期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 动力系统分析

动力系统分析精品(七篇)

时间:2023-06-14 16:28:05

动力系统分析

动力系统分析篇(1)

[关键词]物流系统;系统动力学;分析

[中图分类号]F250 [文献标识码]A [文章编号]1005-6432(2008)45-0024-02

系统动力学(Systematic Dynamics)是一门分析研究信息反馈系统,认识系统问题和解决系统问题的学科。它适用于分析研究信息反馈系统,它通过研究系统的结构模型,分析系统内部各因素之间的因果关系,借助计算机仿真技术,定量地分析信息反馈系统结构、功能和行为之间的动态关系。

由于系统动力学可用于各种动态系统研究,而物流系统是由不同的动态系统组成的复杂社会系统,系统动力学完全在物流系统中得到广泛的应用,如库存系统、供应链系统、区域物流系统,系统动力学成为定量研究物流系统的方法之一。

1物流系统分析

对于物流国内外目前尚未有系统的描述和界定,按照中国物流标准术语一般定义,认为物流是物品从供应地向接收地的实体流动过程。根据实际需要,将运输、储存、搬运、包装、流通加工、配送、信息等基本功能实施有机结 合。

1.1物流系统及其复杂性

1.1.1物流系统概念

按一般对物流系统的定义和理解,认为物流系统是指在特定的社会经济大环境由所需位移的物资和载运工具、包装设备、搬运装卸设备、仓储设备、人员和通信联系等若干相互制约的动态要素构成,由运输、仓储、包装、装卸搬运、配送、流通加工、物流信息等各个环节所组成,具有特定功能的有机整体。

1.1.2物流系统复杂性

物流系统由物流节点及物流线路组成,由于物流对象、范围、工具等不同,使物流系统成为一个复杂系统。同时物流系统也是一个可分系统,按照物流活动覆盖的范围,可以将物流分为国际物流子系统、国家物流子系统、区域物流子系统、企业物流子系统;按物流运输方式分为水路物流子系统、管道物流子系统、陆路物流子系统、航空物流子系统;按物流产品对象又可分为多种。

1.2物流系统的界定

对物流系统的研究可以分两个层面,一是从宏观物流层面,不仅要研究物流系统的运作形态,也是物流系统运输及分拨网络的优化等问题;二是站在企业微观角度,来研究物流系统的结构、运作模式及其系统优化等问题。

1.3系统动力学在物流系统中应用的可行性

1.3.1系统动力学可用定性和定量方法研究物流系统问题

物流系统存在于物资生产和流通全过程中,由储存、运输、加工、包装、装卸及信息子系统组成。物流子系统大量存在随时间序列而变化的状态,如物资产量、运输量、库存量、搬运量、生产速度、进货速率等。因此,物流系统由不同子系统组成的动态系统,可以应用系统动力学进行研究。

1.3.2物流系统的动态特征包含了时间序列的动态和空间序列的动态

系统动力学研究的是动态系统,而物流系统的动态包括时间序列的动态,还包括空间序列的动态,即位置的变化。因而系统动力学提供了研究物流系统的基础,在此基础上结合规划方法、灰色系统等方法将会使物流系统研究更加深入。

2应用系统动力学分析物流系统的主要步骤

2.1物流系统分析

物流系统分析是用系统动力学解决问题的第一步,其主要任务在于分析问题,剖析要因。调查收集有关物流系统的情况与统计数据;了解用户提出的要求、目的与明确所要解决的问题;分析物流系统的基本问题与主要问题,基本矛盾与主要矛盾,变量与主要变量。

2.2物流系统的结构分析

分析物流系统总体的与局部的反馈机制;划分物流系统的层次与子块;分析物流系统的变量、变量间关系,定义变量(包括常数),确定变量的种类及主要变量;确定回路及回路间的反馈耦合关系;初步确定系统的主回路及它们的性质;分析主回路随时间转移的可能性。

2.3建立数学的规范模型

建立L,R,A,C诸方程;确定与估计参数;给所有N方程、C方程与表函数赋值。

2.4物流系统模型模拟与政策分析

以系统动力学的理论为指导进行模型模拟与政策分析,更深入地剖析系统;寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富的信息,发现新的矛盾与问题修改模型,包括结构与参数的修改。

3系统动力学物流库存子系统应用实例分析

3.1系统动力学在物流库存子系统应用分析

传统进行库存子系统管理的方法有ABC管理法、经济订购批量(EOQ)、定期订货法、定量订货法等方法。然而传统管理方法存在着若干问题。管理库存责任通常是分配给各个部门,采购部门可负责原材料和外购物品的采购,生产部门负责在制品,营销部门负责成品。这种分工导致不同组织从各自利益出发而产生利益冲突。由此可见,库存系统的问题不能孤立处理,它和分销问题、仓库问题、生产问题、运输问题、采购问题、营销问题、财务问题等都有紧密联系,它应服务于整个系统的总目标。传统的方法过分重视库存本身,而没有重视与其相关的其他过程。而系统动力学在解决整体化问题时具有很强的能力。

3.2实例分析――配送中心库存控制模型的建立及其分析

如何确定城市物流中心、配送中心的库存量,也可以通过系统动力学模型来解决。结合实际情况和相关的研究,下图是按步骤建立的模型。

模型中各参数的说明:

OR1为区域物流中心订货率;SR2为区域物流中心发货率;RINV为区域物流中心实际库存;DINV1为城市物流中心期望库存;OT1为城市物流中心订货时间;OR2为城市物流中心订货率;SR2为城市物流中心发货率;CINV为城市物流中心实际库存;DNV2为配送中心期望库存;OT2为配送物流中心订货时间;TINV为配送物流中心实际库存;OR3为顾客订单;SR3为发货速率;AOR3为平均顾客订单;Kl,K2,K3,K4为常数;IPD1,IPD2为延迟时间。

上述模型是针对单一商品的,若要得出各物流中心的总商品库存量,可以将各种商品的有关参数分别代入模型进行运算,最后求和即可。可见,用这种方法进行物流中心合理容量的估计是可行的,也是比较简洁的,相对于其他各种预测方法而言,这一模型更多地考虑了供应链中各种社会经济因素的相互影响关系,较为符合实际情况;另外,该模型基本上不依赖于历史数据,这可以更好地符合物流中心缺乏历史统计数据的状况。

4结束语

随着我国经济与世界接轨,物流的作用将越来越突出。将系统动力学引入物流系统分析的过程,就是用系统的观点和思路来分析、思考物流领域中各环节的行为方式及其结果,从全局、整体的角度考察物流系统的运行机制,这对解决物流系统中存在的问题,提高整体运作效率,提升物流产业的整体水平具有十分重要的意义。

参考文献:

[1]贾仁安,丁荣华.系统动力学――反馈动态性复杂分析[M].北京:高等教育出版社,2002:35-38.

[2]初良勇,谢新连.基于系统动力学的水上石油物流系统建模与仿真[J].大连海事大学学报,2006(5):55-56.

动力系统分析篇(2)

关键词:纯电动汽车;动力系统;参数匹配;分析

中图分类号:U469文献标识码: A

引言

汽车工业发展带来的石油资源短缺、环境污染等问题日益突出,而电动汽车在节能、环保和性能方面具有传统汽车无法比拟的优势,故研发电动汽车是解决上述问题的有效途径。但是,动力电池和电驱动等关键技术的不成熟使电动汽车的续驶里程比较短,严重制约了电动汽车的普及与发展。在这些关键技术取得有效突破之前,对动力系统的参数进行更为合理的匹配,最大限度地挖掘现有电动汽车技术的潜能,是提高电动汽车性能的重要手段之一。

1、中国纯电动汽车的发展现状

目前我国纯电动汽车的研发主要集中在整车总布置、系统集成控制、电机及其控制器,电池及其管理等方面。纯电动客车的研发首推北京理工大学科研团队,其开发的动力系统在国内行业处于领先地位;纯电动乘用车有多家企业单位进行了研发工作,如比亚迪、东风、时风等。通过国内整车和电池相关厂商、高校和研究单位的共同努力,纯电动客车使用的锂离子蓄电池的技术日趋成熟,基本可以媲美国际先进水平;而纯电动乘用车方面,随着磷酸铁锂电池等技术的改进,使得纯电动汽车产业向着市场化、产业化的方向迅速发展。

2、中国纯电动汽车基础设施现状

根据某调查部门得出的结果显示,影响电动汽车发展的诸多因素中,购买价格因素居首,第二位则是充电基础设施的建设。分析汽车工业发达国家的发展情况可知,国外的充电设施建设虽处于初步阶段,但是政府对该建设非常关注,正在加大支持力度。而从国内近几年发展情况来看,我国已经投产了一定数量的充电站与充电桩,国家电网公司也开展了电动汽车充电站测试与研究工作,充电站建设开始呈现加速发展的势头。但充电站的运行管理机制相比国外仍然较为落后,自动化水平程度有待提高,另外基础设施建设标准体系亟待建立。

3、纯电动汽车动力参数匹配计算

3.1、纯电动汽车基本参数和设计指标合理的动力系统参数匹配和良好的零部件性能(包括驱动电机、动力电池、变速器和其他部件性能)造就电动汽车良好的动力性能。某A级纯电动汽车的基本参数如表1所示,动力性和经济性设计指标如表2所示

表1某A级纯电动汽车整车基本参数

3.2、驱动电机参数匹配

驱动电机的基础参数主要包括电机的三大参数,即功率、转速和扭矩。

3.3、电机的峰值功率和额定功率

通常电机的功率参数选择视具体性能指标而定,峰值功率与额定功率之间并不存在一定的比例关系。就具体情况而言,当电机转速稳定在最高车速或90%最高车速对应的转速时,电机基本工作在额定功率阶段;当电机在爬坡或全力加速时,电机大多短时(1~5min)维持在最大功率阶段。即最高车速需求功率对应电机的额定功率,最大爬坡度和全力加速时间内对应电机的峰值功率。所以主要依据最高车速umax、最大爬坡度αmax和加速时间t选择驱动电机的功率。计算公式如下:

式中:ηt为传动系统的机械效率,取为0.9;uα为爬坡速度,这里取为15km/h;δ为汽车旋转质量换算系数,δ=1+δ1+δ2,一般取1.08;vm为加速最后阶段的速度(m/s);dt为迭代步长,通常取为0.1s;tm为汽车的加速时间(s);x取0.5。进行计算可以得:Pmax1=18.9kW,Pmax2=14.3kW,Pmax3=36.3kW,从而得最高功率Pmax={Pmax1,Pmax2,Pmax3}=36.3kW。考虑到实际运行中的损耗和效率问题,电机的峰值功率取为45kW。而电机的额定功率应满足前述90%最高车速匀速行驶要求,即有Pr=90%×Pmax1=17kW。考虑实际运行中的损耗和效率问题,这里额定功率取为18.5kW。此时算得过载系数λ=45/18.5=2.43,满足一般的取值范围(λ=2~3)要求。

3.4、电机的最高转速和额定转速

汽车用电机大多数情况下是高速电机,综合考虑功率密度、综合效率、电机质量、可靠性等因素,并根据实际产品的市场情况,选取电机的最高转速nmax为9000r/min。电机的扩大恒功率区系数β的取值范围为2~4,这里取β=3,则额定转速nr=nmax/3=3000r/min。

3.5、动力系统部件参数匹配

整车功率需求根据车辆动力学理论,整车功率需求满足如下关系:

式中:Pv―整车需求功率,kW;g―重力加速度,9.8m/s2;m―车辆满载质量,kg;i―道路坡度;δ―旋转质量换算系数;dua/dt―车辆加速度,m/s2;ua―车速,km/h。设分别由上式计算得到的最高车速总需求功率、最大爬坡度总需求功率和车辆起动加速总需求功率分别为Pv1、Pv2和Pv3,则动力系统总功率由下式来确定

式中:P―动力系统总需求功率;Paux―整车附件功率需求。

3.6、电机参数选择

混合动力汽车发动机提供稳态功率需求,而电机向电驱动系统提供所需的峰值功率。理论上,发动机与电机最大功率之和大于整车总功率需求即可满足驱动要求。实际上,发动机最大功率在最高转速下得到,而实际车辆峰值驱动功率需求的工作点却不一定在发动机最高转速下。即要求电机峰值功率满足:

初步选取电机额定功率为10kW,峰值功率为20kW,过载系数β=2。

3.7、动力电池组参数

选择动力电池组参数匹配主要是满足车辆行驶的功率需求和能量需求,满足如下条件:(1)动力电池组的输出功率不小于所选电机的峰值功率;(2)动力电池组在其正常应用范围内所提供的总能量不小于爬坡或加速时所需要的最少能量,同时能满足一定要求的平路纯电动行驶里程。

3.8、驱动系统和电池管理的控制策略

在驱动控制时,以电机电流为控制对象,采用电机电流闭环控制。控制电机的电流即控制其转矩,驱动电机在不同转速下的转矩受其相应转速下的最大转矩的限定,使得电机的最大输出转矩和峰值输出功率符合图1所示的机械特性要求。当电流超过电机允许的最大电流时,通过电机控制器关闭电机。此外,电机电压还受到最小电压的限定,当电压低于最小电压时,驱动电机不能运行。蓄电池模块根据电力总线的功率需求,通过电池组电压/内阻模块、功率限制模块和电流值计算模块计算电力总线实际得到的功率,并通过SOC(荷电状态)算法模块计算得到SOC值变化曲线。电池组的电压受电池组所能提供的最大电压和电机控制器要求的最小电压的限定,最大输出功率受等效电路和电机允许功率的限定,充放电电流的最大值也均受到一定限制。

4、结语

根据动力传动系统的设计原则和设计目标,设计的增程式电动汽车的动力传动系统的参数匹配方法对于指导增程式电动汽车的开发、提高汽车性能和安全性,以及对于电动汽车底盘集成控制系统的开发都具有重要的工程应用意义。

参考文献

[1]黄万友.纯电动汽车动力总成系统匹配技术研究[D].山东大学,2012.

[2]周飞鲲.纯电动汽车动力系统参数匹配及整车控制策略研究[D].吉林大学,2013.

动力系统分析篇(3)

1. 动态仿真误差研究方法概述

目前电力学科内还没有专门针对动态仿真误差的系统理论,但从所查阅的文献来看,有些专家在处理特定的研究课题时采用了一些误差方法[9]。综合起来有两类:一是定性的分析;二是量化的分析。

定性分析一般采取目测法,就是在一定的坐标和显示尺度下,描出动态变量的时间序列点,形成时间曲线。并且将同一扰动下仿真模型响应结果和实测系统的响应结果描成两条曲线,通过观察曲线间的接近程度来判定变量间的误差大小。

量化的误差分析和误差评定是对动态变量间的差异给出数值化的指标,可以克服目测法等定性分析方法的局限。同时,为模型校验、算法优化提供数学依据,也需要量化的误差评定。总结其他文献的处理方法,可分为三大类:即残差分析、特征量分析和模式识别。

(1) 残差分析

对仿真结果进行基于残差的误差计算,是在辨识算法中出现的。残差分析的主要思路为,将动态变量的比较时间序列减去基准时间序列,得到一组残差时间序列,再对残差时间序列建立合适的数学模型,并给出相应的定量指标。

(2) 特征量误差分析

特征量误差分析是相对于残差误差分析的另一种误差计算和分析方法。首先对动态变量进行特征量提取,通过比较特征量的差异表达动态变量的差异。

(3) 模式识别

对于某些非常复杂的信号、图像,难以使用传统的数学方法进行分析,常常使用智能方法处理。模式识别经常用于判断两个信号、图像是否属于同一类。

2. 电力系统动态变量基本特征分析

当使用同步互连技术连接交流发电机时,无论何时发生扰动,都将观测到振荡。原因在于发电机上的同步转矩将其带入同步运行的能力。本质上讲,发电机通过振荡交换功率,当一台发电机加速时,其它发电机将减速。

实际系统中,可以把稳定的振荡过程分为两类:

1)系统趋向一个新的平衡点。例如,线路短路、断开、不重合,故障后的系统趋向一个新的稳定平衡点。

2)建立等幅的振荡过程,这时需要一定的措施才能使之达到一个新的稳定的非振荡状态。研究表明,大扰动和小扰动存在一定的统一关系。当系统的网络结构、运行方式基本不变的情况下,不论是大扰动还是小扰动,其振荡模式基本相同。

3. 仿真计算方法

应用Prony算法分析实测振荡数据,可以确定系统振荡频率和振荡模式;可以定量分析系统振荡的阻尼问题;对于大系统可以分散提取各个信号的特征,与系统的阶数和参数没有关系;可以提取曲线的振荡特征,为振荡仿真分析可信度提供有力验证。因此,Prony分析是提取电力系统动态变量特征,计算仿真误差的有力工具。

4. 影响误差计算的因素

现有的负荷模型辨识算法中采用残差序列的范数平方和来表达误差的大小,在表征负荷模型仿真算例的误差水平时,存在一些问题需要解决。例如负荷水平的影响因素。

挑选了某变电站两组不同无功水平的扰动数据进行说明。

负荷稳态无功负荷水平为102.3MVar,5b负荷无功负荷水平为 12.2MVar。

采用如下的误差计算准则进行误差计算:

( 1-1 )

其中,为无功仿真变量,无功实测变量,为扰动时段的无功均值。此式意义为无功仿真结果的均方差相对于实测扰动幅度均值的误差。

计算结果如表1所示:

表1 不同负荷水平仿真误差值比较

可见,低负荷水平下的仿真结果对于负荷扰动动态的拟合要优于高负荷水平下的仿真结果对该负荷水平下负荷扰动动态的拟合。但采用以负荷水平作为基值的误差计算准则(1-1)的计算结果却显示相反。其原因在于,以负荷的均值为基值,负荷水平越低,则相对误差越大。如作为最终误差评定结果,则可能会引起与实际完全相反的结论。

综上所述,不宜直接采用负荷水平作为误差计算准则的基值。

5 总结

本文通过分析电力系统动态仿真的特点,确立电力系统动态仿真评估必须综合考虑元件模型、参数准确度和全网动态仿真输出准确度,确立了实测数据的方法和仿真原则。电力系统动态仿真是一个确定型仿真,而电力系统中有很多随机因素,如何正确认识电力系统中的随机因素,将随机因素造成的误差与模型、参数造成误差分离开是必须要解决的问题,也是需要深入研究的问题。

参考文献:

动力系统分析篇(4)

关键词:电力系统;电气自动化技术;分析

0引言

电气自动化技术主要包括电气技术、电气设备、自动化技术系统的安装过程、设计理念、调试方法维护、技术改造、产品开发及技术管理的高级技术应用。随着经济技术发展及全球化的进步,合资企业及外资企业不断深入中国市场,这些企业存在大量的设备需要使用电气自动化技术[1]。因此,电气自动化技术显得尤为重要。

1电气系统中电气自动化技术的发展方向

1.1电力系统自动化实施仿真系统

针对电力系统技术中的电力系统及负荷动态特性的检测进行深入的分析及研究后实施仿真建模系统的设计,将先进的电力系统数字模拟实施仿真体系进行引进,将混合实施仿真环境创建完成,在实验的过程中电力系统的自动化仿真系统能提供大量的参考数据,进行多元化的电力系统暂态及稳态实验操作,连接各项控制装置后形成一个闭环的系统,是新装置进行测试的研究方向及引导起点,是研究电力系统的控制及智能保护提供最坚实的基础保障条件。

1.2电力系统应用过程中的人工智能

根究电力工业发展的需要,分析及诊断电力系统及元件中的运用方法、故障现象及规划设计等,针对分析及研究采用进化理论、专家系统及模糊逻辑等,在分析电力系统及元件的基础上研究电力系统的应用及智能控制理论,以此达到控制智能化水平发展方向及提高电力系统运行状态及效果的目的[2]。

1.3电力系统中的自动化技术及智能保护

通过研究电力系统自动化保护的新原理,在电气自动化保护装置中加入了国内外较为先进的自适应理论、网络通信功能、综合自动控制系统及微机技术等,将智能控制的特点及优势融入新型保护装置中,以此达到提高电力系统安全性的目的。现阶段普遍使用的分层式综合自动化装置能有效使用在各种电压等级电站,综合自动化领域的分析达到了较高的水平。

1.4电力系统中配电网自动化技术

将电力系统配电网自动化技术融入到高级应用软件、信息配网一体化、配网模型及低压网络数字的方式能有效突破技术难点,提高了数字信号的处理技术及载波接收的灵敏度等,解决载波在配电网上的路由及应用消耗,将配电网及输电网的理论算法相结合是高级应用软件的主要表现形式[3],其主要采用了最新的国际标准公共信息模型,将人工智能灰色神经元算法进行复核预测的方式应用进去。

2电力系统中电气自动化技术的应用

2.1智能电网技术方面的运用

计算机技术中的信息管理系统属于运用较为广泛的技术之一,计算机技术与电力系统自动化技术相结合形成的针对全局进行智能化控制的技术就是智能电网技术,属于一个较为典型的技术,主要包括配电、输变电、用户、发电机调度等环节,在计算机技术的系统中运用的较为广泛的就是变电站自动化系统及稳定控制系统两方面,此外,调度柔流输电及自动化系统等也应用在其中[4]。现阶段,在建设数字化电网的过程中实现了智能电网的建设,是智能电网较为坚持的后盾,智能电网中最为典型的是智能电网的通信技术,智能电网的通信技术在建设的过程中需要依靠较多计算机技术进行运行,运行过程中应保证双向性、实时性及可靠性等运行原则,通过应用先进的现代网络通信技术。

2.2电力系统自动化应用计算机技术

计算机的应用在电力系统中的作用较为关键,在电力系统运行过程中的输电操作、配电过程及变电等程序都需要应用计算机技术进行支撑,一定程度上促进了电力系统自动化技术的发展及进步。

2.3电气系统中电网调度自动化的应用

电力自动化系统中较为重要的组成部分就是电网调度,现阶段我国的电网调度一共分为五个级别,各个级别的电网自动化调度与计算机技术均处于密不可分的关系中,总要是国家电网、大区、省级、地区及县级的调度等,在这个过程中最为基础的方面就是计算机网络系统中应用的电网调度控制中心,每个级别的电网调度安装及连接均需要在计算机系统的推动下进行,其形成一个自动化的电网调度系统,将整个电网调度的系统进行整合,而风作战、变电站终端设备、服务器、大屏蔽显示器、调度范围内的发电场及打印设备等也属于自动化电网调度系统中的重要程序。在电网调度自动化的作用下计算机不仅仅是监控电网运行是否处于安全状态下,其还搜集了电网运行的其他数据,能有效发挥电力系统的电力负荷及状态预估的效果,其主要通过电力系统专用广域网连接的测量控制、夏季电网控制等装置进行电力系统的状态及电力负荷进行预测及预估[5]。

3电力系统中电气自动化技术系统及发展前景

3.1电力系统中电气自动化技术系统

3.1.1电缆设计在自动化系统外部的应用

外电缆设计在变配电站综合自动化中的设计较为简便,使用的材料为一根通信电缆(计算用屏蔽的电缆,并准备一对进行备用,选择使用双芯屏蔽双绞线或光缆)及一根220V的交流电源线,采用专用的电源进行电力监控器进行供电,提高供电的充足性,加强大型变配电站的抗干扰能力;选用220V直流电源进行部分电力监控器进行供电,采用的供电模式为直流屏集中供电,选用具有监控功能的电力监测器进行供电,不能现场进行控制的情况为当变配电站的数量不多时,电力监控器的通信电缆应直接引入中央控制器中。

3.1.2变压电站自动化系统的选择及应用

根据实际的情况、设计的标准及系统功能的具体状况等进行变压电站综合自动化系统的选择及使用,高级专家功能、数据库搜索功能、网络互动功能及运行管理功能等是一般变压电站综合自动化系统需要具备的基本功能,变压电站综合自动化系统选用的基本原则应满足系统运行过程中保证运行的可靠性及安全性及性价比较高等要求。若出现不合理的变压电站综合自动化系统将会出现电力系统自动化设计数据提供方面出现偏差的现象,无法保证电力系统的自动化设计技术保障。

3.2力系统中电气自动化技术的发展前景

3.2.1广泛应用以太网技术

以太网技术的发展速度较快,在使用过程中具备传输速度较快及传输的数据量较多等特点,能满足电力系统综合自动化系统在运行的过程中需要进行的传输数据的功能及标准,以太网技术具有精确的、实时的优势,具有较好的发展前景。

3.2.2综合电气自动化技术系统

在国际标准中的应用电力系统电气自动化中应用智能电子设备的范围越来越多,为了满足信息的兼容及共享,我国开始在电气综合自动化技术系统的方面进行研究及发展,因此,国际标准的应用属于综合电气自动化技术系统发展的主要趋势[6]。

3.2.3保护+控制+测量一体化

在进行电力系统综合电气自动化技术的合理使用过程中,为了提高工作效率应将电力自动化技术系统中的测量、控制及保护结合在一起,实现一体化的操作,测量+控制+保护一体化能有效简化电力系统设备,提高电力系统运行的可靠性。

4结语

电力系统中采用的自动化技术在其中的应用越来越广泛,自动化技术使得电网的管理方式发生了较大的变化,在自动化技术的不断选择及应用过程中纳入了较多的新技术及新理论,使得传统的技术界限较为模糊,各种自动化技术相互渗透及联系,不断推动了电力自动化系统的变化。原有的自动化技术系统的相关概念会随着科学技术及经济的不断发展而发生巨大的变化,电力系统的相关工作人员应结合以往的工作经验,符合电气自动化的设计原则,采用针对性的设计方式及策略保证电力系统使用自动化技术的合理性及科学性。

参考文献:

[1]张春霖.电气自动化技术在电力系统中的运用探究[J].中国科技纵横,2016,10(11):154-155.

[2]胡荣荣.电气自动化技术在电力系统中的应用探析[J].机电信息,2012,23(30):109,111.

[3]郑道疆.电气自动化技术在电力系统中的应用和发展[J].电子制作,2014,26(13):202-203.

[4]张倩.电力系统中电气自动化技术的应用及发展方向分析[J].电子测试,2016,33(23):130,123.

[5]黄俊.浅析电力系统中的电气自动化技术及其应用[J].建筑工程技术与设计,2015,17(31):1065.

动力系统分析篇(5)

关键词: 液压传动系统;压力;不正常;诊断分析

中图分类号:TH237 文献标识码:A 文章编号:1671-7597(2012)1210141-01

随着机械设备的不断发展,现代设备的复杂化,为了提高生产效率,避免过高的停机费用,设备的故障诊断与排除显得越来越重要。液压液压传动系统的故障有多种,这里主要对压力不正常进行了分析。

1 熟悉系统的工作原理

检测与排除故障最重要的一点是要掌握系统的工作原理。首先要熟悉系统的容量,还要熟悉合理的工作压力,并且还要了解设备的性能,认真阅读说明书,查阅设备运行记录和故障档案,向操作者访问设备出现故障前后的工作状况和异常现象等。并进行现场观察,对上述情况进行综合分析、认真思考,然后再进行故障的诊断与排除。

2 液压传动系统故障

调试阶段常发生的故障有:阀芯卡死或运动不灵活导致执行元件动作失灵、外泄漏严重、执行元件运动速度不稳定、阻尼小孔堵塞造成压力不稳定、漏装弹簧密封件造成的控制失灵、液压系统设计不完善、液压元件选择不当造成系统发热执行元件同步精度差等。

运行初期的常见故障:密封件质量差或装配不当造成的泄漏、管接头因振动而松脱、污物堵塞阻尼孔和滤油器造成的压力和速度不稳定、由于负荷大或外界环境散热条件差,使油液温度过高引起泄漏,导致压力和速度的变化。

运行中期应特别注意控制油液的污染。

运行后期故障:液压元件因工作频率和负荷的差异,易损件先后开始正常性超差磨损,导致故障率较高。

一些突发性故障往往与液压设备安装操作不当、维护不良有关系。因此要加强设备管理维护,严格执行岗位责任制,以及加强人员素质的培养。

3 故障诊断步骤

液压传动设备运转不正常,都可以归为流量、压力和方向三大问题。诊断步骤为:审核液压回路图,检查液压元件,初步评定质量状况;列出与故障相关的元件清单逐个分析;对清单中所列元件按经验和元件检查的难易排列次序;对清单中列出的重点检查元件进行初检;初检中未查出故障,要用仪器反复检查;识别出发生故障的元件,对不合格元件进行修理或更换;在重新启动主机前,必须先认真考虑这次故障的原因和后果。

4 诊断技术

简易的诊断技术为:看、听、摸、闻、阅、问。看压力、速度、油液、泄漏、振动、产品。听噪声、气蚀与困油的异常声、冲击声、敲打声。摸温升、振动、爬行、松紧程度。闻油液是否发臭,橡胶件是否发出特殊气味。阅设备技术上有关故障分析和维修记录、保养情况等。问液压系统工作是否正常、液压油更换时间、发生事故前调节阀是否调节过、密封件或液压件是否更换过、出现过哪些不正常现象等。精密的诊断技术主要是采用测试仪器进行定量分析,从而找出发生故障原因。

5 压力不正常的故障诊断分析

液压传动系统中,工作压力不正常主要表现在工作压力建立不起来,升不到调定值,有时压力升高后降不下来,使得不能正常工作,甚至运动件处于原始位置不动。液压传动系统压力不正常主要表现形式之一是压力不足,主要原因有:液压泵出现故障,液压泵的驱动电机出现故障,以及压力阀出现故障等几个方面,液压系统压力不正常都与液压泵、压力阀密切相关。

5.1 液压泵故障原因

泵内零件配合间隙不符合规定技术要求,引起压力脉动或压力升不高;进出油口不同的单作用泵,进出口油管接反;液压泵各结合面密封不严从而进入空气;叶片泵中叶片与转子装反或者叶片卡死,叶片与内曲线表面接触不良,柱塞卡死;泵内零件加工质量和装配质量差;泵内零件损坏。

排除方法:由于磨损而造成间隙过大的零件,要按修理工艺进行修复。不能修复的应更换新件;安装、调试液压泵时,一定仔细阅读使用说明书,严格执行安装调试工艺规程要求。确认泵的吸、排油口,起动液压泵前一定要向泵内灌满液压油;液压泵的进出油口密封要良好,不得泄漏或进入空气;泵内各配合处接触不良要及时修复;泵内零件加工,贮运都要严格执行图纸和各项工艺要求,装配前要严格检验制度,不合格零件,不能使用;泵内零件损坏不能修复的要及时更换。

5.2 液压泵驱动电机故障原因

电动机反转;电动机规格不准,功率不足或转速达不到规定要求。

排除方法:重新接线,纠正电动机转向;根据液压泵说明书,核对电机性能规格。

5.3 压力阀故障原因

溢流阀调压失灵;减压阀调压失灵。

5.4 压力不正常的其它原因

电机功率不足,转速太低;系统油液粘度过低,泄漏严重;油液中进入过量空气,以及污染严重;滤油器堵塞,液流通道过小,油液粘度过高,以致吸不上油;压力表损坏;管路接错。

6 液压传动系统的维护

检查和排除故障最重要的一点是要熟悉和掌握液压系统和工作原理,应该熟悉每个元件的结构及工作特征。在液压系统的维护中有几项简单而基本的维护方法对液压系统的性能、效率、寿命有很大的影响,我们一定不要忽视。

要保持系统具有品种和粘度合适、清洁而充足的液压油;保持所有联接处紧固严密,没有变形,防止空气进入系统或泄漏;更换滤油器或清洗滤网。

7 结束语

液压传动系统的故障原因有多种,这里主要进行了工作压力不正常的诊断分析,为了更好的保证液压设备的正常运转,我们要不断进行研究学习,积极做好预知维修,及时检测诊断设备故障,迅速排除,为提高生产率,提高经济效益做好工作。

参考文献:

[1]苏欣平,液压系统故障的快速诊断与排除[J].机床与液压,2003年.

动力系统分析篇(6)

关键词:电力系统自动化技术;应用;发展趋势

Abstract: As the Chinese scientific and technological level development, the electric power system automation has become the development direction of the electric power system. Based on the electric power system automatic control basic requirement, this paper analyzes the power system automation technology, and at the same time, it discusses the power system automation application ability and development trend.

Key words: power system automation technology; application; development trend

中图分类号: TM4 文献标识码:A文章编号:2095-2104(2012)

配电自动化的基本原理是将环网结构开环运行的配电网线路通过分段开关把供电线路分割成各个供电区域。当某区域发生故障时,及时将分割该区域的开关跳开,隔离故障区域;随后,将因线路发生故障而失电的非故障区域迅速恢复供电,从而避免了因线路出现故障而导致整条线路连续失电,大大减少了停电范围,提高了供电可靠性。

1、电力系统自动化技术分析

1.1发电厂分散测控系统(DCS)

发电厂分散控制系统(DCS)一般采用分层分布式结构,由过程控制单元(PCU)、运行员工作站(Os)、工程师工作站(Es)和冗余的高速数据通讯网络(以太网)组成。过程控制单元(PSU)由可冗余配置的主控模件(MCU)和智能I/0模件组成。MCU模件通过冗余的I/O总线与智能I/O模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。

1.2电网调度自动化

电网调度自动化主要组成部分,是由电网调度控制中心的计算机网络系统、工作站、服务器、大屏蔽显示器、打印设备等,其主要是通过电力系统专用广域网连结的,下级电网调度控制中心、调度范围内的发电厂、变电站终端设备(如测量控制等装置)等构成 电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷预测、自动发电控制(省级电网以上)、自动经济调度(省级电网以上)并适应电力市场运营的需求等。

1.3变电站自动化

变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆操作监视实现计算机屏幕化运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。

2、电力系统自动化技术的应用能力分析

数据处理能力。工业计算机和引进的PC机技术为电力系统调度自动化、电厂监控系统、变电站综合自动化奠定了基础。开发的应用软件可以实现电力系统实时数据采集、汇总、分类、分析、存档、显示、打印、报警、完成操作控制等任务。

a.数据共享能力。伴随着电力系统的自动化技术方面的发展,系统模型通常集中在对相关地理空间属性方面的描述上,但是在实际的相关应用中,电力系统方面的控制对象通常具有比较复杂的电力的处理结构。对于这种基础而言,主要包括2个方面:1)物理实体的几何属性方面的标准定义与表达。其包含了电力系统服务能够覆盖的空间区域方面的几何属性。2)物理属性数据方面的标准定义以及表达。对于相关的电力系统来说,其不仅包含了物理结构,而且还包含各种组成部件、整体方面的物理性能和运行规范方面的信息共享以及动态、多维的应用分析等。

b.数据整合能力。电力系统的发展和形成是由市场经济的需求所产生的驱动结果。比如:在用电高峰,提高变电站的电压,加大输出功率;在用电低谷,降低变电站的功率。这样既可满足用户的需求,也可极大地减少损耗,降低成本。所以只有将传统信息的孤岛打破,进行数据方面的整合,对数据方面的整合能力进行加强,才能进行无缝连接,才能把空间计算引人主流的计算之中,同时多角度地展示数据之间那些潜在的关联,这也是未来电力系统自动化发展方面的必然趋势。

1)加强电力系统的自动化和信息化。加强对数据方面的可操作性,让用户对拥有图标的相关用户界面进行支持,由于电力系统方面的自动化运行作为一个实时性要求比较高的过程,通过对系统代码进行调整,具体来说就是对自己所需要的那些数据类型以及操作方法进行定义,从而增强对系统的可扩充性以及开发性。

2)加强电力企业方面的功能性。对于电力企业而言,要求电力系统的平台对分布的应用服务进行有效供给。每一个地方可以由自己维护和管理所管辖区域里的数据,同时,不同级别的相关数据库之间也可以构成那种分布式类型的数据库,并且可以通过网络进行调用和共享其他一些地方的数据,在所赋予的权限范围内,以分散数据管理和存储为基础,对数据的安全性和实时性加以保证。

3)更加完善的数据库。通过运用各种数据库,对各种数据进行存储和管理,它的数据备份机制、安全机制等方面都是其他的文件管理方式所不能比拟的。

c.安全稳定能力。电力应用是社会经济发展过程中的支柱,它也是一个实时性运行的相关系统,同时,其安全稳定性也是首要考虑的问题。

b.自动化安全监视能力。由于人无法做到24h专注,因此自动化监视能力就显得尤为重要。电力系统的自动化监视能力不同于其他系统,因为其他系统只需要反映并记录客观现象、客观数据即可,例如:某发电机组在用电低谷时反而温度较高,发电功率异常增大,这就需要监控系统发出警告,以提示风险。

e.自动化安全保障能力。电力系统具有对于不同类型以及规模的数据与使用对象都不能有崩溃的相关特征,应具备灵活的相关恢复机制,因此对安全保障极其有用。其保障能力的应用具体包括:1)保障电力系统的日程运行。2)保障电力数据的及时存储和恢复。日常记录的数据对于制定发电站的预算、节约成本、进行系统更新、安全指标的修订均具有重要意义。3)保障从业人员的安全。由于自动化系统具有监控功能,所以当系统出现异常,特别是出现安全隐患危及生命时,自动化系统可采取相应措施降低风险。在安全生产的同时,保障生产者安全,也是自动化系统的职责之一。

3、电力系统综合自动化的发展方向

对于我国电力系统综合自动化的技术而言,其发展方向就是对DMS系统进行全面的建立,通过DMS系统,可以提高电气的综合管理水平,以适应现代化电力系统技术发展的需要;使电气设备保护方面的控制得到一定的优化,消除大面积的停电故障,提高供电系统的可靠性;电量、电压以及功率等各种类型的运行参数,对电力平衡、精确计量、负荷监控等多种功能有着相关影响;改变了现行的变电值班模式以及运行操作,实现了真正意义上的无人值守的变电站的管理模式,真正达到了精兵简政的目的。

数据共享作为变电站自动化的一个主要特点,将监控和保护功能集成在同一装置里,是实现数据共享的主要途径之一。对于SCADA而言,其所需的多项数据与继电保护所进行处理的数据是相同的,所以将分布式类型的变电站SCADA集成到相关的微机保护中,使监控和保护对一个硬件平台进行共用,那么就可以实现非常明显的经济性。

4、 结语

目前,电力系统的综合自动化已经进人以计算机技术和监控技术发展为重点标志内的阶段,但对于我国这样一个电力需求大、电网建设复杂而电力系统综合自动化改革开始比较晚的国家来说,在追赶先进技术的同时,还必须要注重对传统技术和设备的改进,只有这样才能保证电力系统综合自动化的早日全面实现。

参考文献:

[1]蔡桂龙,金小达.配电自动化系统通信方案设置[J].电网技术,2009(4).

[2]张帅,张同建.浅谈县城配网自动化技术应用[A].山东电机工程学会第四届供电专业学术交流会论文集[C].2009.

动力系统分析篇(7)

【关键词】电力系统;自动化;防雷策略

电力系统自动化发展能力越强,对防雷技术的要求越高,实际部分地区在电力防雷方面,存在诸多缺陷,影响电力自动化系统的防雷效果。电力自动化系统内存在诸多设备,额定电压较低,对信息传输具有一定选择性,严重干扰外界环境,如果遇到雷雨季节,较容易引发雷击干扰,降低电力自动化系统的运行效率。由此可见:提高电力系统的防雷水平,有利于电力自动化系统的发展,针对电力系统的实际情况,提出可靠的防雷措施。

1电力自动化系统的防雷技术

结合电力自动化系统的实际防雷措施,分析电力自动化系统内比较常见的防雷技术,如下:

1.1电阻接地、屏蔽

电阻既可以起到防雷作用,也可以影响防雷技术的作用,所以必须正确对待电阻问题,利用接地、屏蔽的方式,规划防雷策略[1]。第一,电阻接地,接地是防雷处理的必须环节,有效降低接地电阻值,确保电阻值的最小状态,提升过电压水平,电力自动化系统内的动力设备,利用接地网的方式连接,保障其处于网络状态,由此可在很大程度上提升防雷能力,实现环形防雷,配合保险器,达到防雷的规范标准,雷电发生时,均衡分配雷击电位,正常隔离电力自动化系统与雷击,防止雷击放电;第二,电阻屏蔽,防止雷击产生电磁,干扰电力自动化系统,造成运行压力,系统设备对电阻屏蔽的要求比较严格,必须借助屏蔽网,在保障线路多点连接的状态下,实现电缆屏蔽,电力自动化系统的室内、室外部分,防雷技术不相同,室内防雷按照正常标准执行,室外防雷时,首先将线路改为屏蔽电缆,实行接地处理,合理设置埋入深度,最大化发挥屏蔽效果,提高防雷技术水平。

1.2过电压保护

过电压保护主要应用在载波机方面,载波机较容易受到雷击影响,组成构件防雷能力低,所以通过过电压保护的方式,提高载波机的防雷能力,提升电力自动化系统的防雷水平。将压敏电阻安装到载波机上,感应外部电压,发挥防雷效益,重点考虑载波机的保护装置,有效保护电力自动化系统的整体结构。例如:某电力公司处理防雷问题时,综合考虑电力自动化系统的运行实际,在载波机内安装防雷保护部件,防雷性能稍弱的装置实行高级防雷,如通信部分、信号线等方面,该电力工程积极利用过电压保护,还可实时检测电力自动化系统的过电压保护,一旦发现失效部分,主动报警,记录过电压保护实况,避免过电压保护失效,发挥过电压保护的优势。

2系统防雷策略对TVS管的应用

TVS管应用属于新型防雷,更能满足电力自动化系统的需要。TVS管可在瞬间抑制电压,防止雷击产生能量过高,冲击电力自动化系统。TVS管传输速度非常快,迅速实现高阻到低阻的转化,瞬间吸收浪涌,控制两极电压,保护电力自动化系统内的元件,避免遭遇浪涌冲击。电力自动化系统内存在较多抗冲击能力非常弱的电子设备,即使存在很小的电压,也会造成设备损坏,雷击过程中不仅产生高强电流,还会引发不同程度的电磁感应,如果电子元件没有实行防雷保护,很容易导致电子设备故障、损坏,所以利用TVS管,改善电子设备的工作环境,有效保护电力自动化系统[2]。TVS管防雷具有正向、反向两方面的特点,其在正向上类似于二极管,反向类似雪崩器件。工作原理为:雷击发生引发瞬态电流时,形成强度脉冲,此时TVS内的电流会自主变动,实现“IDIR”,表现为电流值上升,TVS两极加载的电压,在高压作用下,击穿UBR,连带击穿TVS管。雷击状态下的雷击电流迅速达到高峰,由于TVS管的作用,两端电压控制在最大接收电压预设值以下,脉冲电流根据相关指数,呈现衰减状态,TVS管两端加载的电压也随之表现出下降趋势,最终恢复原始状态,进而保护电力自动化系统内的电子设备,避免遭受强雷击脉冲攻击。

TVS管在电力自动化系统防雷策略中的特点明显,分析各项参数优势,如下表1,不仅提升电力自动化系统的防雷能力,同时应用在电力防电磁干扰领域,在电子设备中得到广泛应用。

表1TVS管的参数优势

3分析综合防雷措施

雷电种类多种多样,造成的破坏和危害程度大不相同,根据电力自动化系统遭受的雷击影响,基本可以分为三类雷击破坏:感应雷电、直击雷和球形雷。基于雷电的干扰和冲击,为提高电力自动化系统的防雷能力,规划防雷措施,提出综合防雷策略,以此保障电力自动化系统处于安全运行的环境。

以某地区电力防雷为例,分析综合防雷措施的应用。该地区地势高,环境特殊,受雷击感应影响较明显,比较常见的为静电干扰,该地区地势与雷云距离较近,在室外电力自动化系统的装置、线路、杆塔等部分形成异性电荷,感应出电荷,雷云放电时,电力自动化系统摆脱电荷束缚,电荷以电流的形式,沿着电路系统传递,电流传输中,感应形成电磁场,致使金属设备出现高电压,毁坏电力系统的电气设备,提升周围环境的危险系数,促使该地区的电力自动化系统经常面临雷击危害,造成巨大的经济损失[3]。为保障电力自动化系统安全防雷,该地区利用综合防雷策略,加强雷击控制,保护电力系统。以电力自动化系统为整体,充分发挥综合防雷策略预防、治理与保护的特点,首先该地区将屏蔽、接地的策略作为基础防雷措施,合理按照避雷器,最主要的是实现三点接地,同时采取适当过电压保护;然后将抗干扰能力低、防雷效果差的设备进行过电压保护,该地区改进原有电力自动化系统,安装载波机,优化电源结构,科学选择对应防雷设备的型号;最后替换原有信号线保护装置,该地区选择XGBZ-II型设备,强化保护信号线,发挥有效的保护措施。该地区综合利用效果明显的防雷措施,电力自动化系统的防雷效益明显提升,与该地区未采用综合防雷策略的电网系统相比,基于综合防雷策略下的电力自动化系统,具备更加强势的运行方式,不仅有效抗击雷击干扰,更是快速分散雷击风险,保护设备安全运行[4]。因此,为发挥各项防雷策略的效益,可通过综合途径,利用相互补充、互相弥补的方式实行防雷处理,避免出现防雷盲区和缺陷。

综合防雷措施利用时,必须要注重配合,不能过度偏向某一类防雷技术,避免影响防雷效益,保障综合性,将综合防雷策略的效益发挥到最大。防止雷击对电力自动化系统的影响,着实提升系统的经济效益,确保电力系统的社会地位。

4结束语

科学的防雷策略可以提升电力自动化系统的运行能力,体现防雷技术的效益,稳定电力系统,避免雷害危机。根据电力自动化系统的实际情况,选择合适的防雷措施,迅速找出雷击多发区和防雷弱点,利用有效的防雷技术,完善电力自动化系统的防雷处理。提高电力自动化系统的防雷能力,营造安全的供电环境,保障电力质量。

【参考文献】

[1]于振波.高压输电线路防雷技术探讨[J].山东气象,2011(02):34-36.

[2]马力强.电力系统自动化防雷对策[J].黑龙江科技信息,2012(07):12-14.