期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 电磁波的实际应用

电磁波的实际应用精品(七篇)

时间:2023-09-05 16:31:27

电磁波的实际应用

电磁波的实际应用篇(1)

关键词:电磁场与电磁波;类比法;循序渐进;讲义;习题

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)21-0010-02

随着信息时代的到来,作为通信传输技术基础的电磁场理论得到越来越广泛和深入的研究与应用。“电磁场与电磁波”是电气、电子信息、通信等工科电子类专业的一门重要的技术基础课,它是在大学物理电磁学的基础上,进一步研究宏观电磁现象的基本规律和分析方法。这不但是为了后续课程的需要,也是深入理解和分析工程实际中的电磁问题所必需掌握的基本知识,而且电磁场理论也是微波通信、卫星通信、电磁兼容和生物电磁学等高新技术的理论基础及交叉领域新学科的生长点。[1,2]所以电类专业的学生,无论是从当前的学习出发,还是为了拓宽将来的专业面,都应该重视这门课程,学好这门课程,打好专业基础。此外,学好这门课,对培养学生树立严谨的科学思想、科学分析问题的方法、复杂抽象的思维能力、勇于开拓的创新精神等将起着十分重要的作用。[3,4]另外由于独立学院学生普遍基础不是很好,并且对抽象的理论课程的学习兴趣不大,更加重了独立学院重“电磁场与电磁波”课程的教学工作。

一、“电磁场与电磁波”课程特点

1.基础知识要求多

“电磁场与电磁波”课程是以大学物理、高等数学、电路分析、数学物理方程、复变函数等为基础,所涉及的内容很广 。大学物理中,电磁学部分内容是“电磁场与电磁波”的物理基础,而矢量分析、特殊函数等内容是学好“电磁场与电磁波”课程必需的数学工具,由于涉及复杂偏微分和特殊函数的计算,难度不小。因此要学好这门课程,必须熟练掌握这些基础课程的相关概念、理论和运算等。同样对担任本课程教学的教师提出了较高的要求,即一方面需要有较好的物理、数学及电路知识;另一方面需要有比较全面的专业知识。同时,又需要对通信工程实际情况有较广泛的了解。因此本课程的教学相对而言比较不易。

2.数学推导计算多

课程涉及大量的物理知识以及各种数学方法,在学习过程中如何处理数学与物理的衔接,数学方法和物理概念的联系以及理论分析与工程应用的关系至关重要,这也是学生较难处理的问题。

3.抽象的概念多

“电磁场与电磁波”每章内容都会引入一些新的、较难理解的概念、定律。例如散度和旋度是两个比较抽象的数学概念,学生们甚至在课程结束之后仍感到这两个概念很抽象,不理解在电磁场与波学习中为什么始终与之打交道;静电场中的自分布电容、互分布电容、广义力、虚位移等;恒定磁场中的矢量磁位、标量磁位;边值问题求解中的镜像法、分离变量法等。这些新的概念及定律不仅抽象、难理解,而且所涉及的公式通常比较复杂,计算起来难度较大。基于以上特点,对于“电磁场与电磁波”这门课程,学生普遍认为“难学”,教师普遍感到“难教”。

二、“电磁场与电磁波”教学存在的问题

1.学习问题

由“电磁场与电磁波”课程的特点可知课程本身过于抽象,学生普遍反映难学难懂,表现为抽象的纯理论和概念多,复杂的偏微分公式多,计算求解难度大,而对老师来说教好这门课也具有相当的难度。另外,在学习“电磁场与电磁波”课程过程中,学生常常难以将已经学好的数学知识和电磁场内容很好地结合。在学习“电磁场与电磁波”之前,学生一般都具备矢量场论的基本知识,但是在学习“电磁场与电磁波”的过程中却难以将所学知识与电磁场理论融会贯通、学以致用。还有许多学生数学基础薄弱,学习起来备感吃力。

2.教材问题

目前绝大多数教材都只强调经典的理论知识,缺乏有应用背景和紧密跟踪最新前沿发展的内容,这样不但导致理论与实际应用脱节,也很难激发学生的学习热忱。特别是对基础知识差的学生来说,一看到大量的证明和数学推导问题就失去了信心。

3.缺少实验设备

由于资金和实验设备的匮乏,使得大部分高校在“电磁场与电磁波”教学中缺少实验设备,导致无法开展实验课程。这样原本就十分抽象的课程,完全变成了一门纯理论教学的课程,也导致了学生学习中理论与实践的脱节问题。

4.课时问题

随着这些年的教学改革,大学生要求的总学分略有下降,而开设课程又增多的趋势导致“电磁场理论”的教学课时被极大压缩,由以前的80学时被压缩到40学时,导致教学自由度受到了较大的限制。

三、提高“电磁场与电磁波”教学质量的方法

1.制订教学大纲,确定教学内容

现有的“电磁场与电磁波”教学,大部分都是一些纯理论讲解的内容,而学生在学习的过程中经常问学这门课有什么用,学某一章节有什么用。看是一个简单的问题,但作为老师一定认真思考,给学生一个满意的答案。因为从这个问题上一方面反映了老师讲课不能只是大谈理论讲解,另一方面也反映了现有教材在实际应用方面的缺陷。对这个问题回答的好坏直接关系到同学们学习的效果和兴趣。基于以上原因和笔者多年的“电磁场与电磁波”的教学经验,自编内部教材讲义,此讲义最大的特点是以通俗的语言来讲解抽象的概念,以实际的例题来帮助理解重点理论,并且在每个知识点都有对应的应用实例。

由于“电磁场与电磁波”理论是人类在认识自然规律和生产实践活动中发展起来的,在日常生活、科学研究和军事等领域中的应用非常广泛,例如在微波炉、磁悬浮列车、隐形轰炸机、移动电话中的应用等。这些在此讲义的每一章的后面都是一个拓展知识的介绍,比如在第二章静态电磁场的最后一节中,就针对磁悬浮列车和卫星电推进器做了详细讲解,提高了同学们的学习兴趣。

2.循序渐进的教学方法

电磁场与电磁波是利用场的观点来研究空间某一物理量的确定值问题,而矢量分析正是研究此问题的重要教学工具。应用矢量分析的方法,可以使电磁场的基本定律、公式以简洁的形式表述出来,且与坐标的选择无关。所以先要学习一下矢量分析的内容,包括矢量运算、三种坐标系、矢量的散度和旋度等内容。以后每个章节的教学,采用从易到难、从静态场到时变场、从电场到磁场再到电磁场、从三维空间到四维空间的循序渐进的教学顺序。

首先,从较为容易掌握的静电磁场开始进行学习,此章节的教学应详细地分析各种情况,其中包含对基本方程、边值问题等理论的推导以及物理含义的分析,以及静电能量与力的分析等,而静磁场的讲解一定要和静电场的知识进行类比学习。这样就为时变电磁场、电磁场波的传播、波导等教学内容打下一个比较好的基础。后续各章节的教学,也应注意与静电磁场的理论进行比较。从静止电荷产生的静电场到研究运动的稳定电荷产生的恒定电场,然后研究电流引入的恒定磁场,随后进行电磁感应以及时变电磁场分析,并且在时变电磁场的分析中,推测电磁波的产生。之后讲解均匀平面电磁波在无界空间的传播、反射和透射,以及导行电磁波、电磁波辐射等知识,最后进行传输线理论的讲解。按照逐步深入方式,进行知识的扩充,使课程知识具有连贯性,学生也比较容易掌握。

3.巧妙使用类比方法

“电磁场与电磁波”课程体系中,小到一个公式,大到整个理论框架,都存在着对立统一的关系。通过这些知识点的类比,不仅使学生学到了“电磁场与电磁波”课程的精髓,也使他们体会到“电磁场与电磁波”课程体系中的对称美。类比包含两个方面的类比,一是课程、领域之间的横向类比,例如与“大学物理”相关知识点的类比,“电磁场”和“流体力场”、“电磁波”和“机械横波”的比较。由于电磁波与机械波都是横波,都具有横波的特性等方面的类比,水波的传播与电磁波能的传播的类比,电磁场与流体力场的类比等等,类比的教学策略进行更加形象直观的传授,启发创造性思维。另一个则是纵向类比,譬如该课程本身的静电场和静磁场、静电场和恒定电流场等的对比。这样,既拓宽了学生的知识面,也使学生通过类比对电磁场波动函数表达式有了深刻而又直观的理解。

4.仿真软件在教学中的应用

对于电子信息、通信专业的学生,基本上都会使用MATLAB软件,并且场与波的分析往往涉及复杂的绘图和大量的计算,将MATLAB仿真技术应用到“电磁场与电磁波”实验教学中,十分有助于将抽象的理论变成容易理解、接受的结论,这必将有助于“电磁场与电磁波”的课堂教学。[5]比如,利用MATLAB编写的程序可以绘制三维矢量的静态和动态分布图,给出了均匀平面波、矩形波导的传输模和截止模、电流元的电场和磁场的分布图,这将大大提高同学们的空间想象力和对这部分知识的理解能力。

5.适当的习题练习

对“电磁场与电磁波”课程的学习,不但要有正确的教和学的方法,还要有适当的习题练习。其实,习题都是针对某一知识点的实际应用而设计的,在同学们做习题的过程中一方面帮助他们理解知识点的应用,另一方面也巩固了课堂老师所讲内容。

在课堂教学中,不可能留出时间让学生来学习题,只能有针对性地来讲解有代表性的例题,做习题只让同学们在课下做,让同学把遇到的问题汇总起来,在集体答疑的时间来给同学们做详细的解答。在讲义中不但针对每一知识点精心设计应用实例,而且还设计了一定量的习题要求同学们完成。

此外,习题不仅仅是计算,在每一章结束后给学生出了一些思考题,让学生自己去查找资料来完成。比如假如存在磁单极子,麦克斯韦方程的形式是什么样的?

四、总结

本文是笔者多年来在“电磁场与电磁波”教学中的一点体会,本课程涉及的基础知识比较多,对教师的专业课程知识的要求较高,同时需要教师密切结合本校学生的基础、实验设备、课时、教学大纲的制订等实际情况进行分析。教学过程的每一个环节都需要周密思考、认真备课,注意平时在科研项目中随时积累,在教学中随时涉猎其他专业的知识。教师的视野开阔了,学生才能在电磁场领域的思维角度开阔一些,能够掌握宏观电磁场与电磁波的基本性质及基本规律,培养他们的抽象思维能力,分析解决实际问题的能力。

参考文献:

[1]田雨波, 张贞凯.“电磁场理论”教学改革初探[J].电气电子教学学报,2008,30(1):11-12.

[2]王家礼,朱满座,路宏敏.电磁场与电磁波[M].西安:西安电子科技大学出版社,2003.

[3]李波,豆根生,袁超.电磁场与电磁波课程的教学方法探索[J].河南机电高等专科学校学报,2007,15(6):127-128.

电磁波的实际应用篇(2)

关键词:电磁场;教学方法;教学内容;美国大学

中图分类号:G642.0 ; ; ; ; ;文献标识码:A ; ; ; ; ;文章编号:1007-0079(2014)17-0073-02

电磁场理论具有理论性强、概念抽象、公式繁多、数学推导繁琐的特点,要求学生具有较强的空间想象能力、抽象思维能力和逻辑推理能力。[1,2]这门课的特点对学生提出了很高的要求,所以这门课是教学和学习难度最大的课程。特别是对于像桂林电子科技大学这样的二本院校来说,学生基础相对于重点院校的学生普遍要差些,自主学习的能力也要差些。[3]因此,如何做好二本高校电磁场课程的教学工作是摆在面前的一个紧迫问题,值得花大力气来探讨研究。笔者在美国休斯顿大学(University of Houston)留学期间旁听了Jackson教授讲授的应用电磁波和微波工程两门课,感受到中美教育颇有不同,所以将这些经验与在实际教学中的经验和发现的问题相结合,根据我国高校的实际情况探讨电磁场课程的教学。

一、教学内容探讨

对于电磁场这门抽象、复杂、教学难度大的课程,二本高校还得面对学生基础和自主学习能力比重点高校学生相较稍差的校情,因地制宜地选择合适的教学内容是十分重要的;特别是桂林电子科技大学(以下简称“我校”)电磁场课程的学时已由原来的100多学时减少到现在的56学时。面对这样的情况,需认真研究这门课程的教学内容,使学生以有限的学时掌握电磁场的基础知识,为进一步的学习或研究打下坚实的基础。为此,将教学内容与美国大学的教学内容做一比较应该是有益的。

先看休斯顿大学电磁场这门课程的教学内容。休斯顿大学将电磁场课程分为两门课程,即应用电磁学(ECE 2317)和应用电磁波(ECE 3317)。应用电磁学这门课程包含的主要内容有电磁学基础、矢量分析、麦克斯韦方程、基尔霍夫定律、静电场与静磁场、电阻、电容、电感、磁路与变压器。而应用电磁波课程包括时域与频域中的麦克斯韦方程、波印亭定理、平面波传播、波在理想与有耗煤质中的反射与透射、传输线、波导和天线。可见,休斯顿大学将电磁场这门课将静态场与动态场分别放在两门课讲授,每门课讲授时间相当于国内的48学时,即两门课加起来有96学时。而我校本科电磁场课程目前只有56学时,比休斯顿大学整整少了40个学时。因此,我校电磁场课程的教学内容主要包括矢量分析、静态场、麦克斯韦方程、时变电磁场、无界空间中的TEM波、TEM波的反射与透射。可见,我校的电磁场课程教学内容与休斯顿大学有所不同。但是需要指出,基尔霍夫定律学生在“电路分析”课程即已学习,传输线、波导和天线有后续的课程学习,磁路与变压器、电阻、电容、电感、分离变量法和镜像法根据我校不同专业的需求而有所取舍;此外,对一些复杂的内容,如分离变量法和镜像法等,做简化处理。

做这样的安排首先因为课时相比休斯顿大学来说少得多;其次,二本高校的学生基础与学习能力都稍差,有必要简化讲授部分复杂的内容;第三,我校电子科学与技术专业有电磁场方面的后续课程,专业基础必修课“微波技术”,专业限选课“微带电路”“电波传播与天线”“微波电路及CAD技术”和专业任选课“电磁兼容”等课程,这些课程的设置覆盖了“电磁场”课程的不足部分。我校的其他专业根据需求也会选择一定的电磁场后续课程。可见,鉴于我校“电磁场”学时远比休斯顿大学相关课程学时少且我校学生素质比休斯顿大学学生稍差的现实,笔者简化了这门课的教学内容以适应我校不同专业(如通信工程等)对电磁场知识的需求,且我校电子科学与技术专业的后续课程弥补了“电磁场”课程的不足,覆盖了休斯顿大学电磁场课程的内容并有所拓展。我校电磁场课程教学内容的设置因地制宜,适合学生基础及不同专业的需求,使学生打下良好的电磁场知识基础,奠定了进一步学习和研究的基础。

二、教学方法探讨

1.教材选取

探讨了教学内容,再来探讨下教学方法。教学方法跟教材的选取形式是密切相关的。休斯顿大学应用电磁学课程并没有指定一本专门的上课用教材,而是推荐了三本教材书:《Applied Electromagnetism》(L. C. Shen and J. A. Kong, 3rd)、《Schaum's Outline on Theory and Problems of Electromagnetics》(J. A. Edminister, 2nd)和《Schaum's Outline on 2000 Solved Problems in Electromagnetics》(S. A. Nasar);休斯顿大学的应用电磁波课程推荐的参考教材为《Applied Electromagnetism》(L. C. Shen and J. A. Kong, 3rd)、《Engineering Electromagnetics》(Hayt and Buck,6th)和Fundamentals of Engineering Electromagnetics (D. K. Cheng)。可见,休斯顿大学电磁场的教学并没有指定一本专门的教材,而是教师按照自己的讲义进行授课,学生参考几本教材进行学习。而像很多国内高校一样,我校的电磁场课程指定了一本专门的教材《电磁场与电磁波》(谢处方、饶克谨著),[4]虽然也另外指定了2本参考教材,但是多数学生习惯于只看指定教材。

2.教学考核

教材的选取形式一方面是因为国外学生是主动学习,主动思考并探索知识;而国内的学生从小到大习惯于被动学习和接收知识,习惯于指定学习内容,缺乏主动探索和求知的精神。另一方面休斯顿大学电磁场类课程老师除了会布置一定的作业外,也会布置一些project来要求学生利用课外时间完成;这些作业或project多是要求学生利用所学知识来解决实际问题,难度较大,需要学生大量查阅文献资料和参考书来完成,从而培养了学生独立进行科学研究的能力。美国的其他大学也大多如此。[5]而我校(也包括很多国内高校)的作业布置一般都是教材里的习题,且没有project这个环节,学生完成作业只需要翻看课本即可,难以锻炼学生的独立科研能力。

此外,休斯顿大学应用电磁学考核成绩中平时作业占10%,project占10%,第一次考试占25%,第二次考试占25%,期终考试占30%;应用电磁波平时作业占15%,project占10%,中期考试占25%,期终考试占50%。而我校电磁场考核成绩中平时占20%,实验占10%,期终占70%。考核的平时成绩主要看学生到勤率和交作业情况,主要考核成绩还是看期末考试;如此,很多学生抱着临时抱佛脚,考前冲刺一下的想法,难以调动学生学习的积极性。当然,这种情况是国内较为普遍的情况。但是,可以适当借鉴美国高校的一些做法,如平时安排一些小的project让学生查阅文献,增加平时测试,布置一些与实际问题密切相关的作业,从而调动学生平时学习的积极性,培养独立研究的能力。

3.教学方法

面对电磁场课程学习的高难度,学习能力稍差的二本学生容易产生畏难情绪,并逐渐失去学习的兴趣。因此,具体到课堂教学方法上要特别注意因材施教,注意讲课的逻辑清晰、物理概念清楚、理论联系实际,引导学生学习的兴趣。笔者根据在美国休斯顿大学留学期间旁听Jackson教授课堂教学的理解和多年的教学经验,认为授课应注意以下几点:

(1)笔者一开始讲课就应该跟学生交代清楚本次课的讲课内容,需要解决的问题,重点问题和难点问题,并在课的最后交代下一次课的讲授内容,便于学生预习。讲课时要逻辑要清晰,条理清楚,应该将复杂的问题简单化,利于学生理解;并经常使用提问的方式,引导学生思考。

(2)电磁场这门课是数学与物理的完美结合,但是这也就意味着物理概念抽象、理论性强并且公式繁多。[6]要避免将课堂教学变成数学推导课,枯燥的数学推导只会降低学生课堂学习的兴趣。电磁场这门课的数学推导都应该是为把物理问题讲清楚而进行的,不能一味为推导而推导;一定要把数学背后的电磁原理和电磁现象讲清楚,便于学生理解和应用。

(3)一定要讲明白公式的适用条件。一些公式在不同的适用条件下其形式是不同的,或者该公式只在一定条件下适用。如果不把这些问题讲清楚,这些公式在学生的头脑中就很混乱,无所适从。如麦克斯韦第一方程的微分形式为(1)式所示。但是在学习中也会应用麦克思维第一方程的另外两种形式(2)和(3)。要分清这几个公式的适用情况,首先就要搞清楚和的概念。是传导电流密度,是位移电流密度。在静态场中,场不随时间变化,因此对时间的偏导为零,因此不存在位移电流,此时适用公式(2);在时变电磁场的无源区=0,但存在位移电流,因此适用公式(3);而在时变电磁场的有源区,同时存在传导电流和位移电流,因而适用公式(1)。这样讲解,学生对公式的使用条件就很清楚了,也便于学生理解这几个公式。

(1)

(2)

(3)

(4)将相近或易混淆内容做比较,更易于理解和记忆。如上面所讲的麦克斯韦第一方程的几种适应条件放到一起做比较。坡印廷定理瞬态形式(4)式和平均形式(5)式,放到一起做比较,更利于学生理解(4)式是瞬时值,而(5)式是一个周期T内的平均能流密度矢量。这样的比较有利于理解两个相近的概念,分清两个公式的物理意义与应用环境,并易于公式的记忆。

(4)

S平均

(5)

(5)将课本枯燥的理论知识与实际应用联系起来,以激起学生的学习热情。电磁场课程不但学习难度高,而且很多学生反映不知道学习这门课有何用处,这些问题严重打击了学生的学习兴趣。因此,在授课时要注意介绍电磁场知识在实际生活中的应用,让学生明白学习并不单单是枯燥的理论知识,这些知识都是指导实际工程的基础,解决学生为什么要学的问题。除可适当介绍电磁场在通信(手机、基站、卫星等)、探测(探地雷达,石油探测等)、定位(各种雷达)和微波医疗等的应用外,还可介绍具体知识的应用。如电磁场应用的例子之一的微波炉就应用了电磁波在导电媒质中传播的知识:一般食物的电导率σ为有限值(非零),所以电磁波在食物中传播是有耗的(电场转化为电流,电流转化为转化为热量W=Pt=I2Rt);而微波炉中不能放金属器皿是因为金属的电导率σ很大,会产生很大的电流,损坏金属器皿,甚至产生危险。通过对授课内容的拓展,可以活跃课堂教学,让学生明白电磁场知识是怎样在实际中应用的,从而激发学生的学习热情,大大提高课堂教学的效果。

三、结语

电磁场理论在电子和通信类专业中占有十分重要的地位,值得花大力气去探讨怎么学好这门课。欧美等国家在电磁场教学上有很多值得借鉴的经验,应将这些经验与二本高校的实际相结合,探讨最适合的教学道路。最后,教师应该不断提高自己的业务水平和综合素质,不断提高教学水平。

参考文献:

[1]田雨波,张贞凯.“电磁场理论”教学改革初探[J].电气电子教学学报,2008,30(1):11-13.

[2]张华美,徐立勤.“电磁场理论”课程教学的几点认识[J].科技信息,2010,(14):3.

[3]付志坚.新进本科院校“工程电磁场”教学改革初探[J].经营管理者,2013,(20):346.

[4]谢处方,饶克谨.电磁场与电磁波[M].第4版.北京:高等教育出版社,2006.

电磁波的实际应用篇(3)

【关键词】吸波材料 电磁兼容 手机 杂散辐射

1 引言

随着电子技术的飞速发展,电子产品正迅速向节能化、智能化、信息化、多系统、多功能及娱乐性等多元化方向发展。这些拥有各种个性化娱乐功能的电子产品的普及,在很大程度上丰富了人们的物质生活需要;但与此同时,也不可避免地带来了一些问题,尤其是电磁兼容(EMC)问题。电磁兼容问题的存在,往往使电子、电气设备或系统不能正常工作,性能降低,甚至受到损坏。为解决这些问题,全球各地区基本都设置了与电磁兼容相关的市场准入认证,用以保护本地区的电磁环境,如:北美的FCC、NEBC认证,欧盟的CE认证,日本的VCCEI认证,澳洲的C-TICK认证,台湾地区的BSMI认证,中国的3C认证等。

此外,由于消费类电子产品集成的功能越来越多,以手机为例,目前市场上一部智能手机,往往同时集成有GSM移动通信、蓝牙、Wi-Fi、摄像头等,另外还具有MP3、MP4等多媒体功能,这使得手机的工作频率越来越高,系统内部各个子模块之间的互相干扰也变得很突出。因此,电子产品内各子系统之间的电磁兼容设计问题也更加突出,在一定程度上增加了电子产品设计的难度。

鉴于此,如何有效地解决电子产品的电磁兼容问题,为产品赢得市场机会,成为每一个电子产品设计工程师必须予以足够重视的问题。而由于目前消费类电子产品的便携化、小巧化、多通信系统融合及智能化等趋势,使得在进行电子产品电磁兼容设计时,一些传统的设计方法无法应用,比如:使用全封闭的金属外壳,各子系统之间保证足够的距离,产品内使用屏蔽罩等。因此,必须采用一些新型的电磁兼容设计方法和材料。其中,吸波材料作为一种新型的屏蔽材料,具有“轻、薄”特征的产品已经面世,使得在手机产品的电磁兼容设计中应用吸波材料作为屏蔽材料成为可能。

2 吸波材料

2.1 介绍

所谓吸波材料,是指能够将投射到它表面的电磁波大部分吸收并转化成其他形式的能量(主要是热能)而几乎无反射的材料[1]。

对于吸波材料的研究,起初是为适应现代战争的需要――20世纪40年代,由于雷达的面世,引发了对于吸波材料的研究。1950年代,美国开始把吸波材料用于隐形飞机技术中,海湾战争F117隐形飞机的成功使用,使世界各国加大了对吸波材料研究的力度。随着技术的发展,由于在民用领域电磁兼容问题日益严重,吸波材料的应用与研究已远远超出军事应用范围,而更广泛地用于微波暗室、电磁屏蔽、降低光学器件反射、避免通讯设备干扰、建筑防辐、消除电视重影等许多方面[2]。

2.2 基本原理

设材料的介电常数和磁导率分别为εr和μr,自由空间的介电常数和磁导率分别为ε0和μ0。入射电磁波从自由空间照射在吸波材料上时(如图1),依据Maxwell方程及边界条件可知,当电磁波垂直入射时,材料界面的复反射系数为[1]:

R=(ZM-Z0)/(ZM+Z0) (1)

其中,ZM和Z0分别为吸波材料和自由空间的阻抗。

式中:εr'、μr'分别为吸波材料在电场和磁场作用下产生的极化和磁化程度的变量;εr"为在外加电场下,材料电偶矩产生重排引起损耗的量度;μr"为在外加磁场作用下,材料磁偶矩产生重排引起损耗的量度。由此可见,对介质而言,承担着电磁波吸波功能的是介电常数和磁导率的虚部εr"和μr",它们引起能量的损耗。

吸波材料对电磁波能量的吸收,可以由下式来表示[3]:

式中:

P[W/m3]:单位体积吸波材料所吸收的电磁能量;

E[V/m]:入射电磁波的电场强度;

H[A/m]:入射电磁波的磁场强度;

σ[S/m]:材料的电导率;

ω[sec-1]:电磁波的角速度,ω=2πf,f是电磁波的频率;

ε0[F/m]:真空的介电常数,8.854×10-12F/m;

εr:材料的复介电常数;

μ0[A/m]:真空的磁导率,1.2566×10-6A/m;

μr:材料的复磁导率。

为使吸波材料实现吸收电磁波的功能,首先必须能够使电磁波不反射,必须使得电磁波在材料界面的复反射系数为R=0,亦即要求ZM=Z0,即吸波材料必须满足阻抗匹配的条件。如电磁波是由自由空间入射到吸波材料,自由空间的阻抗是Z0=377Ω,那么,此时要求吸波材料的阻抗必须为ZM=Z0=377Ω。

此外,电磁波在入射到吸波材料内后,还必须能够在一定的距离内被衰减掉。电磁波在介质内传播时,其能量的衰减与传输距离x呈指数关系:Ploss=e-αx。α是吸波材料的衰减常数,可以由下式表示[4]:

α=-(μ0ε0)1/2ω(a2+b2)1/4sin[(1/2)tan-1(-a/b)] (7)

其中,a=(εr'μr'-εr"μr"),b=(εr'μr"-εr"μr')。

由式(7)可以看出,要在较短的距离内实现很大的衰减,α必须很大,也就是说,εr'、εr"、μr'及μr"必须很大。这是吸波材料实现吸收电磁波功能所必须满足的另外一个条件,即吸波材料必须满足衰减匹配。

然而,我们发现,实际上这两个条件是相互矛盾的:要满足衰减匹配的要求,εr'、εr"、μr'及μr"必须很大,而这又会导致反射系数变大。因此,在实际设计时,往往会采用多层吸波材料或阻抗渐变的吸波材料。

综上所述,吸波材料要实现吸收电磁波的功能,必须满足阻抗匹配及衰减匹配这两个条件;且在设计时,必须采用一些方法来解决阻抗匹配与衰减匹配之间的矛盾。吸波材料对电磁波的吸收能力,取决于材料的电导率、介电损耗及磁损耗,介电损耗取决于复介电常数的虚数部分,对电场起作用;而磁损耗由复磁导率的虚数部分决定,作用于磁场。因此,可以利用微波吸波材料的介电损耗来吸收电磁波的电场部分,这种类型的吸波材料称为介电型吸波材料。在使用介电型吸波材料时,如果应用在距离射频电路很近的位置,会存在导致电路短路的风险。填充物是特殊的铁及铁氧体之类的磁性材料,被称为磁性吸波材料,这些材料对于直流来说是绝缘的,因此可以以直接接触的方式应用于内部电路。

2.3 分类

吸波材料有许多分类方法,一般来讲,主要有以下几种[2]:

(1)按损耗机理,可分为介电型吸波材料和磁性吸波材料。介电型吸波材料的主要特点是具有较高的介电常数和介电损耗角,以介质的电子极化或界面衰减来吸收电磁波。磁性吸波材料损耗机理主要为铁磁共振吸收,具有较大的磁损耗角,以涡流损耗、磁滞损耗、剩余损耗衰减来吸收电磁波。

(2)按成型工艺和承载能力,可分为涂覆型和结构型。涂覆型吸波材料是具有电磁波吸收功能的涂料,其工艺简单,使用方便,因容易调节而受到重视,隐形兵器几乎都是用了涂覆型吸波材料。结构型吸波材料具有承载和吸波的双重功能,其结构形式有蜂窝状、角锥状和波纹状等。

(3)按吸收原理,可分为吸收型和干涉型。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等、相位相反进行干涉相消,如1/4波长“谐振”吸收体,这类材料的缺点是吸收频带较窄。

(4)按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的两种。

其中,如前所述,铁氧体等磁性吸波材料,由于在直流工作时具有不导电的特性,因此可以直接贴附于发出干扰的电路上,这一特性使得磁性吸波材料很适合在手机等对产品尺寸要求较高的消费类电子产品中应用。

3 吸波材料在手机电磁兼容设计中的应用

手机在工作时,会不断往外发射电磁波,最大功率可以达到2w,这对周围环境的影响是很大的。比如,在手机通话的过程中,如果与固定电话距离较近,且固定电话也在通话,那么,我们经常会在固定电话的手柄中听到“滋滋滋”的声音,非常刺耳,这就是典型的手机对固定电话的干扰现象。因此,为避免手机在工作时对周围环境的干扰,必须对手机工作时的一些不必要的辐射(spurious emission)进行限制。国际上对此有严格的限制,其中与手机相关的国际规范(3GPP TS 51.010-1 V9.0.1(2010-02))对此的规定如表1所示[5]:

在处理手机的杂散辐射时,常用的措施有滤波、屏蔽等,而在某些特殊的情形下,吸波材料的应用也是一个很好的解决办法。下文通过一个典型案例,阐述吸波材料在解决手机杂散辐射问题时的应用。

在本案例中,手机在耦合杂散辐射性能上不能满足上述规范的要求,主要的问题为:在手机各个频段反射的二次谐波处,超出限制值。测试数据如表2所示:

从上述原始数据来看,手机在各频段的二次、三次谐波点处超出了3GPP规范的要求,并且最大超出了23.53dBm。

而手机在传导测试时,各频段的二次、三次谐波性能正常,完全满足规范的要求,如表3所示:

因此,需要进一步查找其他的原因。经排查发现,手机中内置的GPS天线与该项测试有着明显的相关性:当去除GPS天线时,测试结果一切正常,能够完全满足规范要求;而在安装上GPS天线后,测试结果大大恶化。然而,在进行此项测试时,GPS部分功能是完全处于关断状态的,所以,手机在耦合状态下所测试到的二次、三次谐波处的杂散辐射,应不是由GPS天线本身辐射出来的。经仔细观察,发现GPS天线与手机天线位置相对,处于手机主板的两端,GPS天线背面有一个大的金属地平面,且与手机天线相距62mm。因此,怀疑是这块金属地平面形成了一个反射面,将手机天线发射出的电磁波反射回去,从而形成了能量的叠加,恶化了二次、三次谐波处的杂散辐射性能(如图3所示)。作为一种解决对策,在GPS天线背面的金属平面处粘贴一铁氧体吸波材料,重新进行此项测试,结果得到了很大的改善,如表4所示。

由表4可以看出,在GPS天线背面的金属平面上粘贴吸波材料后,确实起到了吸收电磁波、减少反射的作用,从而改善了耦合二次、三次谐波辐射性能。

4 总结

近年来,随着民用产品电磁兼容设计需求的不断增多,吸波材料的应用场合已经远远超出最初的军事领域,不断向民用方向发展。同时,适合于民用产品如手机的电磁兼容设计等应用的产品也不断被开发出来。从上述实例可以看出,吸波材料在解决手机产品的电磁兼容设计问题时是很有效的。随着电子产品的小型化、多功能化、数字化发展以及工作频率的不断提升,吸波材料,尤其是具有不导电性能的铁氧体吸波材料,在这些产品的电磁兼容设计方面,将可发挥越来越大的作用。

参考文献

[1]赵灵智,胡社军,等. 吸波材料的吸波原理及其研究进展[J]. 现代防御技术,2007,35(1):27-31.

[2]孟建华,杨桂琴,等. 吸波材料研究进展[J]. 磁性材料及器件,2004,35(4):11-14.

[3]Sony. 2008. Sony’s electromagnetic wave absorber reduces EMC and SAR problem[EB/OL]. /Products/SC-HP/cx_news/vol25/pdf/emcstw.pdf.

[4]Xingcun Colin Tong. Advanced Materials and Design for Electromagnetic Interference Shielding[C]. CRC Press Taylor & Francis Group, 2009:237-255.

[5]ETSI. 3GPP TS 51.010-1 V9.0.1. 3rd Generation Partnership Project;Technical Specification Group. GSM/EDGE Radio Access Network Digital Cellular Telecommunications System(Phase 2+); Mobile Station (MS) Conformance Specification; Part 1: Conformance Specification(Release 9)[EB/OL]. (2010-02)/ftp/Specs/archive/51_series/51.010-1/51010-1-901.zip.

电磁波的实际应用篇(4)

关键词:电磁辐射(EMF);电磁感应;近场;远场;非选频式宽带测量仪

中图分类号:X591文献标识码:A文章编号:1009-2374(2010)03-0107-02

一、电磁辐射(EMF)背景介绍

(一)电磁辐射(EMF)

随着技术革命的更新和不同波段新的应用的不断发现,许多频率电磁辐射(EMF)的暴露水平显著增加,生活中的每个人都处在0~300GHz频率的复合电磁场(EMF)暴露中,电磁污染(EMF)已成为最广泛的环境影响因素之一。这些电磁现象的综合,我们称之为电磁环境。电磁辐射表示能量以电磁波形式由源发射到空间的现象,这个词的含义也常常被引申,将电磁感应的现象也包括在内。

电磁噪声是比较典型的电磁污染现象,它表示明显不传送信息的时变电磁现象,可能与有用信号叠加或者组合,可能损害有用信号接收。电磁污染的主要来源有:各种输变电系统;运输系统、长途通讯设施和便携式通讯工具如移动电话;医药、商业和工业设备;雷达;电台和电视台发射天线等。

随着对电磁场(EMF)暴露会引起各种健康问题担忧的增加,1996年世界卫生组织(WHO)设立了国际电磁辐射(EMF)项目以寻求解决问题的方法,其目的是对EMF的健康危害进行正式评估总结现有资料文献和不同国家的研究成果。

由于对电磁辐射所造成的健康危害的不同理解,不同国家所制定的电磁辐射标准有很大的差异。其中,俄罗斯、中国、意大利、比利时等国家在制定标准时考虑了电磁辐射对人体的神经效应方面的影响,标准限值较严厉,美国、澳大利亚、德国等国在制定标准时采用了国际非电离协会(ICNIRP)的推荐标准,没有考虑电磁辐射对人体的神经效应方面的影响,而只是考虑已有明确研究结果的热效应,标准限值较宽松,将来仍然有进一步提高标准限值的可能。很少有国家颁布相关的法规。

(二)电磁辐射(EMF)的环境影响

电磁辐射对人类健康的影响。电磁辐射对人体的健康影响主要有两方面:躯体热效应和神经效应。根据频率的不同电磁辐射对体的影响有所不同,一般而言低频电磁辐射对人体的影响以神经效应为主,高频电磁辐射对体的影响以热效应为主。

在这方面医学上有很多研究,例如手机使用时间长了以后,头面部会发热。低频电磁辐射强度对人体的神经效应由于缺乏足够的实验支持和大量的流行病学调查研究,因此在国际标准(欧洲EN)制定时没有考虑该因素,但对标准限值的修改留出了修改的余地。

(三)电磁辐射物理原理

磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。可以想见对于100kHz以下的低频信号,如50Hz的电力传输频率,我们的测量显然是在近场区内进行的,我们需要单独测试该场的电场和磁场(在实际测量中考虑到无线电干扰的可能还需要另外测量无线电干扰),而对于如300MHz以上的微波信号,很显然测试是在远场进行的,我们只需要测定环境的电场强度。对于典型的有用信号,其波长和频率对应关系见表1:

近区场内,电场强度与磁场强度的大小没有确定的比例关系。近区场的电磁场强度比远区场大得多。近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。

在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。远区场为弱场,其电磁场强度均较小。由于我们对于磁辐射的测量按测量场所分为作业环境、特定公众暴露环境、一般公众暴露环境测量。按测量参数分为电场强度、磁场强度和电磁场功率通量密度等的测量。

(四)电磁辐射测量仪器

磁辐射的测量按测量场所分为作业环境、特定公众暴露环境、一般公众暴露环境测量。按测量参数分为电场强度、磁场强度和电磁场功率通量密度等的测量。测量仪器根据测量目的分为非选频式宽带辐射测量仪和选频式辐射测量仪。无论是非选频式宽带辐射测量仪还是选频式辐射测量仪,基本构造都是由天线(传感器)及主机系统两部分组成的,考虑到经济适用的原因,重点介绍非选频式宽带辐射测量仪,通常也称作时域场强仪,实际上,由于价格合适和操作比较简单的原因,非选频宽带辐射测量仪的应用广泛,它的优势在于操作简单价格实惠,另外它的传感器一般都是三维各向同性探头,符合了场强测量的物理特性,该仪器采用的检波方式是传统的RMS(均方根值)检波,强调了实际的功率累计效果,非常适合于电磁环境的测定。而稍显不足的地方在于,相对于应用于复杂电磁环境测量的选频式辐射测量仪来说,精度没有达到那么高的标准,另外没有办法从频域对于辐射源作一个很直观的浏览和精确的判定。

二、非选频式宽带辐射测量仪(综合场强仪)的工作原理

(一)电场探头

偶极子和检波二极管组成探头。这类仪器由三个正交的2~10cm长的偶极子天线,端接肖特基检波二极管、RC滤波器组成。检波后的直流电流经高阻传输线或光缆送入数据处理和显示电路。通常这类仪器探头响应快,动态范围大,但由于作为天线的偶极子的长度应远小于被测频率的半波长,以避免在被测频率下谐振。这一特性决定了这类仪器只能在低于几吉赫频率范围使用,不过随着仪器技术的不断发展,近几年也有厂家能将频率范围扩展到40GH频率,甚至更高范围。

(二)热电偶型探头

采取三条相互垂直的热电偶结点阵作电场测量探头,提供了和热电偶元件切线方向场强平方成正比的直流输出,待测场强与极化无关,保证了探头有极宽的频带,容易做到极高的频率,但探头响应和动态范围要相对差一些。

(三)磁场探头

磁场探头由三个相互正交环天线和二极管、RC滤波元件、高阻线组成,从而保证其全向性和频率响应。对电性能的要求使用非选频式宽带辐射测量仪实施环境监测时,为了确保环境监测的质量,应对这类仪器电性能提出基本要求:

各向同性误差≤±1dB;系统频率响应不均匀度≤±3dB;灵敏度:0.5V/m;校准精度:±0.5dB。

三、国内EMF标准

1.1996年,世界卫生组织WHO 设立了国际电磁辐射(EMF)项目以寻求解决问题的方法。1999/519/EC,1999.07.12,欧盟理事会建议,公众对电磁场的暴露限制一般来说所有的标准都根据工作性质分为公众暴露(限值相对较严格)和职业暴露(限值相对宽松),中国的电磁辐射防护规定是(GB8702-88)。基本限值在于职业照射在每天8小时工作时间内,任意连续6分钟全身比吸收率(SAR)应小于0.1w/kg;而公众照射时在每天24小时的工作时间内,任意连续6分钟按全身平均的比吸收率应小于0.02w/kg。需要指出的是到目前为止,电磁辐射防护规定的频率下限是100kHz,也就是射频的频率范围,对于工频(0.005~100kHz)的频率范围,则不作规定。关于这部分的测试,现在以我们环境保护行业标准《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998)的规定进行评定。

2.EMF不是EMC。EMF是为了保证人身安全目的,是研究电子产品发射出的电场、磁场噪声对人身的影响,重点在于考量生物安全效应。而EMC(电磁兼容)是为了保证电子产品的正常工作目的,是研究电子产品发射出的噪声对其他电子产品的影响,或者不受其他电子产品的影响。重点在于考量无线电骚扰和电磁抗扰效应。体现在具体的测试仪器上,后者一般选择是窄带测试仪,选用的检波方式也是不同于均方根检波器的准峰值和平均值检波方。

参考文献

[1]攸纲.谈高频场电磁污染[C].第二届电磁辐射与健康目标研讨会议文集,2000.

[2]中华人民共和国卫生部.工作场所物理测量-高频污染(GBZ/T189.2)[S].2007.

[3]Gandhi,0.P.“放射测量的一些数量方法:特低频率到微波频率”[J].无线电科学,1995,(30).

[4]国家环保总局.电磁辐射防护规定(GB8702-88)[S].

电磁波的实际应用篇(5)

关键词:电磁场与电磁波;优秀课;教学方法

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)15-0118-02

电磁场与电磁波是电子信息类本科各专业学生必修的一门重要的学科基础课程,所涉及的内容是电子信息类本科学生知识结构的必要组成部分,对学生专业素质的培养和提高起很大的作用。所以,2014年成功申报成为长春理工大学优秀课程。本文主要总结《电磁场与电磁波》优秀课程建设的教学经验和方法及教学手段等,分别从理论教学和实验教学两个方面对教学内容、教学方法和教学手段等进行探讨。

一、《电磁场与电磁波》教学内容的调整

1.教学大纲的调整和修订。①根据培养方案提高学生实践能力的要求,《电磁场与电磁波》在内容体系结构上做了一些调整,为此修订教学大纲,学时数由原来的理论64学时改为到理论48学时+实验8学时,使学生既能掌握基本理论又能打下应用基础,同时既突出基础性和知识体系的完整性,尽量避开繁杂的推导,注意理论与实际应用的结合,使学生易于接受。②为了加强实践环节的教学力度,增设8学时实验课程。根据实验教学大纲,编写实用的实验指导书,保证工科学生工程能力的提高。实验教学层次分明,学生实验兴趣得到提高,达到最佳实验效果。

2.课程内容体现学科前沿技术,理论与工程不脱节。《电磁场与电磁波》的前修课程是高等数学、工程数学、大学物理,是学生学习后续课程微波技术、天线、光技术、雷达技术、电气技术、电子对抗等的基础,在学科建设与发展中起着承上启下的作用。因此,本课程在专业培养目标中的定位为:承上启下,重在基础,开拓创新,引领未来。电磁场主要让学生掌握分布参数系统的主要理论、分析方法、长线理论及常用传输线,为以后从事微波电子应用技术、通信工程准备必要的理论基础。该课程理论严谨,逻辑性强,对培养学生逻辑思维能力、独立分析能力和解决问题的能力及理论联系实际的能力,都有很重要的作用。

从课程内容上,主要从理论和实验两个方面体现学科前沿:①《电磁场与电磁波》课程的工程性很强,因此教师在课堂理论教学中,经常从电子与信息科学领域、电磁科学领域取得一系列重大成就出发,将能反映近代科学技术的成就和一些对学生有重要意义的工程内容,引入课堂讲解,通过讲解例题、建立习题、精选前沿内容作为选修内容方式,将相关内容引入本门教材和教学内容中。同时,建立网络课程,加强网络资源建设,不断充实课程资源,完善网络教学,不断收集最新的科技成果补充到网络教学中。②加强《电磁场与电磁波》课程实践课和理论课的结合与渗透,培养学生解决实际问题的综合能力,理论教学与实践教学密切相关。根据实验教学的要求,保证理论教学为实践教学打好坚实的理论基础,让理论课教师参加实验教学,及时与学生沟通,了解学生掌握知识的情况与兴趣所向。与上述教学内容改革相适应,自编出版相应的实验教材《电磁场与电磁波实验指导书》,并在教学中采用。

二、教学方法改革

针对《电磁场与电磁波》课程理论性强,抽象,公式多,这种情况,我们在教学过程中对《电磁场与电磁波》课程的教学方法进行改革和探索,采用多种有利于培养学生自主学习能力和创新能力的方法,总结一些有成效的举措和经验。

1.采取小班授课,让学生积极参与。针对学院通信系大珩班的高要求,对大珩班采用小班授课,在教学过程中采用提问、讨论、测验等方式,同时给学生有在同学面前讲解习题、大量练习的机会,激发学生学习兴趣,调动学习主动性,教学效果非常明显。

2.采用隐性分层,分类指导。根据不同学生认知水平的差异,结合“以学生的发展为本”的前提,采用隐性分层法教学,遵循“因材施教”的原则,面向全体学生,为每个学生提供适合各自发展水平和接受能力的电磁场相关教学,使各层次学生学有所成,感受到学习《电磁场与电磁波》的乐趣。

3.采用实例进入课堂,提高课堂效率。对于大班授课的课堂,在课程建设过程中,加大理论课堂教学投入,把可以在课堂上演示电磁波的相关内容制成动画,把前沿科学技术制成视频带入课堂,使课堂内容直观、充实。

4.采用理论实验相结合。加强《电磁场与电磁波》课实践课和理论课相结合与渗透,培养学生解决实际问题的综合能力。理论教学与实践教学密切相关,根据实验教学的要求,保证理论教学为实践教学打好坚实的理论基础,让理论课教师参加实验教学,及时与学生沟通,了解学生掌握知识的情况与兴趣所向。

三、教学手段改革

1.电磁场与电磁波程采用全方位、立体化、多视角的教学模式,发挥教师的主导作用,确定学生的主体地位。结合“电磁场与电磁波”课程理论性强、信息量大、概念抽象等特点,采用多媒体教学方法,通过形象化的动态过程演示,根据《电磁场与电磁波》课程内容的发展修改课件,加入录像实例等,达到良好的教学效果。

2.教学过程中需要规范的板书,使课堂的条理性和层次性更加清晰,因此进一步把传统授课手段和多媒体教学等现代教育技术手段恰当地组合,扬长避短,达到理想的教学效果。

3.不断丰富网络教学资源,把相关教学课件、教案、大纲等上传到网络课程,在课后巩固环节中,要求学生自主学习,充分利用网上教学资源,进行课前预习、课后复习,真正提高教学效果。

4.完善试卷和成绩分析。根据长春理工大学《长春理工大学关于试卷评阅与归档的管理办法》,课程组要求教师明确试卷评阅教师责任,采取统一评分标准和集体流水阅卷的方式进行评卷。阅卷完成后,必须进行试卷和成绩科学、客观的分析,组织课程组教师对考试结果进行总结经验,指导教学。坚持对试卷归档,统一管理,保证试卷归档的完整性与准确性。近3年,《电磁场与电磁波》考试成绩分布基本合理,成绩单记载清楚、规范。试卷和成绩分析科学、客观,并能反馈指导教学,较好地反映学生的学习情况。

四、实验教学环节建设

电磁场与电磁波实验是理论课教学的一个重要组成部分。根据教学的基本要求以及电子学人才培养的需要,课程组整合实验课程和教学内容,形成从基础训练到系统设计的完整的实验教学体系,使学生能够在理论课学习的基础上,由浅入深地学习电磁场与电磁波的相关知识,为射频电路设计、无线通信技术、光纤通信、卫星通信等相关领域的课程学习和科研打下坚实的基础。

1.修订实验教学大纲,编写实验指导书。为了适应开放实验室的要求,实验教材既有实验理论教学内容,又有实验操作的教学内容,实验教学层次分明,既包括基本部分实验内容、设计性部分实验内容,也包括综合性部分实验内容,添加探究创新的部分内容,提高学生实验兴趣,激发创造性的思维,达到最佳的实验教学效果。

2.加强《电磁场与电磁波》课实验课和理论课的结合与渗透。根据实验教学的要求,让理论课教师参加实验教学,保证理论教学为实践教学打好坚实的理论基础,使理论教学与实践教学紧密结合,培养学生解决实际问题的综合能力。

3.利用网络资源,建立开放实验室。利用部级实验中心的优势,建立开放实验室,学生可以利用网上预约系统自主预约,进行实验。同时,根据实验教学的特点,把实验内容、实验要求、实验考核方法、仪器设备使用手册、器件数据手册等教学资源制成网络课程上传至网络,让学生自主下载学习、交流,开阔思路。

五、优秀课程教材及相关资料建设和选取

1.教材选用国家“十五”、“十一五”规划等教材。①谢处方、饶克谨,《电磁场与电磁波》(第四版),北京:高等教育出版社,2006年普通高等教育“十一五”部级规划教材。②蔡立娟、陈宇,《电磁场与电磁波实验指导书》,长春理工大学校内教材,2010年。

2.参考教材。①钟顺时,《电磁场基础》,北京:清华大学出版社,2006年,21世纪高等学校电子信息工程型规划教材;②焦其祥等,《电磁场与电磁波》,北京:科学出版社,2005年,21世纪高等院校教材;③王新稳、李萍,《微波技术与天线》,北京:电子工业出版社,2002年,21世纪高等学校电子信息类教材;④冯慈璋,《电磁场》,北京:高等教育出版社,1999年,高等学校教材。

3.为了提高学生对理论课程的理解,课程梯队提供大量的辅助教学资料。例如,制作《电磁场与电磁波》教学课件,推荐课外辅导书、指导光盘等,建立习题库等。为了促进学生自主学习,扩充知识面,学院资料室向学生全面开放。学院资料室现藏书两万余册,期刊一百余种,其中与本课程相关书籍或期刊500余种,许多参考书配有参考课件、光盘,可供学生课堂内外使用,效果良好。另外,学校网络资源丰富,学生可以充分利用网络资源和多媒体课件,收集、阅读相关知识,提高学习兴趣。

长春理工大学《电磁场与电磁波》优秀课课程组将继续在教学中不断摸索、前进,进一步提高教学质量,服务学生与社会。

参考文献:

[1]罗三桂.现代教学理念下的教学方法改革[J].中国高等教育,2009,(6):11-13.

[2]李慧,刘克平,尤文.自动化专业精品课建设的研究与实践[J].实验室研究与探索,2011,(10):306-308.

[3]蔡立娟,陈宇,杨立波.浅谈“电磁场与电磁波”课程教学改革[J].教育与职业,2010,(30):136-138.

电磁波的实际应用篇(6)

【关键词】双向振荡;单向振荡;位移电流;单链式

1.引言

从古代原始火箭的出现到现代,人类使用火箭的历史已有一千多年,用火箭把人或货物送入太空的历史则不到一百年。融入了各种先进技术的现代火箭,它的推进方式其实与古代的火箭并没有什么本质的区别。目前,人类使用的宇宙飞船需要用火箭发动机来推进,而火箭发动机需要携带大量的化学物质来作推进剂才能发射升空。火箭发动机携带的推进剂的重量往往是用火箭来发射的飞船的重量的很多倍,而推进剂占用的空间也远远地超过了飞船占用的空间。这大大地限制了飞船的大小和载荷以及飞船的航程。

设想中的核动力火箭可以缩短宇宙飞船前往火星的航行期,但核动力火箭与化学能火箭一样需要携带大量的推进剂,因此,这种火箭也无法胜任恒星系之间距离遥远的星际航行。反物质火箭更不具可行性。因为反物质火箭需要携带大量的反物质和正物质来作推进剂。且不说反物质的成本有多高,单是大量反物质的储存就无法解决,一但发生事故,大量的反物质会造成毁灭性的灭难。由此可见,人类要想跨跃恒星系,进行长距离的星际航行,就必须采用一种不同于火箭的具有革命性的推进方式。

2.量子场单向振荡推进原理

电磁波与机械波一样,传播的都是波源的振荡形式。机械振荡需要弹力来做回复力,因此机械振荡只存在双向振荡一种形式(物质周而复始地从两个相反的方向通过一个中心位置的振荡叫做双向振荡),机械波只能以双向振荡的形式在弹性介质中传播,而量子不但可以双向振荡,还可以单向振荡。

比如,电流方向不变大小呈周期性变化的振荡与量子磁场方向不变场强大小呈周期性变化的振荡等,均是单向振荡。单向振荡的电流产生单向振荡的原磁场,单向振荡的原磁场在其周围的空间中激发单向振荡的位移电流,单向振荡的位移电流在其周围的空间中激发单向振荡的量子磁场,单向振荡的量子磁场又会在其周围的空间中激发单向振荡的位移电流……单向振荡的位移电流和单向振荡的量子磁场互相激发,交替产生,形成单链式的电磁波。单链式电磁波与一般的无线电波一样具有波的共性,可以叠加,可以干涉、衍射和反射等。唯一的不同之处是:处在单链式电磁波传播方向上的任意一个点产生的感应磁场都是场强方向不变的单向振荡的,且只能对物体产生单个磁极的力学效应。

一个单向振荡的电磁波实际上就是一个磁单极量子,也称单极光子。利用单链式电磁波的物理特性,把通恒定电流的超导体放置在单链式电磁波的传播方向上,使超导体受到一个脱离了电流(即脱离了发动机系统)独立存在于空间和时间中的单向振荡的量子磁场的作用,从而获得方向不变的电磁力,推动系统前进。这就是超导量子场推进技术的原理。

3.利用波的叠加原理合成超低频单极量子场

超导量子场推进技术遇到的瓶颈是:高强度激烈变化的单极量子场会使超导体发热,失去超导性,甚至将超导体熔断。这大大地限制了量子发动机的功率和寿命,解决的办法就是将超高频单链式电磁波解调成超低频,使通恒定电流的超导体受到一个超低频单向振荡的量子磁场的作用,从而产生大小和方向都不变的电磁力,推动系统前进。

图1所示是一个磁单极解调器的原理简化图。它主要由两个一模一样的超高频高幅直流脉冲器[1]和两根一模一样的天线等构成。0时刻直流脉冲器1输出连续的超高频高幅直流脉冲,间隔T/2(T表示直流脉冲单向振荡的一个周期)秒后,直流脉冲器2输出等幅同频率的直流脉冲,使天线1和天线2产生两个时间相差T/2秒的超高频单向振荡的原磁场,从而激发出两列时间相差T/2秒的超高频单链式电磁波。两列时间相差T/2秒的超高频单链式电磁波通过两段长度相等的波导管,从两个并排在一起的发射口发射出去,让两列时间相差T/2秒的超高频单链式电磁波经过等长的路径后叠加。

在与每根天线距离相等且与天线的距离匀为波长的偶数倍的空间中产生如图2所示的两个时间相差T/2秒的超高频单向振荡的感应磁场,叠加成如图3所示的超低频单向振荡的量子磁场。将通恒定电流的超导体放置在与每根天线距离相等且与天线的距离为波长的偶数倍的两列时间相差T/2秒的超高频单链式电磁波的叠加区域,超导体就会受到一个超低频单向振荡的量子磁场的作用,产生大小和方向都不变的电磁力。因为这种由两列时间相差T/2秒的超高频单链式电磁波通过等长的路径后叠加成的磁场是脱离了电流(即脱离了发动机系统)独立存在于空间和时间中的无源场,所以,它对通恒定电流的超导体产生的电磁力属系统的外力,可推动系统前进。为了能够产生更加强大的电磁力,可用一定数量的超高频高幅直流脉冲器和天线组成两个阵列,激发出多列超高频单链式电磁波,藕合成两束超高频超高幅单链式电磁波,叠加成场强超过10万高斯的超低频单向振荡的量子磁场。大功率磁单极解调器可用来制造大推力量子发动机[2],为超导量子场推进飞船提供动力。

4.用核能和太阳能作飞船的能源

超导量子场推进飞船采用的大推力量子发动机技术极大地提高了能量的利用率。目前的化学能火箭对能量的利用率不高,化学燃料燃烧产生的能量有一大部分都作为光和热被挥霍掉了,只有一部分转化为火箭前进的动能。而大推力量子发动机让能量直接在电和磁之间转换,使能量得到了最大限度的利用。采用大推力量子发动机技术的超导量子场推进飞船无需携带任何推进剂,省下来的空间可用来加强生命保障系统和能源系统,使这些系统可以长期重复使用,以适应长距离的星际航行。超导量子场推进飞船采用核能和太阳能作为能源,解决了长期星际航行中的能源问题。核物质在宇宙中的很多星球上都有,未来的星际航行中,超导量子场推进飞船可在这些星球上补充核能。虽然太阳能远没有核能那么高度集中的能量,但它取之不尽。飞船只要在靠近太阳的区域,一边绕着太阳转,一边吸收太阳的能量以一G(地球表面的重力加速度)的加速度不间断地加速,经过大约一年的加速期后,飞船的速度就会增加到接近光速,这时,再调整航向朝目的地所在的恒星系飞去,然后吸收那里的太阳的能量来减速,接着再朝目的地飞去。因为这种飞行方式就好像从一个恒星系跃迁到另一个恒星系中似的,所以叫做星际跃迁。

5.发展前景

从蒸汽机到内燃机,再到喷气式飞机的出现,推进技术的每一次革命都会给人类社会带来翻天覆地的变化。超导量子场推进飞船的诞生,必将引发一场宇航技术革命,把人类从近太空时代推进到星际时代,对人类文明产生深远的影响。

参考文献

电磁波的实际应用篇(7)

【关键词】电磁辐射暴露限值标准测量

一、电磁辐射暴露相关概念和术语

1.基本限值和导出限值

科学实验表明,过量的电磁照射对人体有一定的伤害作用,许多国际的、国家的文件都规定了电磁暴露的人体安全限值。虽然这些文件在具体规定上有所不同,但大多数文件都使用了相同的方法:即用基本限值和导出限值给出电磁辐射限值。

基本限值是指判定人体对电磁场产生生理反应的基本量。基本限值适用于身体存在场中的情形。人体暴露的基本限值通常以比吸收率(Specific Absorption Rate,SAR)来表示。

导出限值是指可以产生与基本限值相应的电场、磁场和功率密度的值。由于基本量很难测出,大多数文件给出了电场、磁场和功率密度的导出(参考)限值。

2.环境电磁波辐射强度分级

以电磁波辐射强度及其频段特性对人体可能引起潜在性不良影响的阈下值为界,环境电磁波允许辐射强度在卫生部标准中按级分为一级和二级。在环保局GB8702-88中和军用领域,电磁辐射暴露安全标准则分别以职业照射和公众照射,作业区和生活区进行界定。一级为安全区,指在该环境电磁波强度下长期居住、工作、生活的一切人群(包括婴儿、孕妇和老弱病残者),均不会受到任何有害影响的区域;新建、改建或扩建电台、电视台和雷达站等发射天线,在其居民覆盖区内,必须符合“一级标准”的要求。二级为中间区,指在该环境电磁波强度下长期居住、工作和生活的一切人群(包括婴儿、孕妇和老弱病残者)可能引起潜在性不良反应的区域;在此区内可建造工厂和机关,但不允许建造居民住宅、学较、医院和疗养院,已建造的必须采取适当的防护措施。超过二级标准地区,对人体可带来有害影响,此区内可作绿化带或种植农作物,但禁止建造居民住宅及人群经常活动的一切公共设施,如机关、工厂、商店和影剧院;如在此区内已有这些建筑,则应采取措施,或限制辐射时间。二、电磁辐射标准国际上,在电磁辐射安全领域有两大主流标准,一个是ICNIRP标准,即国际非电离辐射防护委员会(The International Commission for Non-Ionizing Radiation Protection,ICNIRP)的标准,另一个标准是美国的IEEE标准。

在世界卫生组织等组织的推动下,IEEE标准的限值今后将统一到欧标(ICNIRP)的限值上。

在我国,由不同部门制定的多部电磁辐射国家标准同时并存。在民用领域主要有:

GB8702-88《电磁辐射防护规定》;

GB9715-88《环境电磁波卫生标准》;

GB12638-90《微波和超短波通信设备辐射安全要求》;

GB10436-89《作业场所微波辐射卫生标准》;

GB10437-89《作业场所超高频辐射卫生标准》;GB16203~96《作业场所工频电场卫生标准》等。

在军用电磁辐射防护领域,与电磁辐射相关的国家标准比较典型的有:

GJB5313-2004《电磁辐射暴露限值和测量方法》;

GJB1450-92《舰船总体射频危害电磁场强测量方法》;

GJB1446.40-92《舰船系统界面要求电磁环境电磁辐射对人员和燃油的危害》等。

目前,环保局执法一般按照GB8702-88来进行,其在30MHz~3GHz之间的公众导出限值为40mW/cm2。但是,国标委关于手机电磁辐射的标准采用了欧标限值(SAR限值为2.0W/kg)。

表1为一些组织和国家在移动通信频段的公众照射标准比较。

二、环境电磁辐射测量

1、测量方式

在调查辐射源周围环境电磁波辐射强度及其分布规律时,常以辐射源为中心,采用在不同方位取点的方式进行测量,简称点测。点测时以辐射源为中心,将待测区按一定角度划线,呈扇形展开,按一定距离选点测量。

全面调查某地区环境电磁波的背景值及按人口调查居民人群所受辐射强度的测量简称面测。面测量时,将待测地区(城市)按人口统计划分若干小区,并标明各小区居民中心地理坐标,从中选择若干有代表性的小区作为监测点,进行自动测量和实时处理,经过加权处理后,求出该地区(城市)居民环境电磁波暴露强度值。

2、测量仪器

在对辐射源周围测量和作业区进行测量时,测量仪器一般选用宽带辐射测量仪,包括具有各向同性响应或有方向性磁场探头/电场探头的宽频带电场、磁场设备。在对区域性背景场强和生活区进行测量时,一般选用窄带辐射测量仪,通常采用宽频带天线、频谱分析仪和计算机配套的自动测量系统。

三、国内电磁辐射暴露安全标准和测量的不足

由于环境电磁场的复杂性,国内外在电磁辐射安全标准上尚存在较大争议。就国内而言,相关标准的制定,对推动我国电磁防护设计、保障公众健康、控制电磁辐射水平起到了积极作用,但在实际使用中也逐渐暴露出一些明显不足,具体表现在:

1、标准分散,不统一。无论是军、民标,多个相关的国家标准同时并存,归口管理部门分散,即不利于选用,也不便于统一执法。

2、各标准规定宽严不一。以军标100MHz为例,不同标准电磁辐射暴露限值规定各异,宽严不一,缺乏必要的说明和协调,见表2。

3、量值不统一。各标准中电场强度、磁场强度、功率密度、暴露剂量、V/m、W/m2、W.h/m2、mW/cm2、A/m等同时并存,转换关系复杂,使用起来极不方便。

4、测试频率覆盖不够,不能反映实际情况。无论是军标还是民标,国内现有标准均仅关注了部分频段/频点,远远不能适应现代电子、通信技术的迅猛发展。图1为实测条件下的环境电平。

四、结束语

随着科学技术的发展,各种电子、电气设备在极大地丰富和提高了人们的物质、精神生活的同时,也带来了复杂、严重的电磁污染。加强电磁环境监控,延伸测试频段,加大对不同频率及不同幅照量电磁波对人生理影响基础研究,尤其是累计效应研究,强化归口管理,促成一部科学、安全、具有强制约束力的电磁辐射暴露限值标准任重而道远。

参考文献

[1]《超特高压环境电磁场测量、计算和生态效应》何为等

[2]《高压变电站对周围环境的影响与评估》宋福祥等