今为止,人们已研究出3种光放大器,即半导体激光放大器(SOA)、光纤拉曼放大器(RAMAN)和掺稀土元素的光纤放大器。掺稀土元素的光纤放大器主要有掺铒光纤放大器(EDFA)和掺镨光纤放大器(PDFA),其中EDFA适合于长波长1550nm窗口的光信号放大,而PDFA适用于1310nm窗口的光信号。论文格式,光放大器。。目前已经达到实用化水平并在DWDM系统应用的就是EDFA。PDFA尚未达到商用水平。半导体激光放大器(SOA),集成性好,但其放大器噪声较大是一个急待解决的问题;RAMAN在高速率系统和海底通信系统中有广泛的应用前景。

3.4 DWDM设备工作方式

3.4.1 双纤双向传输

双纤双向传输是指一根光纤只完成一个方向光信号的传输,反向光信号的传输由另一根光纤来完成。因此,同一波长在两个方向上可以重复利用。

这种DWDM系统可以充分利用光纤的巨大带宽资源,使一根光纤的传输容量扩大几倍至几十倍。在长途网中,可以根据实际业务量的需要逐步增加波长来实现扩容,十分灵活。

3.4.2 单纤双向传输

单纤双向传输是指在一根光纤中实现两个方向光信号的同时传输,两个方向光信号应安排在不同波长上。单纤双向传输允许单根光纤携带全双工通路,通常可以比单向传输节约一半的光纤器件。论文格式,光放大器。。由于两个方向传输的信号不交互产生FWM(四波混频)产物,因此其总的FWM产物比双纤单向传输少很多,但缺点是该系统需要采用特殊的措施来对付光反射,以防多径干扰;当需要将光信号放大以延长传输距离时,必须采用双向光纤放大器以及光环形器等元件,但其噪声系数稍差。论文格式,光放大器。。

4.结论:密集波分复用是光纤通信的发展方向

一百年来,电信网技术发生了巨大变化,其中交换网、传输网经历了从模拟到数字、从电缆到光缆、从PDH到SDH、……总之,从业务形态来说,核心通信业务的发展遵循了从简单到复杂,从窄到宽发展的规律。论文格式,光放大器。。DWDM的成功推出是必然趋势,DWDM技术第一次把复用方式从电信号转移到光信号,在光域上用波分复用的方式提高传输速率,光信号实现了直接复用和放大,并且各个波长彼此独立,对传输的数据格式透明,从某种意义上讲,WDM技术的应用标志着光通信时代的“真正”来临。在可预见的未来,基于WDM技术的光选路、交换技术也将得到大规划应用,作为通信领域发展最为迅速的前沿技术,WDM具有不可估量的发展潜力和光明前途。所以说光波分复用是光纤通信发展的方向。

光纤通信技术论文篇(7)

关键词 光纤通信技术;技术构成;光交换技术;发展趋向;光联网

中图分类号:TN915 文献标识码:A 文章编号:1671-7597(2014)15-0012-01

技术的革新和升级有利于行业的进步,历史的经验告诉我们,一项新型的科技其带来的影响是巨大的,在一般层面可以促进整个行业突飞猛进的发展和变化,在整体层面可以改变人们的生活和生产,最终影响到社会,使社会发生相应的改变。作为技术人员应该对技术创新和技术进步带来的进步有清醒的认知,对本行业新技术的发展和变化有一定的把握。通信行业采用光纤技术是通信发展的必然趋势,光纤通信以寿命长、容量大、安全性高、传输质量好等优点,可以充分适应通信行业发展的需求。目前光纤通信技术主要由光纤光缆技术、光复用技术、光交换技术和光放大技术构成,在光纤通信技术方兴未艾的趋势下,我国通信行业应该抓住光纤通信技术研发和普及的机遇,通过光纤通信技术的应用性研究追赶世界的先进水平。通信行业技术人员应该对光纤通信技术的主要构成技术进行了解,牢固掌握光纤通信技术发展的趋向,在推进光纤通信技术的应用和继续研究过程中,完成光纤通信技术对现代通信事业的促进作用。

1 光纤通信技术的特点

光纤通信技术是立足于光纤在光波传输中的各种性质达到通信目的的技术,因此光纤通信技术的特点得益于光纤各项优良的特性,也受制于光纤的物理和化学性质。

1.1 光纤通信技术的优点

1)光纤通信技术具有传输距离远、途中损耗小、通信容量大的优点,这一性能使光纤通信技术成为未来通信行业中构建通信网络主体,实现信息交换的主要应用技术。

2)光纤通信技术具有传输过程中有良好对抗电磁干扰、通信信号串扰小、传输信息保密性能高等优点。

3)光纤物理化学性质稳定,使用寿命较长,即便发生暴露也不易损坏。其四,光纤的重量、尺寸都比较适于运输、加工和建设。最后,光纤材料的来源取材广泛,有利于通信行业节约有色金属和贵重金属的消耗,在客观上起到节能环保的作用。

1.2 光纤通信技术的缺点

1)光纤通信技术还处于研发阶段,虽然在发达地区已经有所应用,但是,大规模的民用化尚未形成,光纤通信技术还存在“最后一公里”的障碍。

2)光纤质地脆,机械强度差,施工和养护阶段容易出现断裂的故障。

3)光纤弯曲度不高,这对于空间的节约和施工的设计存在着一定的制约。最后,光纤网络和设备中有供电困难的问题。

2 光纤通信技术的构成

2.1 光纤光缆技术

光纤光缆是光纤通信技术的基础,当前光纤光缆分为通信系统普通型光纤和通信系统特种光纤。现在无水峰的全波光纤光缆具有低损耗、低色散传输,其传输容量是传统的光纤光缆的几百倍以上,是目前光纤通信技术的重点。

2.2 光纤传输中的光复用技术

光复用技术通俗地讲就是实现在同一束光纤中同时传输多波长光信号的一项技术,是指在同一根光纤中应用不同波长的光信号将发射端和接收端组合起来,根据波长的不同实现信号的多路传输。

2.3 光纤传输中的光放大技术

光放大技术就是放大传输过程中的光信号,达到提高传输信号的质量的目的,通过光散射和光增益原理,用光放大器将信号光放大到适宜的程度,降低传输过程中信息的干扰和信息的损耗。

2.4 光纤传输中的光交换技术

光交换技术分为:空间、时间、波型、ATM和码分光交换方式等诸多方法,上述技术通过在光域直接将输入光信号交换到不同的输出端实现光信号的交换。自由空间光交换方式和复合型光交换方式是近期光交换技术的重要研究方向。

3 光纤通信技术的发展趋向

3.1 超高速系统是光纤通信技术的发展目标

目前大型商用光纤通信系统的传输速率已从45Mbps增加到10Gbps,光纤通信技术发展的目标是在未来的十年的内将光纤通信速率提高2000倍。

3.2 超大容量系统是光纤通信技术的建设目标

目前,金属网络通信系统的容量基本已经达到技术性的饱和,再开发的空间已经不大,因此要对光纤通信技术进行着重研究和开发,提高光纤通信的容量潜力,建设大规模、高容量的光纤通信系统成为今后一段时间内通信技术研究的主要方向。

3.3 光联网是光纤通信技术的目的

光联网是通信行业对未来的一个畅想,用光纤构成主要系统结构,实现高速、可靠、灵活地接入互联网,告别现在设备老化、技术陈旧的传统互联网使用状态。

3.4 新一代光纤是光纤通信的保障

研究具有巨大传输容量的光纤是做好下一代网络建设的物理基础。

4 结束语

综上所述,通信行业的继续快速发展离不开技术的革新和升级,光纤通信技术是实现通信行业技术更新和产业升级的关键性技术。光纤通信具有寿命长、容量大、安全性高、传输质量好等优点,并且具有易施工、便于模块化管理的长处,是未来一段时间通信行业主要解决网络、传输质量和成本控制的主要技术。在通信领域我们经常提到的光纤通信技术包括光纤光缆技术、光复用技术、光交换技术和光放大技术等一系列重要技术组成,上述技术的协调工作和共同作用支持了光纤通信高速度、高质量的传输效果。通信行业技术人员应该对光纤通信技术的主要构成技术进行了解,牢固掌握光纤通信技术发展的趋向,在推进光纤通信技术的应用和继续研究过程中,做好超高光纤网速提升、超大容量系统建设、光联网构件、发展新型光接入模式以及研究新一代光纤等相关工作,用技术性工作和本职的努力完成光纤通信技术对现代通信事业的促进作用。

参考文献

[1]屠锴.光纤通信技术的现状与发展趋势[J].信息与电脑(理论版),2010(02).

[2]于祝芳.论光纤通信技术的特点和发展趋势[J].机电信息,2010(18).

[3]章旺.光纤通信技术在电力系统中的应用[J].中国高新技术企业,2010(25).