期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 冶金技术论文

冶金技术论文精品(七篇)

时间:2023-03-21 17:12:42

冶金技术论文

冶金技术论文篇(1)

学生完成任务之后,教师要进行纠正说明以及总结评价,从而保证学生所讲内容的正确性以及完整性,进一步深化教学内容。除了专业问题外,每位学生要发表学习过程中的一些感受,其他学生要进行提问,使学生们都参与到课堂中来,提高学生们的学习兴趣。在学好专业知识的基础上,培养学生们的创新意识及科学素养。最后由教师进行总结与评价,评价内容包括学生在此次任务完成中的表现,对目标知识掌握的程度以及解决问题的能力和创新思维的能力等。

二、立体式教学法的应用

立体式教学法旨在保障知识传授的基础上,强化思维能力的训练。经过对三届选修冶金工程新工艺及新技术课程的研究生进行的对比实验教学,选取72名无显著差异的研究生作为研究对象,对立体式教学法进行了探索与研究。

1.对于拓展视野的帮助

研究生的学习需要以开阔的眼界来观察与研究专业领域内的热点问题。研究生不能沉浸在周围的小环境下,需要放眼世界,从更大的角度去审视问题、分析和处理问题。结果表明,绝大多数学生认为立体式教学法有助于拓展学生的视野,但仍有8%的学生认为该教学法无助于拓展学生视野。究其原因,主要有以下四点:(1)教师所设置的任务所包含知识面还不够广泛,具有一定的局限性;(2)学生在完成任务的过程中查找资料的途径比较局限,文献查阅能力有待提高;(3)教师应当收集一些学生收集能力范围之外的有用信息教授学生,从而起到引领作用;(4)各个学生在讲述自己所准备的材料过程中,因为个人表达能力等方面因素的差异,导致信息传递不畅。

2.思维创新能力的培养

有23%的学生认为,该课堂教学法对于其思维创新能力的培养非常有效,44%的学生认为该方法是有效的,完全认同的学生数量相对较少,同时,也有5%的学生认为该教学法对于其思维创新能力的培养没有效果。这主要是因为:(1)受大纲对于课程内容规定的限制,课程内容涉及面仍显较窄。因此,应该进一步加强授课内容的改进,强调交叉融合。(2)交流不足,学生们还没有完全适应该教学法,课堂上稍显怯懦,同时,教师由于长期受到传统教学思维的影响,在这种新型教学的课堂上,并没有完全消除“填鸭式”教学法的影响,教师往往在点评过程中,进行了某些灌输,对学生们的思考有些束缚。在立体式教学过程中,可适当邀请某些冶金领域知名教授前来参与课堂教学活动,与学生们开展对话与交流,锻炼学生的胆量,同时,也可以从自身实际出发,启迪学生们的思维,引导学生去发现问题。

3.对于提高科研能力的帮助

良好的科研能力是研究生所必须具备的基本功,这包括资料收集与处理的能力、科研创新能力、发现问题及解决问题的能力、逻辑思维与口头表达的能力等。研究发现,仅有20%的学生认为该教学法对于提高自身科研能力具有很大的帮助,这说明,就培养学生科研素养而言,该教学法仍需适当改进,以进一步提高学生的认可度。同时仍有3%的学生认为该教学法对于提高其科研能力没有帮助。究其原因,主要是:(1)学生的学习主动性有待提高。这需要教师融理论教学于实际之中,让学生明白所学专业知识的用途以及运用的方式,从而激发学生的学习热情。(2)在教学过程中,科研方法方面的内容应进一步增强,也就是增加方法论方面的内容,教授学生科学思考及科学研究的方法,从而帮助学生提高科研能力。

4.知识收获方面

对研究生而言,重在能力及方法的学习,但是作为课堂教学,知识的传授也必不可少,只是与本科生相比,所获得的知识应更加前沿,更加接近实际。通过调查发现,有20%的学生认为,通过该教学法,其所获取的知识量一般,更有5%的学生认为,并没有通过该教学法获取更为丰富的前沿知识。鉴于此,在应用这种方法开展教学时,应着重注意:(1)注重价值引导,强调知识的作用,诱发学生获取新知的欲望;(2)注意研究生教育过程中存在的“重科研、轻教学”的问题,处理好之间的关系,重视课堂教学,使学生的课堂学习与科学研究有机结合,实现课程学习为科研服务,在科研活动中又获取新知的良性循环。

三、结束语

冶金技术论文篇(2)

一、已有的研究基础

冶金技术起源是以考古发掘的实物资料为基础的,新中国成立以来,特别是改革开放20余年来,考古发掘的商代以前的早期铜器500余件和一些冶金遗物,为探讨中国冶金技术的起源提供了极其宝贵的第一手资料。经老一辈到新一代考古学家和自然科学史专家、学者的共同努力,使得冶金起源和早期发展的研究蓬勃开展,取得了丰富的成果。经科学鉴定和分析的铜器及冶金遗物260余件,发表的有关论文数十篇。在国内、外引起对中国冶金起源问题的学术讨论,为深入开展中国冶金技术起源和早期发展的研究提供了宝贵的资料并奠定了基础。

北京科技大学冶金与材料史研究所是一个专门从事冶金与材料史研究的科研机构。中国冶金技术起源与早期发展作为冶金史研究的一个重要内容,一直是北京科技大学冶金与材料史研究所的主要课题并较早的开展了这方面的研究工作。对我国出土的早于商代的铜器、炼渣、炉壁、铸范等冶金遗物200余件运用现代科学仪器和研究方法进行了检测分析,获得了珍贵的信息和大量数据。在分析检测的基础上从冶金学、金属学、矿物学等角度开展了理论上的研究,并有针对性的进行了一些必要的实验室模拟实验。并就中国早期铜器的技术特征和发展道路提出了初步的看法,发表的论文在国内外学术界产生了一定的影响,对推动中国冶金技术起源的研究起到积极的作用。

二、研究要解决的迫切问题

在当前开展中国古代文明起源和早期发展研究的课题中,要推进冶金起源的研究,必须要解决以下几个问题。

1.加强中原地区早期冶金技术的研究

已分析检测的样品主要集中于中原地区以外的北方和西北地区,中原地区陕西、山西、河南的早期铜器及冶金遗物被检测的样品数目仅有61件,这无疑是探索华夏文明起源的一大缺环。河南偃师二里头文化在夏商周断代工程中具有重要的地位,对二里头文化铜器和冶铸遗物的研究对搞清我国夏代冶金技术水平以及与周边地区冶金技术的关系,进而探索夏文化的起源和早期发展都具有重要的意义,目前检测的样品数量较少,早期所做的分析有些需要重新考察,炉壁、炉渣和陶范的研究基本上没有开展。因此,下一步应加强二里头冶金技术的研究工作。

2.加强夏家店下层文化冶金技术的研究

分布于辽西地区和京、津、唐地区的夏家店下层文化是我国北方早期青铜文化的重要组成部分。已分析的夏家店下层文化铜器仅有4件,内蒙赤峰敖汉旗大甸子夏家店下层文化遗址集中出土50多件铜器,此外三座店,大山前遗址也有铜器出土。对这些遗址铜器进行检测分析,对研究我国北方古代冶金技术水平以及与中原地区的交流和影响,阐明其在华夏文明形成中的作用具有重要意义。

3.加强火烧沟四坝文化铜器的定量分析

70年代末和80年代初北京科技大学冶金与材料史研究所曾对甘肃玉门火烧沟四坝文化遗址出土铜器65件进行了定性分析,由于当时不允许对器物取样,所以进行的是器物表面带锈的分析。有的器物表面锈层较厚,有的明显锈蚀产物分布不均匀,故对这类器物表面分析的的结果往往与基体金属的成分存在差别,加之所用携带式X-射线荧光仪分辨率不高,致使定性分析的结果具有一定局限性。最近,北京科技大学冶金与材料史研究所与甘肃文物考古研究所合作对26件火烧沟铜器进行了取样,正在进行定量分析。部分齐家文化铜器的检测也存在着与火烧沟同样问题,应进一步加强对其定量分析和研究。

4.加强新疆地区早期冶金技术的研究

新疆地区自古就是东西方文化和技术交流的中心区域,对新疆地区出土的早期铜器进行研究,并与其相邻地区的冶金技术进行比较,对搞清新疆地区冶金技术的起源和发展历史以及在中西文化交流中的地位有着重要意义。目前考古工作者发掘了不少年代属于公元前第一、二千纪的墓葬和遗址,出土了大批包括铜器、铁器在内的文物,为研究新疆的古代冶金技术提供了丰富的实物资料。

北京科技大学冶金与材料史研究所与新疆文物考古研究所,新疆维吾尔自治区博物馆,哈密地区文物管理所、库车县文物管理所等单位合作,重点对哈密天山北路遗址出土铜器已开始进行研究。新疆地区的研究工作尚有待进一步深入和加强。

5.加强冶金遗址和矿物来源的研究

冶金遗物包括炉渣、炉壁、燃料、矿石等携带着大量的古代冶金信息,对其加强研究对搞清古代冶金技术的起源和发展水平尤为重要。但目前有关早期冶金遗址和遗物的发掘资料较少,应加强普查工作和有目的的考古发掘,从而获取大量的实物证据,加以深入研究。

矿料来源的研究方面,国内外学者们已做了大量的工作,包括铅同位素比值和微量元素测定。但到目前为止还缺乏有效的方法。要解决铜器的铜、锡、铅的来源,需要加强矿源的地质调查、矿样的收集、分析,大量数据的积累等长期工作,特别是对研究方法的探索,找到切实可行的解决办法是一大研究课题。

6.有关铜器材质分类标准的问题

根据成分和金相检验结果对铜器材质进行分类是冶金史、考古学进一步研究的需要。但对于早期铜器来说,由于冶炼条件原始,未有金属精炼技术,所以铜器所含由矿石带入的杂质元素较多,给材质分类带来一定困难。如砷铜和红铜的界限,以最低含砷量划分,至今国内外没有确切的标准。一些学者把那些公元前第4-3千纪的含有1%砷的铜器都称之为砷铜(1)(2),把1%作为砷铜含砷量的下限。有学者认为在原始条件下冶炼砷铜,通常砷含量是在2-10%范围,2%则为砷铜含砷量下限(3),还有的学者则依照现代工业标准,从组织和性能方面对砷铜分类(4):砷铜(arsenic copper)含0.5%As。据此,砷铜的含砷量下限是0.1%以下。可见对砷铜的判定往往是因人而异,一件铜器若含砷量在1.5%,以1%As为标准,它则被判定为砷铜,若以2%As为标准,此铜器则为红铜。若以0.1%为标准,此铜器则为砷青铜。因此不同的标准对铜器材质的划分完全不同。目前国内一般采用2%作为判断某元素作为“合金元素”的下限。无论是1%,2%还是0.1%都是人为制定的标准。

按现代金属学概念“合金元素”指有意识加入某金属中使之合金化的元素,现代铜合金中尽管所含某些组分很低,但它是人们有意识加入纯铜中的合金化元素,故都是“合金元素”。而古代的早期铜器中除铜以外的元素,如锡、铅、砷等是否是有意识加入的“合金元素”,则不能靠单纯的化学分析结果来判断。有些元素既使在早期铜器中含量很高,按现代“合金元素”的概念它们也不能称为“合金元素”。如砷(As),有学者指出含砷量达1%-3%的砷铜中砷都不是人们有意识加入的,而仅仅是使用了某些富砷矿的结果(5)。所以区分古代铜合金中的“合金元素”和“杂质元素”是一个很困难的问题,不可能完全按现代金属学的概念,那么应该以什么概念和标准进行判断又是需要在今后文明探源研究中解决的一个问题。

7.冶金技术的早期交流问题

目前考古发掘出土和经检测分析的中国早期铜器集中于甘肃地区,齐家文化和四坝文化的铜器最多。甘肃的地理位置在中国西北部,紧邻新疆靠近中亚,且发现部分铜器形制包含有西亚文化的因素,加之砷铜在甘肃四坝文化中出现,引起了中外学者对东西方冶金技术早期交流和探索中国冶金技术起源的热情。

目前,东西方冶金技术存在着早期交流和影响这一点在学术界似乎没有什么争议。冶金技术交流是东西方文化交流的一个组成部分,东西方文化历来存在着不同的差异,但并不排除互相交流和影响。冶金技术也不例外。问题在于这种交流和影响是相互的,有来有往。目前,研究西方对中国的影响多,而研究中国对西方的影响则很缺乏。此外,交流和影响与起源不能等同起来,因此应加强东西方冶金技术交流和影响的研究,这对探讨中国冶金技术的起源有重要意义。另外,此问题的解决不能就冶金单独而论,应该从东西方文化的早期交流和影响的整体上进行研究,才能得出较切实的结论。 三、加强多学科综合研究,推进冶金起源研究的深入开展

冶金技术起源研究中存在的许多难题的解决光靠冶金史单一学科是不行的,必须加强多学科的紧密合作,才能使研究深入开展。

1.冶金史与考古学研究紧密结合

考古发掘的金属器物和冶金遗物是冶金史研究的基本素材,对冶金起源的研究更需要早期的冶金遗物为基础,在以往近30年中,冶金史与考古学的结合,使冶金起源和早期发展的研究有很大进展,今后应更加密切结合,特别是对冶金遗址的考察和挖掘,只有冶金史和考古学研究者互相配合,才能不遗漏掉任何有用的冶金学和考古学的信息。

对已有的的分析检测数据,应进行多视角的综合分析。冶金学仅仅是一个视角,从考古学视角加以研究应大力提倡。在这方面,已有一些考古学者进行了工作(6)(7),对冶金史研究者很有启发。要搞清中国冶金技术起源和早期发展的脉络,必须结合铜器和冶金遗物出土的层位早晚、墓葬年代的前后细致的去研究其技术特征,才能找出规律性的东西,只有冶金史和考古学研究者互相结合,共同对出土的金属遗物进行多视角的综合研究,才能使冶金起源的研究深入开展。

2.冶金史与自然地理环境、地质、矿产方面研究相结合

冶金技术的产生是人类进化和文明发展到一定阶段的必然结果,研究世界范围内冶金技术产生和发展的历史,可发现在距今8000-3000年期间,冶金技术在世界文明发达的地区相继产生和发展起来,究其原因离不开自然地理环境的变迁。古自然环境的研究表明,距今8000-3000年正是与全新世中期大致相当的时代,整个地球变得气候温和、湿润、湖沼增多、土壤变得肥沃起来,动植物生长茂盛,这就为人类创造文明提供了良好的自然环境大舞台(8).这种环境的变化不仅仅发生在两河流域,也发生在尼罗河流域、印度河流域,同样也发生在中国的黄河、长江流域。所以文明几乎同时形成于上述地区不是偶然的,与自然环境的变迁有密切的关系。冶金术的产生也要从古自然环境变迁角度加以考虑。

地球作为一个天体,它在形成和地质演变过程中形成了各种不同的地质构造与矿体。矿产资源与冶金术的产生有直接的关系。中国的地质构造复杂多样性造成中国的金属矿藏十分丰富,地表露头的矿床也较多。在那漫长的自然风化、氧化和淋滤作用下,形成易于被古人识别和冶炼的矿物,如那闪亮的自然铜和那色彩斑烂的铜氧化矿无一不是大自然赋予先民发明冶金术的财富。在世界其它地区也一样,只要具备自然资源,又有较发达的制陶技术,就有可能产生冶金技术。特别是冶铜所要求的设备和技术并不高,所以很容易较早的为先民所发明。

冶金技术的产生与自然地理环境和矿产资源的密切关系在理念上是不言而喻的。需要将冶金史的研究与古自然环境、地质学、矿床学等学科紧密结合起来,共同进行研究,才能提供充足的论据。比如,中原地区的古自然环境是如何变迁的?气候的变化,如温度增高、雨量增加、水位的上升对矿床的风化、淋滤、富集有无影响?影响的程度怎样?中原地区的矿床分布?是否有锡矿?古代对矿产的开发情况等等诸如此类问题,都与冶金技术的起源有关,需要多学科结合具体深入的进行研究。

总之,冶金起源与早期发展的问题是一个复杂的课题,在现有的研究基础上,需要冶金史学科与多学科结合进行综合研究。除上面提及的几方面以外,还应结合文献资料,历史学、民族学、宗教学、体质人类学等多学科的研究。

参考文献

(1) R.F. Tylecote: Furnaces, Crucibles, and slags, The Coming of the Age ofIron, Edited by Theodore A. Wertime and James D.Muhly, New Haven London Yale University Press, 1980, P183-185.

(2) D. Heskel and C. C. lamberg-Karlovsky: An Alternative Sequence for the Development of Metallurgy, Tepe Yahya, Iran, The Coming of the Age of Iron, Edited by Theadere A.Wertime and James K. Muhly, New Haven London Yale University Press, 1980, P229-252.

(3) J. A. Charles: Arsenic and Old bronze, Chemistry and Industry, Vol.15, June, 1974, P470-252.

(4) H. Lechtman: Arsenic Bronze: Dirty Copper or Chosen Alloy? A view from the Americas, Journal of Field Archaeology, 1896, Vol. 23, P477-514.

(5) A. Hauptmann, G. Weisgerber, and H. G. Bachmann: Early Copper Metallurgy in Oman, The Beginning of the Use of Metals and Alloys, Cambridge MA: MIT press, 1988, P46.

(6)张忠培:“齐家文化研究(下)”,《考古学报》,1987年,第2期,第173-174页。

冶金技术论文篇(3)

关键词:冶金工程;培养;应用型专门人才;思路

一、培养方案与提高专业兴趣

以培养冶金工程专业工程应用型技术能力为宗旨,恰当设置理论教学和实践教学比例及逻辑关系,加强本科生工程能力培养力度。专业课理论教学中,以讲授冶金工艺基础知识和生产控制基本规律为重点,培养学生冶金知识学习与应用能力。结合冶金行业工程案例讲解,引导学生应用所学知识解决生产和工程设计问题,培养思维判断与分析能力。例如,氧化铝生产工艺专业课,根据氧化铝生产主要流程,从原料制备到氧化铝成品生产共12个主要工序,制定12个专题讲座,在阐明原理的基础上,采用视频、图片辅助,详细介绍工业化生产中的主要设备、工况条件及调控机制,使氧化铝冶炼过程讲解更加具体。在入学教育、专业基础课和专业课教学过程中,让学生充分了解所学专业,掌握一定专业知识[4]。介绍教师的研究课题及参与的工程项目,引导学生搜集整理冶金研究领域有关最新科研成果,提高专业和科研兴趣。教学过程中充分利用多媒体平台,提供图、文、声、动、实等信息,加深对抽象知识点的理解与应用。组织学生参加校内外学术讲座,了解专业最新发展,开阔科技视野,加深对专业的认识。

二、优化教学方法及资源

(一)工程案例教学法

结合冶金工程专业特点,在教学过程中引入工程案例教学法,并将大量工程实践研究成果编入教案,引导学生运用理论知识分析、解决实际生产问题,培养知识应用、思维判断和分析能力。聘请企业工程师任教。外聘的校外导师定期以生产流程工程技术路线及实际问题的解决方案为案例,讲授冶金专业生产实践,传授专业知识在生产实践的应用。目前,学院已聘请了3位分别来至中国铝业贵州分公司、贵州中铝铝业有限公司及贵州华锦铝业有限公司教授级高工为冶金专业校外指导教师,近期将与首钢水城钢铁(集团)有限责任公司、贵州大龙锰业有限责任公司等省内企业合作,聘请具有一线丰富生产经验的高级工程师为校外导师。

(二)实验室教学平台

本科生实验课大多数是基于基础课、专业基础课和专业课进行的验证性实验,是提高专业基础实验技能的重要教学手段之一。专业基础实验技能的培养目标主要是使学生掌握基本理论和基本实验技能,重点在于仪器使用、基本操作规范和对基本实验现象的理解[5-6],加强冶金工程实验教学平台建设对培养学生实践能力极为重要。目前,冶金实验中心规划建设的主要实验室为“冶金专业基础实验室”、“仪表实验室”、“矿物预处理实验室”、“有色金属冶金实验室”、“钢铁冶金实验室”、“冶金环保实验室”及“分析实验室”。所有实验室建设方案已完成,相关主要设备已完成选型,保证冶金工程本科实验教学工作顺利开展。

(三)虚拟仿真实验室

近年来,虚拟仿真技术被应用于冶金工程专业实验、实习和课堂教学,显著提高了学生实践能力和学习效果[7-9]。冶金实验中心规划重点建设实验室有“虚拟仿真型实验室”,主要建设内容有“钢铁生产全流程虚拟仿真实验教学中心”,以烧结、高炉炼铁、转炉炼钢等系统全流程实验教学资源为核心,建设虚拟仿真实验教学中心,利用虚拟仿真技术资源,结合实验教学大纲和实验考核方式,提高学生工程实践能力。该中心规划采购METSIM过程模拟软件,应用于冶金工艺流程热量平衡计算、化学反应、过程控制、设备设计、成本估算和过程分析,实现实验过程零污染,教学资源零消耗,实验无危险性[6],实验教学内容丰富,增加学生动手操作机会,为冶金工程专业工程师培养提供重要保障。

(四)实习基地平台

按照冶金专业本科培养方案,集中实践性环节学分比例占整个培养方案的17.14%,具有相当分量。本校已与中国铝业贵州分公司签订《冶金专业本科教学实习基地建设》合同,共建冶金专业本科实践教学实习基地,将认识实习、生产实习及毕业实习等实践教学环节安排在企业进行,在生产实践过程中实现专业基本应用能力培养。实践基地主要为冶金专业学生提供实践教学场所,项目实施后,将定期聘请较高专业技术水平和生产经验丰富的企业技术人员进行专项讲座和培训,可满足每年300人次冶金工程专业本科生的实践需求。根据冶金专业发展需要,学校将陆续拓展实习基地建设,选择国有或地方大型骨干冶金企业作为合作对象,增加冶金专业实习基地的多样性。

(五)“双创”项目全覆盖

全面实施创新创业教育,培养“强责任、精技术、善管理、重实践、求创新”高素质应用型人才,确立了“113”创新创业教育目标(“双百分百”),即“让100%学生接受创新创业知识教育,资助100%学生经历创新或创业训练,期待3%学生取得优质创新创业成果”。开展“本科生导师制”,由学生自愿选择专业老师,并在其指导下,申报“双创项目”,独立开展立项项目的实验研究、撰写论文、完成课题。以本文指导的2016级3名本科生为例,经过一年来实验室科研项目实践,在专业认识和科研开展基础手段方面获得较大提高。

(六)提高师资队伍工程教育素质和水平

承担冶金专业本科生培养任务的工科教师,不仅应在工程教育教学方面具有突出能力和综合素质,还应具有工程实践、工程设计开发、工程技术创新和工程科学研究背景[1]。高校教师更擅长于知识理论性和系统性讲解,对知识的实际应用和工程实践掌握相对薄弱。本校为新建院校,教师以刚从高校毕业的博士为主,他们从学校到学校,缺乏工程经历和实践经验。目前,本院现有专职教师44人,其中具有2年以上企业工作经历的“双师型”教师只有6人,占比不超过14%,总体而言,是一支实践能力较弱的教师队伍。为提高工程实践能力,选派新入职教师去企业进行脱产1年的实践。目前约30%青年教师完成了相关实践,获得了较好的效果。

冶金技术论文篇(4)

【关键词】高职;冶金技术;化学教学;课程体系

0 前言

我国高职高专冶金技术专业教学中,大多数院校把无机化学、分析化学、物理化学等课程作为冶金技术专业的主干基础课[1-3],由于教学内容的需要,课程设置基本上学时都在200学时以上。随着冶金技术的发展,冶金企业对学生化学能力的要求越来越高,教学中要求掌握的内容不断增加,但由于高职高专的教学特点,专业教学内容的分配,使得化学教学所分配的学时越来越少,利用原有的化学教学课程体系无法满足新形势下高职人才培养的要求[4-6],因此冶金技术专业化学课程体系改革势在必行,我院从2010年开始进行化学教学内容的整合与实践,对高职高专冶金技术专业化学课程体系改革进行了深入的探讨,取得了较好的教学效果。

1 化学课程教学体系改革势在必行

化学课程教学体系改革以前,我院冶金技术专业的学生需要学习的基础化学包括无机化学、物理化学和分析化学三门课程,共计208学时。学生需要学习的基础化学理论内容过多,而专业知识和操作技能学习的相对较少,不符合高职教育培养技术应用型人才的目标。从2010年开始,我院冶金技术专业进行化学课程体系改革,将原有的三大化学整合成一门冶金化学基础课程,课程总学时降为108学时,与原来的化学课程体系相比,课程学时减少了100学时,但由于采用了自编教材《冶金化学基础》,它综合了冶金技术专业对三大基础化学所必需的知识内容,虽然学时减少了,但学生应掌握的知识在教学内容中并没有减少,学生普遍反应教学内容学习中更清晰条理了。因此,在现有的冶金技术专业教学课程设置下,为了解决冶金技术专业化学课程学时少,要求高的矛盾,化学课程体系改革势在必行。

2 化学课程体系改革的措施与原则

2.1 打破学科界限,将三门化学基础课有效地进行整合

目前高职高专冶金技术专业中无机化学、物理化学、分析化学这三门课程均为分别开设,如何将这三门课程整合为一门课程,需要调整课程结构,重新优化课程内容,处理好相关内容的衔接。无机化学、物理化学、分析化学,这三门化学基础课在内容上有许多重复的章节,如化学平衡、溶液中的反应、配位反应和配合物结构、氧化还原反应、电化学等,在无机化学、物理化学、分析化学中均有相当多的章节介绍;理想气体状态方程、热力学函数、化学动力学的应用在无机化学、物理化学中也多次重复出现。这些重复的内容在三门不同的教材中虽然侧重点不同,但对学生来说,学习这些内容时总觉得学过,因此学习重复内容时有些厌学情趣,导致教学效果并不好,同时重复的教学内容还会占用较多的学时,对后续的专业课教学影响较大。因此,我院将三门化学教学内容精简优化,删除了三门教材之间重复的内容,将原有的无机化学、物理化学、分析化学等三门课整合在一起,形成了一个统一编排的《冶金化学基础》教材,体现了少而精的原则。

2.2 减少理论推导,突出化学课程在专业中的实际作用

在我国高职高专院校中,无机化学、物理化学、分析化学是冶金技术专业必须开设的三大基础化学课程,教学内容多,使得教学学时在教学课程体系中占的比例相当大,同时在三大化学课程的教学内容中,理论推导和验证性内容占了大量篇幅。进行化学课程体系改革后的《冶金化学基础》按照冶金技术专业的人才培养方案和化学课程标准要求精选内容,删除大部分理论推导内容,强化了部分实践操作内容,同时加强化学基础理论课和冶金专业课之间的联系。

3 冶金技术专业化学课程体系构成

通过三年多的教学实践,结合我院冶金技术专业人才培养方案和化学课程标准的要求,最终确定的冶金化学基础课程体系主要内容包括十一个章节,教学中安排108学时,具体内容如表1所示。

4 化学课程体系改革应注意的问题

高职高专基础课程体系改革是高职教育教学改革的热点和难点问题,在进行化学课程体系改革的时候需注意以下几点:首先,化学教学课程体系的改革不是简单的删减内容,而是将重复的内容进行优化,使改革后的课程体系更能满足高职教育的发展要求。其次,化学教学课程体系改革也不是将几门化学课程的简单综合,而是在满足冶金技术专业人才培养目标的前提下,优化组合相关教学内容,使得整合后的化学教学内容更好地服务后续专业课程。在课程体系改革的过程中,一定要防止简单的拼凑和删减,要把握好几门课程中的区别和联系,按照高职教育的人才培养目标对知识结构的要求,科学地进行处理,把握好对相关课程内容“取”与“舍”的尺度。

总之,回顾我院三年多来冶金技术专业的化学课程体系改革,我们在兼顾化学知识的实用性基础,更突出冶金技术专业化学实践技能的培养,注重学生化学知识与专业知识综合能力的培养。通过三年多的课程体系教学改革,学生普遍反应在学习化学课程时,不但能很好地系统地学习化学知识,同时也能为后续的专业课程打下良好的基础。虽然化学课程体系改革在我院取得了成功,但由于不同院校专业侧重不同,我院冶金技术专业化学课程体系改革不一定适合所有冶金技术专业课程设置,希望我院的化学课程体系改革能对其它院校的冶金技术专业化学课程体系改革提供借鉴意见。

【参考文献】

[1]刘常青,张平民,关鲁雄,等.冶金、材料类专业化学系列课程体系改革初探[J].大学化学,2002,10:19-21.

[2]肖凤娟,杨惠芳,彭正.材料专业化学课程内容设置的改革与实践[J].化工高等教育,2005,2:20-23.

[3]臧亚南.高分子材料化学基础的课程综合化探讨[J].科技创新导报,2008,4:233.

[4]李燕,韩冬冬,吴志恒等.高职高专物理化学课程教学改革的实践与思考[J]. 绍兴文理学院学报:自然科学,2010,6:103-105.

冶金技术论文篇(5)

1.课程体系构建。按照冶金工程卓越人才应具备的知识、能力、素质要求,按照理论与实践有机结合、课内与课外有机结合、校企联合授课与校内单独授课相结合、知识传授与能力培养相结合、学习习惯与创新思维培养有机结合“五结合”原则,坚持“面向工程、宽基础、强能力、重应用,校企深度合作”的基本思想,对课程体系进行一体化设计。(1)公共基础课及素质拓展教育课。政治理论课14.0学分、大学外语16.0学分、高等数学11.0学分、大学物理8.0学分、物理实验4.0学分、大学计算机基础2.0学分、体育8.0学分、工程导论2.0学分、形势与政策1.0学分、军事理论1.0学分、就业与创业指导1.0学分。(2)专业基础课。C语言程序设计3.0学分、线性代数3.0学分、概率论与数理统计3.0学分、工程力学6.0学分、画法几何与机械制图3.0学分、机械设计基础3.0学分、电路与电子技术4.0学分、电路与电子技术实验2.0学分、普通化学3.0学分、普通化学实验1.0学分、物理化学6.0学分、物理化学实验2.0学分、材料科学基础4.0学分、冶金传输原理6.0学分、工程应用法律实务2.0学分、工业工程与管理2.0学分。(3)专业必修课。冶金物理化学(双语)5.0学分、冶金学Ⅰ(双语)5.0学分、冶金学Ⅱ(双语)5.0学分、有色金属冶金学(双语)2.0学分、冶金工程实验技术2.0学分、冶金流程工程学2.0学分、现代冶金工程设计原理2.0学分、专业英语阅读与写作2.0学分、钢铁冶金环境保护与综合治理2.0学分、技术经济分析2.0学分、综合实验4.0学分。(4)专业选修课。冶金反应工程分析基础、冶金过程数值模拟、纯净钢生产技术(双语)、冶金工程新技术(双语)、冶金过程检测与自动控制、轧材质量性能控制、矿物材料加工技术、铁矿球团还原技术(双语)、冶金辅助原料技术、金属压力加工(双语)、粉末冶金概论、复合材料概论、冶金机械、能源工程、冶金企业生产安全、工程数学。专业选修课程每门2学分,选修10学分以上。2.校内实践教学。冶金工程专业的校内实践是以一级项目(现代冶金工程设计)为主线,以二级项目(软件综合设计项目、工程素养训练项目、综合工程素质训练项目、创新设计项目、专业拓展训练项目)为支撑,三级项目以核心课程为基础,如冶金传输原理、冶金物理化学、冶金学等。将主干核心课程和整个课程体系统一起来,结合学生的自我学习能力、人际交往和团队协作能力,以及掌握、运行和调控能力进行全面培养。对于学生来说,设计项目的具体性可以深化理论知识的理解,设计项目的探索性能够激发学生主动学习的兴趣,增强社会、历史、道德和文化的认知力、批判力和传承力,使学生不仅在专业修养上,而且在创新能力、团队精神,适应与调控能力,以及企业文化感知等多方面同时得到培养和提高。3.企业实践教学。企业实践教学累计时间为40周,40学分。企业培养阶段主要包含工程实践(I-V)、岗位实践、现代冶金工程设计和毕业设计(论文)等四个部分。(1)工程实践。工程实践共计18周,18学分。

工程实践I设在第二学期,时间为3周。培养学生掌握金属加工的工艺与过程,包括切削加工、压力加工、焊接、钳工、数控与特种加工等;掌握简单零件加工方法选择和工艺分析;熟悉相关设备的安全使用及操作;培养学生看图、识图及了解技术条件的能力;培养学生良好的工作习惯、团队协作精神及理论联系实际的严谨作风。工程实践II设在第三学期,时间为2周。培养学生了解企业文化、企业发展规划目标、运营及管理模式、营销策略等。在采矿与选矿现场,参观铁矿石生产,使学生了解铁矿石的品位、性质及相关生产指标等。工程实践III设在第四学期,时间为2周。使学生了解焦炭、耐火材料的评价指标和生产指标。了解炼铁、炼钢、精炼、连铸、轧钢等生产环节的工艺特点、评价指标以及生产中容易出现的质量问题等。使学生初步了解钢铁冶金企业的系统构成、各系统之间的作用、联系和特点,建立钢铁冶金生产流程整体概念,了解钢铁冶金行业文化沿革,培养学生的工程意识。工程实践IV设在第五学期,时间为1周。参观烧结、球团等生产现场,使学生掌握烧结矿和球团的生产工艺及评价指标。工程实践V设在第六学期,时间为2周。使学生掌握轧钢生产工艺及设备,了解冶金工程的能源动力及冶金机械制造过程,了解现代冶金产品和工艺的研发态势及流程。工程实践I-V主要以现场参观和企业教师讲解为主。最后由企业教师、专业技术人员和校内教师共同组成考核组,对学生实习纪律、实习报告、实习内容的掌握,以及创新思维的展现等进行综合考核评价,确定企业实践成绩。(2)岗位实践。岗位实践设在第七学期,时间为6周。使学生熟悉炼铁、铁水预处理、炼钢、炉外精炼和连铸等钢铁生产工艺,掌握生产工艺和产品质量控制的技术要点,了解设备的运行和管理维护方法等,能够进行生产操作。学生通过教师现场授课、生产操作、技术报告、专题调研、流程参观和工程问题讨论等环节完成岗位实践,最后由考核组对学生的工程实践能力,特别是操作能力和创新精神进行综合考核评价,确定岗位实践成绩。(3)现代冶金工程设计。现代冶金工程设计设在第七学期,时间为6周。在工程实践的基础上开展,要求学生充分了解现代钢铁生产流程特点和功能,综合运用工程基础和工程专业知识,完成来源于实际的钢铁厂炼铁或炼钢的工程计算与设计,让学生在一定程度上掌握工程设计的理念和方法,拓展学生知识面,加强工程概念,培养团队合作意识。在集中讲授的基础上,学生分组,合作完成实际设计任务,聘请企业或设计院技术人员共同指导,最后由考核组对学生的设计方案、设计内容、绘图能力、团队配合、表达能力、技术运用能力,特别是创新能力进行综合考核评价,确定现代冶金工程设计成绩。(4)毕业设计。毕业设计(论文)阶段是卓越工程师培养的重要环节,是加强学生实践创新能力的有效途径。毕业设计设在第八学期,时间为18周。内容要能够体现冶金行业发展前沿趋势,反映冶金产品研发态势和特点,符合区域产业和经济社会发展需求,并充分展现学生对冶金文化的领悟和创新思维特质。在毕业设计过程中,学生要在充分了解国内外冶金行业现状的基础上,根据项目目标要求,撰写开题报告,充分阐述项目的可行性和项目进度分析,成果效益预测分析等。每周向指导教师至少汇报一次工作情况。企业和学校的指导教师共同负责学生的毕业设计工作,有责任就毕业设计情况进行指导、督促和检查,每位指导教师每周要与学生交流一次设计进展情况。毕业设计完成后,学生提交答辩申请,经校、企指导教师共同确认同意后,由教务部门组织学生答辩。毕业设计考核成绩由三部分组成:企业高级技术人员评价占30%,学校教师评价占30%,答辩小组评价占40%。在答辩小组中,企业高级技术人员比例不能低于40%。在评审未通过时,学生可申请延长该阶段时间,指导教师重新认定后,再申请答辩。学生在对评审结果有异议时,可向学校学术委员会提出申请复议,由学校重新组织答辩。

建立长期跟踪追加培养机制

冶金技术论文篇(6)

关键词:契丹/矿产/冶炼

契丹民族是中国北方的一个历史比较悠久的民族,有先进的金属开采、冶炼和制造技术,契丹民族在长期的生产生活中创造了自己的金属冶炼和制造技能,同时在自己的手工业基础上广泛的吸收和采用了中原的先进技术,使其金属冶炼和制造技术有了很大的发展。契丹境内矿产种类较多,储量丰富,为契丹的矿业开发和金属冶炼打下了良好的基础。

1 辽代的矿产资源概述

契丹民族的金属冶炼和铸造业历史很早,早在耶律阿保机之前,契丹民族就有了自己的采矿和冶铁及制造技术,有曷术部落,其地多产铁,“曷术”即契丹语铁的意思,根据《辽史》记载,契丹民族有金、银、铜、铁等矿产资源。并且“部置三冶:曰柳湿河,曰三黜古斯,曰手山”[1]的开采记载和管理机构。

契丹民族的矿产资源开采的历史很早,早在公元900年左右就开始开采和利用金属矿产。耶律阿保机在占领室韦的领土之后,“坑冶,则自太祖始并室韦,其地产铜、铁、金、银,其人善作铜、铁器”《辽史·食货志》,室韦在契丹的东北部,在现在的黑龙江省境内,但根据契丹国志记载,应该是蔑劫子,“其国三面皆室韦,一曰室韦,二曰黄头室韦,三曰兽室韦。其地多铜、铁、金、银,其人工巧,铜、铁诸器皆精好,善织毛锦”[2]。“太祖并诸蕃三十六国,室韦在其中”(《契丹国志·诸蕃记》),蔑劫子也应该在其平定之列。耶律阿保机在平定北方诸国之后,不但取得了其地的矿产资源,也得到了冶炼和制造技术,并且设立了专门的“铁坊”、“军器坊”等管理部门。

渤海国在辽宁和吉林的东部,公元907年,耶律阿保机征服了渤海国并取得了其地的铁矿资源,《续文献统考》和《辽史》都记载“神册初,平渤海,得广州,本渤海铁利府,改日铁利州,地亦多铁,东平县,本汉襄平县故地,产铁矿,置采炼者三百户,随赋供纳”[3],就是现在的鞍山和辽阳一带,考古挖掘也证实了在鞍山市首山“现炼铁炉址和炼渣,堆积厚达一米多。辽初已具备了一定的金属冶铸技术和原料等条件”[4]。

在燕山山麓的北部,即现在的平泉、宽城、滦平、隆化等县也发现大规模的辽代采矿和冶炼遗址,辽史记载“太祖征幽、蓟,师还,次山麓,得银、铁矿。命置冶”(《辽史·食货志》),可能即是此地。据河北省承德地区文管所调查,有银矿、铜矿、铁矿等开采和冶炼遗址多处。

辽史记载“泽州,采炼陷河银冶”(《辽史·地理志》)即位于此处,“辽泽州即今平泉县会州故城,陷河,即今平泉、宽城两县境内的瀑河,陷河银冶所指是分布在陷河两岸的多处银矿,我们共发现古矿洞26眼”[5]。另外还发现了大量的居住址和冶炼遗迹,有生活用具、辽代的砖瓦、冶炼炉渣和金属块。

1993年10月,在龙烟铁矿矿区发现的古炼铁遗址(在河北省赤城县田家窑乡境内),经国家考古部门鉴定,为距今900多年前的辽代炼铁遗址。“龙烟铁矿地处河北省赤城县、宣化县境内,因赤城县龙关、宣化县烟筒山在同一矿脉上,这一绵延百余里的铁矿得名龙烟铁矿。‘其矿层之厚、铁质之佳,亦足为世界太古纪以后,水成铁矿之罕见者,且水成铁矿之属元古界者,推龙烟为首创,肾状、鲕状矿并生,亦为它矿所未有。’并在遗址上采集了炉渣和渣铁标本,经宣钢中心化验室鉴定,渣铁中含有7%的 Fe2O3,属用赤铁矿冶炼,含硅18%,全铁54%,正与辛窑一带的矿质、品位相同”[6]。并测定其年代为964±60年,为公元1020—1170年,应属辽、金时代的炼铁遗址。

契丹人除了开采金属矿床,也开采砂矿床,“柳河馆,河在馆旁,西北有铁冶,多渤海人所居,就河漉沙石,炼得成铁。”(《契丹国志·王沂公行程录》)

除了上述矿产之外,《辽史》还记载有其他矿产地,在“圣宗太平间,于潢河北阴山及辽河之源,各得金、银矿,兴冶采炼”(《辽史·食货志》)。

2 辽代矿产资源的开发和金属冶炼

契丹民族的矿产资源的开发和金属冶炼技术总体上讲,已经和中原的冶炼水平相当,这可能与大批的中原技术流入契丹有关,契丹民族无论对开采、冶炼还是锻造分工十分明确,有专门的开采、冶炼等部落和管理机构。有专门的“打造部落馆。惟有番户百余,编荆为篱,锻铁为军器。”《契丹国志·王沂公行程录》从现在考古情况推断,辽代的冶炼地多在矿产地附近,但也有在异地的。现已发现冶炼遗址多处,有铜、铅、铁等冶炼遗址和打造遗址。

根据河北文馆所调查,在隆化县隆化镇辽北安州故城北侧,发现铜作坊一处,曾出土了作为原料的残破铜300余斤和大量的炊具。在宽城县龙须门乡王家店村,发现铅锭五块,在隆化县隆化镇北,发现大面积的铸铁遗址,残存有熔炉的部分残体,在隆化县韩麻营村出土有完整的辽代铁锄,并有铁砧子等铁器出土[5]。其他的考古发掘也证实“辽上京附近坑冶遗址规模相当大,鞍山市首山、河北平泉罗杖子、赤峰辽祖州、饶州、中京遗址都有发现炼铁炉址和炼渣,堆积厚达一米多”[4]。

3 辽代矿产资源的利用

辽代的金属制品种类较多,从现今的考古发现辽代制造的金属产品主要有生产工具、生活用品、军事武器等几大类,主要以农业生产工具为主,还有手工工具、生活用具及兵器,其中铁制工具占很大比重。生产工具类:生产工具是契丹民族利用金属制品的主要方面,主要以铁制品为主,现今的考古发现,在承德地区发现有大量的生产工具,如铁犁铧、铁锄、铁镰、铁刀、铁铲、铁镐、铁槌、铁砧子、铜犁铧、铁凿等。考古工作者在中国东北地区出土了大量辽代的镐、锄、铧、镰、铡刀、叉等铁制农具。在北京地区(辽南京)也有辽代铁制农具出土,“通县东门外,顺义大固观、上辇,怀柔上庄,房山焦庄等处出土过几批,多是农具和生活用具,有铧、犁镜、耘锄、镐、镰、铡刀、禾叉……”[7]。生活用具类:此类物品的金属种类较多,有金、银、铜、铁等,考古发现的物品也比较丰富,出现在生活的各个方面,如铁锅、铁炉、铁剪、铁熨斗、铁提梁壶、三足铁鼎、六折金铁釜、铜锅、铜釜、铜壶、铜盆、铜铃、铜车川、带钩、铁勺、铁锁、铁铃、铜镜等。其他如:刀、斧、钩、钳、刀斗勺、漏勺、双耳釜、叉、矛、甲片、锤、镐、马蹬、脚镣、铁链、熨斗、剑刀、剪刀、锁、锄、犁等,应有尽有。特别是随葬品类:有鎏金银冠、银碗、鎏金银琢、铜琢、银琢、银盖脸、铜盖脸、铜盂、铜丝网、鸡冠壶以及辽代的碗、碟、杯、盘等瓷器[5]。辽代的兵器类制品以铁制品较多,如铁剑、铁刀、铜骨朵、铁镞、铁棘藜等。

契丹民族在长期的生产实践中逐渐的掌握了金属开采、冶炼和金属制造技术,无论从历史文献记载和现今的考古发掘来看,契丹的金属开采规模很大,冶炼和制造技术先进。所制造的物品以兵器类、生产工具类和生活用具类为主。

参考文献:

[1](元)脱脱.辽史[M]北京:中华书局,1974.

[2](宋)叶隆礼.契丹国志[M]上海:上海古籍出版社,1985.

[3]张鸿钊.古矿录[M].北京:地质出版社,1954.

[4]马利清.从铸币业的发展看辽代经济的盛衰[J].内蒙古大学学报(人文社会科学版),2001,33(3):32—35.

[5]田淑华,石砚枢.从考古资料看承德地区的辽代矿冶业[J].文物春秋,1994,(1):76—78.

[6]王兆生.龙烟铁矿矿区发现辽代炼铁遗址—该矿由外国人发现的历史将改写[J].文物春秋,1994,(1):83—85.

冶金技术论文篇(7)

内蒙古科技大学热能工程组建于1956年,原隶属于矿冶系热工教研室,1985年组建冶金热能系,从1991年开设招收冶金热过程方向研究生。前期的学科建设和科学研究主要由贺友多教授、李保卫教授领导下的冶金研究所完成。2001年与有关学科合并成立了能源与环境学院,2001年建立热能工程硕士点,2005年增设工程热物理硕士点。学科现有工程热物理和热能工程两个工学硕士点,一个动力工程领域工程硕士点。

内蒙古科技大学热能工程是自治区重点学科,热能工程学科经过20多年的建设和发展,结合内蒙古地区的特点,已充分发挥了钢铁和煤炭资源优势,围绕地区行业需求,形成了“高效洁净燃烧技术”、“冶金热过程”、“稀土冶金传输过程”等特色研究方向,建立了具有创新精神和团队意识的优秀学术梯队,获得了一批具有国内领先水平的产业化科技成果,培养了大批钢铁企业、热能行业发展急需要的创新型高层次人才。

《冶金工艺与热过程》是热能与动力工程专业专业教育平台的一门专业必修课,本课程使学生了解冶金工艺流程,掌握冶金领域的热工过程、主要热工设备的构造原理和结构特点,认识各种冶金设备在热工方面的特点,培养学生学会综合应用所学的专业基础知识和热工理论分析和解决实际工程问题的能力,用热理论分析研究冶金工艺流程各环节的热量变化和温度变化情况。

钢铁及稀土冶金行业是内蒙古自治区的支柱产业之一,近几年发展速度非常快,为了更好地为内蒙古自治区的钢铁、稀土等支柱产业结构更新的需要服务,在本科教学中优化及整合教学资源,适应内蒙古自治区经济发展对冶金和热能高层次人才的需求。

1 课程基本情况

本课程所讲授的冶金热过程主要有:加热、熔炼、烧结与煅烧、干燥、焦化、相变(凝固、结晶、汽化与冷凝等);本课程主要涉及的热工设备有:各类加热炉、热处理炉、烧结机、球团焙烧炉、回转窑、各类熔炼炉窑、各类竖炉和流化床炉、连铸相关的热设备,各类热回收设备(换热器、蓄热室、热管、余热锅炉等)。本课程着重培养学生利用热传输理论分析解决实际问题的能力,是一门重要的专业课程。

本课程涉及到了冶金的从烧结到连铸的所有工艺,工艺繁复,设备众多,涉及到的热传输过程也是最重要的。课程中穿插有稀土冶金方面的四个学时,增加了课程的特色,但是内容较多。这些都为本课程的讲授带来较大的困难,同时本课程和实际冶金工艺结合众多,非常需要现场的实际介绍,让学生有了感性认识后,才能更好的看清设备背后的理论知识。但是从目前来看,很难找到这样系统的见习机会。在本课程的教学中,由于没有统一的教材,同时,本专业又非冶金专业,也为本课程教案的编排带来很大困难,往往对于教学大纲的重点、难点把握不够。

为了解决以上的问题,有必要组织与整合冶金工艺的教学资源,例如现场录像,冶金工艺动画等,首先让学生对整个冶金过程有一个感性的认识[1]。同时编写适合热能与动力工程专业,冶金工艺及热过程的教案,满足非冶金专业冶金教学的要求。

2 组织与整合教学资源手段

(1)利用当地优势,邀请包钢技术人员在课程开始的前两个学时对冶金行业和冶金工艺进行介绍。冶金行业是整个工业的基础行业,通过这两个学时工程技术人员的讲解,能够让学生对整个冶金工艺有一个整体的认识,并且激发学生的学习兴趣。

(2)收集及整合冶金工艺方面的录像、动画等,重要的是,合理的穿插到课程的教学工作中。对于连铸过程中,钢液的液-固变化,及后续的冷却,可以用动画演示,增强教学效果[2]。在有关工艺及设备的教学工作中,通过模拟动画和工程录像对冶金工艺及设备进行解剖和分析,使原来黑板上难以讲解透彻的内容形象、生动的展现在学生面前。提高学生的学习兴趣和学习热情,加深学生对所学知识的理解及掌握。

(3)随着科学技术的不断发展,对冶金过程及其热工过程理论提出了更高的要求。20世纪60年代,国外许多大专院校的工程专业相继开设了有关“传输现象”的课程,传输理论成为与力学、热力学及电磁学等具有同等地位的工程技术基础课程。70年代初,美国盖格教授主编的“冶金中的传热传质现象”出版。该书将传输理论引入冶金热工过程,使冶金热工理论有了质的飞跃。将传输的相关知识,特别是热量传输的知识附着在工艺上,讲授给学生,让其用专业和理论的观点观察冶金工艺的方方面面[3]。

(4)在完善《冶金工艺及热过程》的教学大纲的基础上,编写新的《冶金工艺及热过程》教案。教案的编写本着以学生为本的原则,不仅起教的作用,而着重起导学的作用。在认真研究教学大纲的基础上,并参考三到四本精品教材,同时吸收优秀课程的成果,同时照顾到非冶金专业的特点。参考其他院校的冶金工艺课程教案,结合多套教材,进行编写,做到涉及方面广,适度的深入。同时希望能找到一本适合非冶金专业用的冶金教材,也为学生们学习找到一本好的参考书。开发系列课件,改善内容的条理性,有效解决专业课时压缩和信息量大的矛盾。将课程相关资源上网,并为学生提供了大量的相关扩充性资料索引,包括相关教材、相关的教学网站和资源等,有利于同学自主学习和研究性学习。

(5)利用我校在钢铁冶金上的教学优势,安排专项实验,内容包括基本原理验证、主要技能训练等内容。使学生掌握冶金过程的基本原理,能够运用相应的方法分析解决冶金生产的实际问题。

3 课程教学资源优化整合效果

友情链接