期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 区块链与网络安全

区块链与网络安全精品(七篇)

时间:2024-03-11 15:56:05

区块链与网络安全

区块链与网络安全篇(1)

关键词:区块链有线电视网络实际应用

一、区块链的特点

区块链是一种去中心化的、不可篡改的、可信的分布式账本,它提供了一套安全、稳定、透明、可审计且高效的记录交易以及数据信息交互的方式,其特点如下:去中心化。区块链使用的是分布式核算和储存,并没有中心化的硬件或者管理机构。在区块链中,每一个节点都是均等的,所有节点也都是遵守同一个算法的,区块链的信息源并不是事先指定好的,而是通过竞争选择出来的。然而,区块链不能直接带来绝对的去中心化,只能作为去中心化的工具,在某些场景中,例如银行等金融系统,在机构之间使用去中心化的账本使多个机构共同运行和检验,以防止欺诈;还有第三方平台如支付宝、微信、滴滴等。另外,在电动车、智能电网等能源领域区块链的出现也恰逢其时。开放性。在区块链系统中,所有的产业都是一个开放式的市场,任何人都能参与进来,一个公共区块链可以让所有参与的成员共享,所有的信任都靠去中心化的协议来维护,这也使得传统行业、供应商、银行之间的关系更加自动化和开放化,例如美国区块链公司Circle可以让用户快速给国外亲人转账,对方也可快速提取所在国家的货币。可信任。区块链使原先的信任“人”变成信任机器,信息一旦经过验证、添加,就将永远储存,并且数据由全部节点共同维护,更新也是同步的,数据也会更加稳定和可靠,以此加强双方的信任度。信息不可篡改。区块链系统采取的是非对称加密与Hash算法以及完全冗余的策略,每个区块共享相同的数据,修改一个区块就要牵动所有的区块,破解所有节点的打包密钥一般是无法做到的。以蚂蚁金服公益为例,运用区块链技术后,每一笔捐款进入公益账户之后都可以继续追踪下去,保证数据的真实性。

二、有线电视发展的困局

用户被其他渠道分流。随着电信运营商和互联网视频企业的加入,IPTV和OTT用户规模在急速提升,接收渠道的多元化分流了大量有线电视用户,有线电视的用户在不断流失。首先,用户流失无法避免地造成收益减少、业绩下滑;其次,有线电视网络在社会中的地位也会受到影响,原先一直作为党和政府的主要宣传途径,IPTV和OTT发展将会获得政府及宣传部门的更多关注;最后,除了有线电视的收费下降,用户流失也将影响到后续电视、宽带等方面的消费。用户流失已然对有线电视网络的运营状况产生了巨大影响,有线电视网络要积极应对,保住自身用户,增加用户黏性,防止用户流失。经营管理模式受到威胁。电视传播业拥有专业的节目制作资源,观众反而被互联网抢走很多,可以说是电视网输给了互联网。首先,在互联网为主的传播生态下,有线电视的经营管理模式受到威胁,主要表现在生产内容的不够多元化,无法满足广大网民的复杂需求;其次,基于优质内容的营销策略无法精准地吸引足够的用户注意力,网络传播的广告价值没有得到充分利用;最后,缺少一定的技术基础作为支撑,传统的内容呈现方式对用户已经黯然失色。有线电视网络要变革经营管理模式,重心应放在学习前沿技术、业务结构调整和内容产品营销上。知识产权侵权严重。互联网时代,知识产权越来越受到重视。很多有线电视的知识信息类产品在互联网上遭到“克隆”,无形资产价值也被一些人所觊觎,不仅无法从盗版者那里得到版权费,原本自身的用户也被分流,网络传播的知识产权经营和版权保护成为有线电视亟待解决的问题。而凭借现在的技术水平,维护版权安全的效率很低,成本却较高。交易方式有待优化。目前,有线电视缴费用户也在不断减少,这和有线电视网络的收入结构和交易方式有很大关系。长期以来,有线电视收入的增长主要靠用户数量的增加,用户数量减少便使收入增长出现乏力。另外,在竞争激烈的市场环境下,用户随机性和碎片化消费越来越多,不愿意被按月付费、按年付费等套餐模式捆绑,对“即用即付”的交易方式需求增加。物联网信息安全存在缺陷。在CCBN2019大会上,国家广电总局科技委副主任杜百川提到:“物联网是智慧广电建设的基础。”但目前的物联网领域仍然在采用中心化的服务架构,所有的用户数据都由中央服务器存储和转发,在传输过程中极易遭到DDoS攻击、数据篡改和泄露、流量劫持、中间人攻击等,造成信息安全问题,这使得物联网建设和维护成本大大增加。智慧城市建设不够深入。首先,在推进城市化发展的进程中,基于物联网技术的“智慧城市”,希望通过新的信息技术实现人与物之间更为深入的连接,这是一项重大的技术进步,将会极大地便利人们的生活。如今,有线电视网络运营商也在积极进行智慧城市建设的探索,而作为评价标准的“智慧”指标却只反映了城市较为初级的智慧形式,体现的是人与物、人与城市空间最为浅层平面的关联,而无法展示人与物、人与空间的多面立体关系。其次,现在的“智慧城市”中所流淌的信息,是通信、工程层面上的信息,缺少了社会与文化的信息,这就剥离了意义、失却了人性的温度。

三、区块链技术在有线电视网络中的应用

区块链技术具有无限的潜力,“区块链+”产业不断推进,在各领域的应用也逐渐落地,区块链已从原有的金融、医疗、教育、零售等领域拓展到传媒行业。例如,美国Civil平台对区块链技术与传媒行业进行融合实践,美国电信巨头Com-cast也计划于2019年将其区块链计划Blockgraph投入商用。有线电视在互联网的冲击下遇到很多困境,区块链技术的应用虽不能一一解决,但在降低运营成本、提高业务竞争力、保护网络信息安全等方面可以发挥较大的作用。区块链网络夺回渠道主导权。互联网抢走了有线电视的渠道优势,使有线电视用户不断流失,这是有线电视处于困境中的主要原因。电视网和互联网之间存在较大差距,如果能够把有线电视的电视网升级成满足区块链使用的基础网络,改变集中式的服务架构,省去中央服务器的传输环节,通过共享的网络节点实现分布式信息传输,那么将会减少有线电视对互联网的依赖性,减轻渠道分流,还可以盘活现有资产,实现增值最大化。内容生产多元化,营销精准化。各种互联网短视频让人们应接不暇,极富创造力的UGC更能看出用户的多样化需求。区块链技术的去中心化模式也被称为“点对点架构(Peer-to-Peer,P2P)”,能够实现点对点交易。有线电视网络可以运用区块链技术去中心化的优势,协同用户生产多样化视频并提供对应的传播服务,基于各区块储存的数据展开对用户的精准营销。在此过程中,利用不同形式的传播技术,内容生产方式多样化也足够抓住用户的眼球。美国Civil作为采用读者驱动式的新闻生产模式的新闻出版发行平台,就是采用了区块链技术,能更加精准的满足用户需求。节目版权安全有保障。网络版权侵权现象普遍存在,并且具有保护难、举证难、维权难的特点。有线电视网络则可以建立数字资产版权平台,申请时间戳记录保护,既可以简化版权登记流程,又可以宣示作品主权,作为维权举证的重要利器,如大芬油画村就申请了时间戳保护版权。利用区块链技术把版权登记的申请人、时间、内容这三个重要因素加密上传,形成版权信息唯一的区块链ID,能够保护原创作者的作品永久有效,无法更改。我国首个把区块链技术应用于版权行业的应用平台———“原本”,为每件作品产生一个“原本DNA”,为版权保驾护航。“即用即付”交易更灵活。有线电视网络可以运用区块链技术优化原先按月付费、按年付费等模式,把区块链技术与移动支付结合起来,能够打造更加安全、高效、灵活的转账方式。区块链系统的交易基础是防篡改的加密账本,其加密特性能够解决传统信用卡盗刷问题;建立数据存储系统,系统则能快速识别用户信息,无需人工操作即可转账,提高工作效率;“即用即付”也可以满足用户视频点播、在线游戏等内容的灵活支付需求。加密系统提高物联网可靠性。采用中心化服务架构的物联网缺乏设备间的信任机制,黑客控制物联网中心也就控制了整个物联网。区块链分布式的网络结构能够为广播电视物联网提供一种信任机制,使设备之间不需要与中心进行核对,能够组成分散式账本,并运用加密和计算能力验证区块是否符合智能合约的要求。这样,即使一个或多个节点被破坏,也不会影响整个网络体系的数据,从而保证数据的安全性。区块链技术助力智慧城市。当今,有线电视网络运营商也都在积极进行智慧城市建设,希望将智慧社区、智慧城市的触角触及每一位市民,实现真正的“可沟通性”城市。区块链技术对数据的透明性和可审计性将会助力智慧城市的“下沉”式延伸。比如,华为技术有限公司曾在文章《区块链在移动网络中的应用》谈到,区块链在高速公路自动收费、检测环境实时状况等方面推动智慧城市的建设。区块链技术在智慧城市的建设中能够关联城市生活的各个方面,以更综合、包容的方式理解和规范城市,更加充满人情味、更加符合城市的本质。除此之外,区块链还可以应用于有线无线双向网,满足交互需求以及身份技术认证管理等方面。

区块链与网络安全篇(2)

今年2月初美国监管部门告知谷歌,根据美国联邦法律,谷歌无人驾驶汽车可以被视为司机。这一标志性事件可能引发一系列蝴蝶效应,例如智能设备替代人工、车载网络和物联网应用爆发。而笔者最关注的是:无人驾驶汽车商业化后将对支付和金融所产生的关联影响。这就必须要提到另一片“蝴蝶翅膀”――区块链。

通过区块链建立基础协议,让诸如无人汽车、智能手表、智能手机这些智能设备将通过协议和自动化程序进行服务和金融支付,这就是区块链2.0所提倡的智能合约的应用场景之一。“智能合约”能够自动检测是否具备生效的各种环境,一旦满足了预先设定的程序,合同会得到自动处理,比如接送乘客到达目的地,自动扣款、积分、记录等。

当畅想上述区块链应用时,一方面不要忽略这些新事物的发展速度,另一方面也要加强相关互联网基础设施层面的推动。

2016年2月3日,中关村区块链产业联盟在京成立。这是国内首个以在全国开展区块链相关网络技术、专利、应用和协议标准体系的研究,争取在下一代网络空间基础设施建设、互联网金融、内容服务、数据交易、物联网、信息安全等领域开展创新应用的产业联盟。来自中央网信办、工信部、科技部、公安部、国家知识产权局、中国科学院、中关村管委会、清华大学、北京大学、北京邮电大学、中国互联网信息中心、国家互联网应急中心、中国通信学会、中国云体系联盟、中国信息通信研究院、中关村安全评测联盟等部门的领导嘉宾、专家学者和业界代表,出席了联盟成立大会。发起单位代表共同启动中关村区块链产业联盟揭牌仪式。

弥补当今网络基础设施的缺陷

区块链是一个开放式自治账簿应用体系。区块链应用体系降低了全球"信用"的建立成本,通过点对点的验证将产生一种“基础协议”。区块链要解决的就是资金和数字化资产在互联网上交换与转移,其所触及的领域是商业最本质的内容:信任、争议、仲裁、合约。

比特币是区块链应用体系在数字货币领域的一个成功应用案例,验证了区块链的有效性。而数字货币只是区块链的应用领域之一,区块链是价值网络空间的核心基础设施,无论是物联网、金融、智能设备、医疗、教学、档案、司法、版权,甚至家庭娱乐,区块链都能够发挥核心价值。从这个角度来看,区块链是上述多个应用领域的基础,而区块链又会对现有互联网的基础协议和基础设施带来巨大影响。例如,TCP/IP的协议就需要改良和增强,并由此牵动诸如加密和分布式网络设备、存储设备、通信设备的改变;此外,计算机的芯片也面临着加密与算法交易的改变,即芯片内需要增添加加密、解密的新模块以适应区块链对加密算法的计算需要。

“区块链打开了互联网发展更大的空间,与互联网的软件、硬件、网络等基础设施层面都会发生重大的变化,相关的制度、标准、法规的研究和制定需要提前着手,中关村区块链产业联盟将从未来互联网基础设施的建立和完善的角度来展开工作。” 中关村区块链产业联盟秘书长、世纪互联创新研究院院长、金融业资深专家黎江表示。

回顾现有的互联网历史,互联网实现了信息传播与分享的解放,是信息的去中心化,但并没有解决财富与价值在互联网上的交换与转移。当今信息内容在互联网最大的问题是无法确权和客户隐私保护,简单地说就是对于互联网上信息内容的相关产权保护是缺失的。由此而来的大量问题,如山寨盗版、随意复制等。

如果说现有的互联网己解决信息传播与分享的瓶颈,那么区块链要解决的就是资金、合约和数字化资产在互联网上交换、交易与转移的难题,即使资金转移者并不认识、没有信任也没关系。在区块链的世界里,人们可以像发微信、微博一样把资金和数字化资产转移到世界的各个角落。

所以说,回到本文开始讨论的无人驾驶汽车与区块链,要想形成商业化应用,目前需要对物联网相关的传感器、网络、软件接口等进行改造,让软件、硬件设备支持区块链的机制,才能支持诸如智能合约、价值转移、智能资产等复杂的商业活动。而改造过程需要制度和标准的大量准备。当智能设备和区块链这两个翅膀同时扇动,才能产生加速、形成各个应用领域的飓风。

互联网话语权

据介绍,中关村区块链产业联盟引入了企业、政府、研究机构、高校、标准化机构等不同类型的参与单位,将在产业研究、政策建议、网络协议标准、专利体系、创业孵化、创新应用、国际合作方面开展积极探索。

从区块链的重要性而言,它确实是全社会层面的关键基础设施,就像互联网对商业规则产生巨大变革,区块链将对现有的商业规则进行更加深刻的变革。所以,中关村区块链产业联盟在上面提及领域的探索是非常有益的。

目前,中国无疑是互联网大国,但仅限于应用规模大,话语权与大国地位不相称。区块链其实带来了机会,对中国来说也是一次弯道超车的机会。如果对区块链这轮机会没有足够的重视,依然会被国外甩出千里之遥。

“现在,国外的大机构已经在制定区块链的规则和标准,但中国机构并没有被邀请进入圈子。上世纪互联网规则制定时,中国还刚刚开放,现在已经加入WTO多年,不能再次沦为跟随者,始终处在产业链的低端。互联网驱动了商业浪潮,区块链同样也将带来巨大的商业变革,如果不能及早、主动地参与规则和标准其中,将非常遗憾!”黎江谈到。

区块链与网络安全篇(3)

关键词:隐私保护;信息通信;区块链;车载自组网;椭圆曲线签名

中图分类号:TP309文献标识码:A

1引言

车载自组网是一种特殊的自组织网络,可以看作是移动自组网(MobileAd-hocNetworks,MANET)的子集,与移动自组网不同的是车载自组网中的通信节点是车辆。车载自组网的主要思想是车辆通过传感器等器件感知所在环境中信息,然后车辆将信息发送给网络中的其它车辆节点和基础设施等,使得信息在车载自组织网络实现信息共享。车载自组网是一个点对点网络,车辆既可以作为信息的发送方,也可以作为信息的接收方。车载自组网具有无中心、多跳路由、网络拓扑结构变化快、网络容量有限、自治性、可扩展性等特点。

车载自组网的特性及应用决定车载自组网络中的车辆之间以及车辆与路边基础设施需要进行频繁信息通信,从而实现车载自组网的信息共享和智能服务。在车载自组网频繁进行信息通信过程中,攻击车辆可以截获通信消息,通过分析截获的消息分析出车辆的身份、行驶目的地等信息,造成车辆用户隐私泄露,严重的可能会威胁人身安全。此外,通过分析截获消息攻击车辆可以分析出用户的喜好,在车载自组网中投放恶意广告推销产品;攻击车辆也可以通过恶意修改截获消息,导致通信双方获得错误的消息。但是如果多辆攻击车辆加入到车载自网中,则可以通过诱导非攻击车辆的行驶轨迹,造成车载自组网道路拥堵、交通事故等后果。因此,车载自组织网络的部署是一把双刃剑,给人们生活带来便捷、舒适感的同时,也可能会导致车辆用户身份信息、位置信息、个人喜好信息等隐私信息,受到威胁、车载自组网服务瘫痪等危害。因此,寻找有效的方案解决车载自组网中信息通信隐私保护问题,能够保证车辆用户的个人隐私以及人身安全,使得车载自组网安全、稳定、高效地运行。

为了解决车载自组网中信息通信隐私保护问题,国内外学者已经进行了大量的研究。文献[1]提出了一个基于身份的车载自组网用戶隐私安全系统,基于身份的加密系统有助于提高通信和存储效率,通过假名技术、阈值签名和基于阈值认证的防御方案来实现车载自组网的隐私保护。文献[2]提出了一种有效的在社交点改变假名的策略,实现车载自组网中位置隐私的保护。文献[3]提出了在车载云广告传播过程中实现安全和隐私保护方案,该方案中在保留响应车辆的识别和配置隐私的条件下,利用有效的单属性访问控制协议来识别有能力传播广告任务的车辆,同时采用隐私保护秘密共享方案确认所选车辆的参与。文献[4]提出了基于驾驶员个人社交行为的隐私保护数据转发协议,实现了车载自组织网络中驾驶员的高可靠性传输和隐私保护。

本文针对车载自组网中的隐私保护问题,提出的解决方案包括两方面:一方面是车载自组网信息通信过程中车辆身份的隐私保护;另一方面是车载自组网信息通信过程中通信消息的隐私保护。通过实验结果及分析,可实现车载自组网信息通信的隐私保护并将车辆存储私钥、公钥的存储开销和追溯通信消息的时间开销均降低到常数级。

2车载自组网

2.1车载自组网系统架构

车载自组网的系统架构可以分为三层:车辆网络层、基础设施层、云端网络层。如图1所示为车载自组网系统架构示意图。

车辆网络层由各种车辆组成,每个车辆上都安装了车载通信单元(OnBoardUnit,OBU),车载通信单元不仅可以用于车辆之间进行通信,而且还可以用于处理车辆从各种传感器收集来的数据。车辆之间通信采用专用短程通信(DedicatedShort-RangeCommunications,DSRC),其中包括IEEE802.11等无线通信标准。虽然车辆网络层通过车辆之间通信可以提供有效的信息传输,但是处理车载自组网中的某些问题需要车辆与基础设施进行通信、车辆之间通信。这两种通信方式增加了车载自组织网络部署的灵活性,通过高速基础设施骨干网络路由数据,而不是纯粹在车辆网络层上处理数据,可以更好地实现长距离多跳车辆之间通信的严格延时要求。车辆网络层的车辆通过分层的网络协议、分布式算法等相互协调,实现车辆自动组织以及车辆网络自动运行。车辆网络层有四个特点。

(1)无中心。网络中的节点具有相同的地位,不仅可以作为信息的接收方也可以作为信息的发送方,不需要设置中心控制节点,即点对点网络。节点可以随时加入或离开网络,且网络中某一节点出现故障时,不会影响整个网络的正常运行,具有很强的抗击毁性。

(2)自组织性。节点不依赖于网络的布局和设施,通过分层协议、分布式算法和各自的行为等,快速、自动地组成一个独立的网络。

(3)多跳路由进行通信。网络中的普通节点可以通过多跳转发的方式,实现节点之间的通信。

(4)动态拓扑快速变化。网络中的节点快速移动、节点加入网络或者退出网络以及某个节点出现故障等情况,造成网络中节点拓扑结构无时无刻都在快速变化。

基础设施层主要有路边单元(RemoteSubscriberUnit,RSU),路边单元是车辆网络层和基础设施层之间的网关。基础设施层的每个路边单元均有自己的管理区域,路边单元负责所涵盖地理区域内的车辆的管理和维修。网络层负责车载自组网中数据的存储,同时为车辆用户提供服务。

云端网络层主要由多个服务器组成,用于存储车载自组网中共享信息、为车辆网络层和基础设施层提供服务等。

2.2车载自组网信息通信隐私保护目标

实现车载自组网中信息通信隐私保护,可以为车辆营造一个安全的网络环境,提高人们出行效率。针对车载自组网的系统架构特点,车载自组网中信息通信隐私保护应达到的安全目标包括七个方面。

(1)通信消息的机密性。在车载自组网中,通信消息中往往会包含车辆用户的身份信息、位置信息等敏感信息,这些敏感信息被第三方获取会给车辆用户带来麻烦。保证消息的机密性就是只有通信双方知道通信消息,任何第三方对通信消息一无所知,即使截获通信消息,也无法获取通信消息的内容。

(2)通信消息的可用性。车载自组网中的车辆节点的拓扑结构不断进行变化,车载自组网中的通信消息具有实时性。这就要求车载自组网中的车辆节点和基础设施对通信节点的传输具有高度的敏感性,保证通信消息在一定时间内完成消息验证、车辆节点的身份验证等并到达目的节点。

(3)通信消息的完整性。在车载自组网中,保证通信消息的正确性和完整性是车载自织网中通信的首要前提。车载自组网通信双方进行消息传递时,通信有可能被未授权的第三方修改,造成接收方收到错误的消息。保证消息的完整性就是保证通信消息在传递过程中不被未授权的第三方修改。

(4)通信消息的可追溯性。消息的可追溯性是指车辆节点要对自己发送的消息负责任,当消息出现错误时可以找到是谁发送的消息。车载自组网通信过程中发现攻击车辆发送错误的通信消息,可以根据某些信息查找到此辆车。消息的可追溯性保证车载自组网中的车辆按照规定文明驾驶,促进了车载自组网安全有序地运行。

(5)车辆用户的个人隐私。车载自组网的目标是通过车辆之间通信以及车辆和基础设施之间通信实现信息共享,使得车辆用户能够得到更加便捷、增加人们出行的效率。实现车載自组网目标首先要保证车辆用户的个人安全和个人隐私,否则车载自组网的部署是毫无意义的。

(6)车辆管理中心的可撤销性。当车载自组网中的车辆用户出现恶意行为时,车辆管理中心可以查找到是哪个车辆用户实施的恶意行为,车辆管理中心有权撤销车辆用户在车载自组网中的合法身份。

(7)访问控制。车载自组网可以为车辆用户提供路况信息、智能家居等服务,车辆用户也可以为车载自组网提供路况信息等。此外,车载自组网中的车辆包括警车、急救车、公交车以及私家车等不同车辆,不同车辆对于服务的需求和提供服务的类别是不一样的。因此,可以对车载自组网中的车辆节点进行分类,为其分配不同的权限,避免非法用户访问范围以外的资源。

3区块链系统架构及特点

3.1区块链系统架构

区块链发展到3.0阶段,可以把区块链系统看成一个五层结构,如图2所示为区块链系统架构示意图。区块链系统架构包括网络层、共识层、数据层、合约层以及应用层。网络层封装了组网机制、数据的传播和校验机制等,区块链网络一般为点对点网络;共识层封装了可插拔的多种共识算法;数据层将底层数据以区块链的形式进行存储;合约层对不同的脚本、算法、智能合约等进行封装,实现了区块链系统的可编程特性;应用层封装了区块链适用的场景,包括可编程货币、可编程金融、可编程社会等。

区块结构[5,6]是由散列指针构造的一系列块中的链接列表。每个区块包含一系列事务数据,且通过密码学知识确保每个区块中的事务不会被篡改。如图3所示为区块结构示意图。区块链系统数据层区块链的区块结构由区块头和区块体两部分,区块体存储了每笔交易两两进行哈希运算的哈希值,最后形成Merkle根存储在区块头中。区块头还包括版本号、时间戳、难度系数、随机数以及前一个区块的Merkel根组成。版本号用于软件的更新;时间戳表示区块生成时间,时间戳能够保证区块按照时间有序地形成区块链;难度系数表示生成区块的难度;随机数表示生成区块时解决的数学难题的解;通过区块头中存储前一个区块的Merkle根形成区块链。

3.2区块链系统架构特点

区块链架构整合了分布式存储、分布式共识算法、密码学技术等技术,为企业提供了一种透明的、可信的商业逻辑框架。区块链架构能够保证数据的安全,同时能够简化企业交易流程、节约交易费用。区块链的架构特点有七个。

(1)去中心化。区块链系统采用点对点的网络模式,系统中每个节点具有相同的地位,没有中心化的管理机构。区块链中每个区块的形成需要满足区块链系统中节点之间的共识机制,否则,数据不能打包成区块。区块链系统中的所有节点共同维护区块链系统的正常运行,当区块链系统中某个节点出现故障时,由于区块链系统的共识机制能够容忍部分节点出现故障,因此,区块链系统仍然可以正常运行。

(2)去信任。区块链系统中节点之间的交易、数据交换等操作通过数字签名,因此节点之间不需要互相信任就可以进行交易、数据交换等操作,且在区块链系统正常运行的条件下,节点之间不可能有欺骗行为。

(3)开放性。区块链系统是一个开放的系统,除节点的私有信息被加密外,区块链系统中所有数据均是公开的,任何节点均可查询区块链中的数据,整个区块链系统处于高度透明的状态,此外,区块链系统中节点可以随时加入或者退出区块链网络,不会影响区块链系统的正常运行。

(4)匿名性。区块链系统中采用密码学方法实现节点之间交换数据等操作,不需要公开节点的真实身份就可以实现节点之间交换数据等操作。此外,由于区块链系统节点之间通过地址交换数据,地址时通过密码学处理过的数据,能够实现隐私保护,因此交易双方以外的节点获得此次记录也无法知道交易双方的真实身份。

(5)自治性。区块链系统中节点通过透明公开的规范和共识算法存储相同的区块链,使得节点可以在双方不信任条件下进行数据的交换、交易等,任何人为的干预都会被区块链系统中节点发现。

(6)不可篡改性。区块链系统中某个节点将数据打包进区块需要区块链系统中其它节点的验证,验证通过后才能形成区块,添加到区块链上。由于区块链形成时每个区块的区块头中均存储前一个区块的Merkle根,故存储在区块中的数据很难被修改,一旦区块中的某个数据被修改,Merkle根将发生改变,区块链系统中其它节点发现数据被篡改。

(7)可追溯性。区块链账本在区块链网络中是公开的,任何人都可以查阅区块链账本的任何内容,且区块链账本具有不可篡改性保证区块链账本中的交易正确,因此可以通过查阅区块链账本寻找某笔交易是否存在,实现了某笔交易的可追溯性。

4车载自组网信息通信隐私保护

4.1车载自组网信息通信车辆身份隐私保护

车载自组网中车辆之间以及车辆与路边基础设施之间进行频繁的信息通信过程中很容易泄露车辆的身份,车辆的身份一旦泄露,车载自组网中的攻击者会根据车辆的身份关联到车辆的个人隐私信息[7],例如身份证号、车辆用户家庭情况等,攻击者就可以伪装成车辆进行一些非法行为,还有可能对车辆进行敲诈勒索。在车载自组网信息通信过程中保证车辆的身份隐私是车载自组网部署的首要前提。为了保护信息通信中车辆身份不被泄露采用假名的方式[8],如图4所示为车辆产生假名的过程,如表1所示为本文用到的符号变量列表。

(1)车辆Vehicle选定一条椭圆曲线Ep(a,b),并取椭圆曲线上的一个阶为n(n为素数)点G(x,y)作为基点;车辆Vehicle利用随机数生成器产生一个[1,n-1]之间32bytes的随机数作为车辆Vehicle的私钥SKv。

(2)车辆Vehicle根据公式(4-1)计算车辆的公钥PKv;

(3)根据公钥64bytes的PKv产生车辆Vehicle的假名IDv的过程:将公钥PKv依次进行SHA256和RIPEMD160两次哈希算法产生20bytes的摘要,然后在摘要首部添加1byte的版本号前缀,在摘要末尾添加4bytes的校驗和组成25bytes的二进制车辆假名;校验和的产生过程:20bytes的摘要经过两次SHA256得到32bytes的摘要,取前4bytes作为校验和;25bytes的二进制车辆假名,通过Base58格式转换生成34bytes的车辆Vehicle假名IDv。

4.2车载自组网中通信消息隐私保护

在车载自组网信息通信过程中,发送方发送的通信消息有可能被攻击车辆截获,恶意篡改通信消息,使得接收方收到错误的通信消息,达到攻击车辆的不当目的。区块链不仅具有去中心化、开放性、自治性等点对点网络的特点,而且具有去信任、匿名性、不可篡改性、可追溯性等安全性特点,适合应用于车载自组网中。本文采用区块链式存储结构来存储通信消息,能够保证提供一个正确的通信消息区块链账本,从而实现通信消息的可追溯性。

在车载自组网信息通信过程中,发送方首先用自己的私钥对通信消息进行签名,将签名附在通信消息后发送给接收方和所属路边单元,接收方接收到附有发送方签名的通信消息,首先用发送方的公钥进行消息的认证,如果认证成功,确定通信消息确实来源于发送方,选择相信该通信消息。如图5所示为通信消息签名和认证过程。发送方对通信消息的签名过程:

(1)发送方选取随机数k[1,n-1],根据公式(4-2)计算点(x1,y1);

(2)根据公式(4-3)计算r,若r=0,返回1)重新选择随机数k;

(3)若r≠0,根据公式(4-4)计算通信消息m的哈希值h(m);

(4)根据随机数k、通信消息的哈希值h(m)以及发送方的私钥SKv,根据公式(4-5)计算Sv,若Sv=0,返回1)重新选择随机数k;

(5)若Sv≠0,则发送方对路况预警消息的哈希值h(m)的签名为{r,Sv}。然后将发送方对通信消息哈希值h(m)的签名{r,Sv}发送给接收方。

接收方收到带有发送方签名的通信消息后,对通信消息进行认证。接收方对通信消息的认证过程:

(1)若通信消息的签名{r,Sv}均是[1,n-1]之间的整数,对发送方发来的通信消息m根据公式(4-4)计算通信消息的哈希值h(m);

(2)根据接收方计算的通信消息m的哈希值h(m)、发送方发来的通信消息的签名{r,Sv}以及发送方的公钥PKv,根据公式(4-6)计算X;

(3)如果X=0或∞,则拒绝签名,否则,计算X在直角坐标系下x轴的投影,记为x’;

(4)根据公式(4-7)计算f,若f=r,接收方认证通过。

路边单元接收到附有发送方签名的通信消息,也会对通信消息进行认证,认证过程与接收方对通信消息的认证过程相同,认证成功后,路边单元将通信消息以区块链的结构进行存储。如图6所示为通信消息的链式存储结构示意图。

车载自组网中通信消息的链式存储结构的区块由区块头和区块体组成。区块体中存储多条通信消息,将多条通信消息进行哈希运算,最后形成Merkle根存储在区块头中。此外,区块头中还包括:版本号、时间戳、区块数以及前一个路况预警消息区块的Merkle根。通过存储前一个区块的Merkle根形成通信消息的链式结构。表2为通信消息区块头字段及含义。

5仿真实验结果及分析

5.1仿真实验平台

本文实验采用Goland平台进行代码编写,实现基于区块链的VANET路况预警方案。Goland是JetBrains公司为Go语言开发的IDE,其为Go语言提供编码辅助功能、工具集成功能以及IntelliJ插件生态系统等。Go语言,又称Golang语言,是由谷歌公司开发的开源编程语言,于2009年11月正式推出。Go语言的语法与C语言相似,但Go语言的变量声明与C语言不同,此外Go语言增加了切片、并发、管道、垃圾回收、接口等。Go语言的特点包括:思想简单,没有多态、继承、类等;语法简洁,代码的可读性和可维护性高,从而提高开发效率;语法级支持并发,具有同步并发Channel类型;包含丰富的库、强大的工具和命令等。

5.2仿真实验结果

假设通信消息为路况预警消息,发送方将路况预警消息FirstRoadCongestion发送给接收方。发送方将路况预警消息FirstRoadCongestion打包并用自己的私钥签名,然后将签名附在路况预警消息后一起发送给接收方,接收方收到附有签名的路况预警消息后,对路况预警消息进行认证,若认证通过,则证明此条路况预警消息是发送方发送的路况预警消息。同时,发送方将附有签名的路况预警消息发送给所属路边单元,路边单元认证通过后,将路况预警消息以区块链的链式结构进行存储。车载自组网中所有路边单元存储相同的通信消息区块链账本,并定时更新通信消息区块链账本。通信消息的链式存储结构保证了通信消息账本的正确性。当区块中存储的某个通信消息发生改变时,区块头中的Merkle根都会发生变化,由于每个路边单元都存储相同的通信消息区块链账本,故某个路边单元通信消息区块链账本发生变化,其它路边单元会察觉到,此时,会重新同步通信消息区块链账本,从而保证了通信消息区块链账本的正确性,以便实现通信消息的可追溯性。如图7所示为通信消息区块链账本。

通信消息区块链账本包括三个区块,每个区块包括Index(区块数)、Timestamp(时间戳)、HashRoot(Merkle根)和PrevHashRoot(前一个区块Merkle根)。区块0为创世区块,HashRoot和PrevHashRoot均为0。如图8所示为区块1存储的路况预警消息。当接收方疑发送方发送的通信消息发生篡改时,可以根据接收方收到通信消息的时间戳定位到通信消息存储的区块,通过查询区块中通信消息,通过对比可知通信消息是否发生篡改,实现了通信消息的可追溯性。

5.3對比分析

5.3.1车载自组网信息通信车辆身份隐私保护

本文采用假名的方式来对车载自组网中车辆的身份信息进行隐藏,根据车辆的假名不能关联到任何有关车辆的真实身份信息,车载自组网中车辆与外界进行通信,外界只能得知车辆的假名,假名是车辆在车载自组网中的唯一标识,实现了车辆身份的隐私保护。

文献[9~11]提出的车载自组网通信消息传播路由协议中,均未考虑通信消息的隐私保护以及车辆身份的隐私保护问题。本文与文献[9~11]相比保证了车载自组网中车辆身份的隐私保护,从而保护了车辆用户的人身安全。

5.3.2车载自组网中通信消息隐私保护

(1)通信消息的可认证性。为保证接收方收到的通信消息一定来自发送方,本文采用数字签名的方式。数字签名需要车辆存储私钥和公钥。文献[12]提出一种基于公钥基础设施的信息通信方案,该方案中车辆必须存储大量的私钥和公钥,造成大量存储开销的浪费,本文中车辆只需要存储车辆本身的私钥和公钥。如图9所示为车辆私钥、公钥存储开销示意图。当车载自组织网络中车辆数目增多时,文献[12]的存储私钥和公钥所需的存储开销不断增加,本方案存储私钥和公钥所需存储开销不变。相比于文献[12]本文将存储私钥和公钥的存储开销提高到一个常数。

(2)通信消息的可追溯性。本文将正确的通信消息以区块链的形式进行存储,形成一个不可篡改的通信消息区块链账本。当车载自组网中车辆怀疑通信消息被篡改时,可以通过访问通信消息区块链账本,来检查通信消息是否被篡改,从而保证了通信消息的可追溯性。

文献[12]提出的消息追溯方法是在整个数据库中查找消息记录,再根据消息记录找到车辆的相关信息。本文对通信消息的追溯方法是,首先根据通信消息的时间戳定位到此条通信消息存储的通信消息区块链账本的区块,然后在区块中查找此条通信消息的相关信息。如图10所示为追溯通信消息的时间开销。

如图10(a)所示云端的路况预警消息区块链账本中存储较少的路况预警消息,由图10(a)可知,文献[12]中追溯路况预警消息的时间开销为O(n)(n为路宽预警消息的数目),本文中追溯路况预警消息的时间开销

账本存储较多的路况预警消息,由图10(b)可知,文献[12]中追溯路况预警消息的时间开销依然为O(n)(n为路宽预警消息的数目),本文中追溯路况预警消息的时间开销接近一个常数。

6结束语

区块链与网络安全篇(4)

太一云科技从早期就开展了链外高频交易研究并取得了实质性进展,设计了太一超导网络,可以m用于多资产的高频小额交易场景,最高交易速度可以到达每秒10万次,是传统区块链系统速度的5000-10000倍。

同时,太一云科技率先推出了太一可信区块链,它是基于实名身份认证的数字资产的区块链,能够有效解决链网互信、链间互信、节点自证等新型信用基础模型。目前太一云科技在资产数字化领域的落地应用――金信商品交易所和北方工业股权交易中心,利用区块链公开、透明和防伪溯源的特性实现可信商品、可信企业认证和可信交易。

太一云科技还研发了两种在不同数字资产之间的无第三方参与的交易机制,用户的资金安全和服务的可用性完全不依赖于中心化的平台。太一云科技包含了多种数字资产,这些交易机制使得在链上完成资产间的兑换成为可能,实现了完全去中心化只依赖区块链的不同资产互换。

第一种模式是基于太一超导网络而设计的逻辑链之间的双向交易,这种模式是无第三方参与的一对一的跨链交易。第二种模式是基于太一区块链特有的逻辑链之间而发起的多重签名的智能合约来实现的无第三方参与的一对一的跨链交易。由于申请专利的原因,细节方面会在之后的白皮书中体现。

太一区块链采用了即插即用的共识机制,针对私有链、联盟链和公有链提供了多种灵活的共识机制。

针对以建设生态为主要目的的联盟链和公有链,太一云科技提供了POW与POSS(Proof of Static Stake)的混合共识机制,公有链准入要求低,使用充分自由竞争的共识机制。

区块链与网络安全篇(5)

区块链,这个听起来有点艰涩的名词,简单地说是一种通过去中心化的方式集体维护一个持续生长的数据库。从本质上来说,是一个用于维持信息共享来源的分布式计算机网络(distributed network of computers),是支持比特币流通、交易的基础技术。网络中的每个节点(node)便是一个用户,通过保存一个完整的交易历史数据库的副本,参与并维护信息的安全性和准确性。通过加密(encryptlon)确保安全――所有交易会以加密形式登陆,包括时间、日期、参与者等。交易一旦入账,不可被删除、撤销或修改。

“区块链这一颠覆性的技术作为当下多种热门概念的交集,将在可预见的未来深刻地影响金融业在内的多个行业。”德勤中国华东区主管合伙人曾顺福说,“对区块链的积极应对或是被动接受,也将导致各行业内部的重新洗牌。”

如今,这项基于比特币而生的技术,正在金融、医疗、车辆信息、食品供应链等场景化的领域体现自身的应用可能。

改变

区块链对于金融业的意义在于将重望金融业的基础设施,从而带来应用的改变。它所构建的信任生态系统可以在信息不对称、不确定的环境下所生存,而在这样一个网络之中每个人能够将货币资产(实体或虚拟)精确地进行价值和信用转移。

此前,巴克莱银行、瑞士信贷集团、摩根大通等42家全球顶级银行已加入一个由金融技术公司R3领导的组织,着手为区块链在银行业中的使用制定行业标准和协议;2015年12月30日,纳斯达克完成了基于区块链平台的首个证券交易,也对全球金融市场的去中心化有着里程碑的意义。2009年比特币区块链的上线,被视作价值互联网正式诞生的元年。

金融机构的互联网化和互联网公司的金融化是近年来两者融合的主题。然而一个金融公司是否互联网化并不是靠是否做电商或者使用社交媒体而决定的。中国万向控股有限公司副董事长兼执行董事肖风认为,现有的传统金融机构应该利用价值互联网的工具来改善内生的很多业务流程,改善附着在金融体系上的应用场景,将其互联网化,从而将自己变成互联网公司。

从这个角度来看,区块链是传统金融公司借势转型为互联网公司的最佳利器。利用区块链改造传统金融机构核心的生产系统,同时把整个金融企业架构在互联网上,这是金融业的发展方向。

比特币上线以来已经运行了7年,这个试验系统在传统金融行业之外运行,没有出现宕机,而且运行在这个网络上的所有比特币账户也没有被黑客破解过。这使得欧美主流金融机构都在建立自己的区块链实验室,也设立风投基金投资区块链的创业公司。这意味着区块链这项技术,具有用来改变传统金融机构基础架构的巨大潜力。据Magister Advisor分析,2017年,银行在区块链开发的经费将超过10亿美元――是所有企业软件板块发展速度最快的。

肖风觉得,“互联网金融的终局是点对点、端对端、P2P的金融服务”。不过,他也指出,“迄今为止,这项技术还处于实验阶段,其成熟度相当于1995~1998年之间的互联网技术。那时我们也不认为互联网能够像现在这样改变我们的世界。”

落地

“与美国、爱尔兰的黑客马拉松相比,中国的开发者更为关注应用场景,这说明中国开发者的创新更为‘接地气’。”德勤亚太区投资管理行业领导合伙人秦谊如此总结中国区块链黑客马拉松。

基于区块链的“货物链”(CargoChain)在比赛拔得头筹,它能够让国际贸易更为环保和省时;二等奖的项目“智慧财产”(Smart Property);三等奖的项目BitMEDI,基于区块链保存医疗记录以及食物链、随机数生成器、信用记录分享系统等,都体现了区块链在各个行业的应用。

不过,黑客马拉松仅是一个开始,一项技术从演示到真正的商业化、产品化仍需很长的过程。作为主办方之一的德勤也保持着对这项新兴技术的高度关注,其全球加密电子货币从属于德勤全球数字化团队(Deloltte Digital),团队人数超过100人,研究如何运用技术提高现有服务以及探索建立在区块链上的解决方案,并与多家全球顶级工程技术类高校和全球区块链不同类型的开发供应商建立战略合作伙伴关系。

区块链与网络安全篇(6)

从极客的创造到风投的宠儿,从比特币的“野蛮生长”到金融机构的争先恐后,区块链,正在改变人们的生活。

前不久,在重庆九龙坡佳宇英皇酒店,由中国服 务贸易协会区块链委员会组织的——区块链技术创新驱动发展论坛,吸引了来自“北上广深渝”的各类区块链专家及投资者。会上大家唇枪舌剑,有人赞同它是一些 投资人眼中的“风口”,也有人认为是投资人口中的“骗局”。更多的人表示,区块链投资毫无疑问是带着泡沫的啤酒。泡沫一定占大多数,但不尝泡沫,又怎么会喝上啤酒呢?

区块链成为淘金地

2008年末,化名为“中本聪”的神秘人士在论坛中发表了《比特币:一种点对点的电子现金系统》论文,首次提出了区块链的概念。

据记者调查,区块链大热,服务企业功不可没。当然,这些服务企业的盈利规模也在以超乎人们想象的速度飙升。

以成立仅4年的比特大陆为例,去年的经营利润 达到30亿~40亿美元。同样的业绩,美国半导体巨头英伟达则用了24年。比特大陆的大部分收入来自出售由该公司芯片提供动力的“矿机”,其余收入则是由 “采矿”本身产生,通过从“采矿池”收取管理费,以及通过云服务出租其“采矿场”的采矿能力等。

那区块链到底是什么?区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。

最早参与比特币投资的重庆人谢伟,这样向记者 解释:曾经出现的如何证明你妈是你妈问题,即便我们手里有身份证、户口本,还需要一个政府的机构来进行认定,实际走起来比较繁琐。如果借助区块链,通过数 学原理而非中心化信用机构来低成本地建立信用。这样我们的出生证、户口本、房产证,都可以在区块链上得到验证。

再比如食品安全问题。借助区块链技术,所有交 易都建立起可靠机制,能够让食品链上的生产者、供应商、加工业者、经销商、零售商、监管机构以及消费者,能随时获取到食品来源与状态信息,方便追踪受污染 的食品,加速问题食品下架,有效阻止食品安全问题的蔓延。这种方法,菜鸟、天猫、京东已开始使用。

根据《“十三五”国家信息化规划》要求:到2020年,“数字中国”建设取得显著成效,其中区块链技术被列入规划。未来区块链在数据交换、数据处理、信息安全、价值传递等重要服务领域将得到广泛应用。

以共识、共享、共赢为宗旨的中国服务贸易协会区块链委员会副主任、秘书长谢锦龙告诉记者:“区块链委员会将协助政府开展立法、行业标准及发展规划研究。本次区块链创新发展论坛中,首期达成共识,非去中心化,而是弱中心化,政府不是不可监管,而是可以穿透式监管。”

目前全国各地都在加速新一代信息技术产业布局,但尚无拥有区块链产业绝对优势的地区。“错过了互联网,可不能错过区块链了”,各地政府都希望能引入优秀的公司和人才,掌握未来产业发展的先机,甚至“成为区块链发展的样板工程在全国推广”。

截至目前,国内共有浙江、江苏、贵州、福建、广东、山东、江西、内蒙古、重庆等9个省份、自治区和直辖市就区块链了指导意见,多个省份甚至将区块链列入本省“十三五”战略发展规划。

就在今年初,真格基金徐小平把区块链革命比喻为一场伟大技术革命,“我以全部的智慧呼吁大家,千万不要临渊羡鱼,而要冲到浪涛中去”。

几乎在同一时期,峰瑞资本也传出消息,成立区块链小组,专注投资区块链行业;而火币网引来了一位前华尔街高管,开拓其美国市场。

仿佛突然之间,区块链这个早已被发现的新大陆,成为了众人争相蜂拥的淘金地。

究竟是“风口”还是“骗局”

与此同时,专家们也指出,区块链作为一种新兴 技术,价值固然存在,但其效率低。数据写入区块链,最少要等待10分钟,所有节点都同步数据,则需要更多的时间。拿比特币举例,当前产生的交易有效性受网 络传输影响,比特币交易每次的确认时间大约10分钟,6次确认的话需要一个小时。再就是能耗太高,区块的生成需要“矿工”进行无数无意义的计算,非常耗费 能源。英国一家电力信息网POWER-COMPARE提供的预测数据显示,按照目前比特币“挖矿”、交易耗电量的增长速度,至2020年比特币耗电量将会 与目前全球用电量持平。尽管这一数据备受质疑,但是那些藏在深山老林的“矿场”则实实在在展现了这门生意的耗能景象。

如今许多人质疑,除了炒作和投机,区块链还有 多少真正的价值?这项技术的处理速度太慢,无法大规模应用。以太坊每秒只能处理大约15笔交易。相较之下,Visa每秒可处理2000笔交易。“挖矿”十 分耗电,现在爱尔兰用在挖比特币的电力比全国的日常家庭电耗还多。有人对区块链的真正价值感到困惑。

此外,在区块链公有链中,每一个参与者都能够获得完整的数据备份,所有交易数据都是公开和透明的。如果想知道一些商业机构的账户和交易信息,就能知道它的所有财富还有重要资产和商业机密等,隐私保障难。

另外,区块链的去中心、自治化的特点淡化了国家监管的概念。在监管无法触达的情况下,市场的逐利等特性可能会导致区块链技术应用于非法领域,为黑色产业提供了庇护所。

区块链究竟是“风口”还是“骗局”?大佬们的争议点主要集中在项目技术的落地。3月1日,金沙江创投董事总经理朱啸虎在朋友圈质疑:“2000年的互联网泡沫至少还有eyeball,今天的区块链除了炒币外还有什么?”

区块链能否彻底颠覆游戏行业

2017年末,一款名为CryptoKitties的区块链游戏在网络爆红,玩家可通过以太币(ETH)等虚拟货币进行宠物交易,而游戏中的初代加密猫,则是被炒到一只近百万元的高价。

继百度莱茨狗、360区块猫、小米加密狗区块链游戏反响热烈之后,4月23日,腾讯第一款区块链游戏。该款游戏代号“Z”,旨在将区块链与游戏结合,提升娱乐的可玩性、真实性。而进入4月份以来,斐讯、Social Lending等公司也先后推出区块链游戏。

区块链游戏被认为是区块链一个重要的应用落地领域,最初的游戏形态普遍是以“代币形象化”作为一个游走在监管边缘的存在。当监管逐渐收紧,游戏厂商开始了探索区块链可能带来的其他玩法。

去年12月份,一款电子猫的游戏在以太坊上线 后,区块链游戏概念瞬间火爆起来,各大厂商开始争相进入区块链游戏领域,从国外的《CryptoKitties》、《Region chain rabbit》,再到国内的《加密狗》、《宝利马》、《网易招财猫》,游久游戏、九城等公司也分别从网站建设、投融资等领域切入区块链领域。

区块链与网络安全篇(7)

 

 

区块链将使所有个体都有可能成为金融资源配置中的重要节点,也将促进现有金融体系与金融规则的改良,构建共享共赢式的金融发展生态体系。区块链技术的出现是人类信用创造的一次革命,它能让交易双方在无需第三方信用中介的情况下开展经济活动,从而实现低成本的价值转移。可以说,区块链技术是互联网时代效率更高的价值交换技术,互联网由此从传递信息的信息互联网向转移价值的价值互联网进化,这有利于传统金融机构借势转型,将内生的业务流程和应用场景互联网化。

 

一、区块链的特征与不足

 

(一)区块链的主要特征

 

(1)去中心。在区块链中,不存在中心化的硬件或管理机构,分布式的结构体系和开源协议让所有的参与者都参与数据的记录和验证,再通过分布式传播发送给各个节点,每个参与的节点都是“自中心”,权利和义务都是均等的。区块链又不是简单的去中心,而是多中心或弱中心。当物联网使所有个体都有可能成为中心节点时,传统金融中介的中心地位发生改变,从垄断型、资源优势型的中心和强中介转化为开放式平台,成为服务导向式的多中心当中的差异化中心。

 

(2)去信任。从信任的角度来看,区块链采用一套公开透明的数学算法,基于协商一致的规范和协议,使所有节点能够在去信任的环境下自动安全地交换数据。区块链实质上是通过数学方法解决信任问题,所有的规则都以算法程序的形式表达,参与方不需要知道交易对手的信用水平,不需要第三方机构的交易背书或者担保验证,只需要信任共同的算法,通过算法为参与者创造信用、产生信任、达成共识。

 

(3)时间戳。区块是一段时间内的数据和代码打包而生成的,下一区块的页首包含上一区块的索引信息,首尾相连便形成了链。记录完整历史的区块与可进行完整验证的链,形成了可追朔完整历史的时间戳,可为每一笔数据提供检索和查找功能,并可借助区块链结构追本溯源,逐笔验证。所以,区块链生成时都加盖了时间戳,形成不可篡改、不可伪造的数据库。单个节点上对数据库的修改是无效的,除非能够同时控制系统中超过51%的节点,因此区块链的数据可靠性很高。

 

(4)非对称加密。区块链使用非对称加密算法,即在加密和解密过程中使用一个“密钥对”,“密钥对”中的两个密钥具有非对称特点。在区块链的应用场景中,一方面,密钥是所有参与者可见的公钥,参与者都可用公钥来加密一段真实性信息,只有信息拥有者能用私钥来解密。另一方面,使用私钥对信息签名,通过对应的公钥来验证签名,确保信息为真正的持有人发出。非对称加密将价值交换中的摩擦边界降到最低,能够实现透明数据的匿名性,保护个人隐私。

 

(5)智能合约:由于区块链可实现点对点的价值传递,传递时可以嵌入相应的编程脚本,通过这种智能合约的方式去处理一些无法预见的交易模式,保证区块链能够持续生效。这种可编程脚本本质上是众多指令汇总的列表,实现价值交换时的针对性和条件性,实现价值的特定用途。所以,基于区块链的任何价值交换活动都可通过智能编程的方式对其用途、方向和各种限制条件等做到硬控制,省去了以法律或者合同软约束的成本。

 

(二)区块链存在的主要问题

 

(1)高能耗问题。传统货币银行学体系中存在不可能三角,即不可能同时达到去中心化、低能耗和高度安全,在区块链构建中也同样存在不可能三角。比如,在比特币的实际应用中,其发展带来了计算机硬件的快速膨胀,在“挖矿”过程中的主要成本转移到硬件成本和电力成本等。所以,应用区块链技术实现权益成本收益后,让其技术功效发挥至最大化成为急需解决的问题。

 

(2)存储空间问题。由于区块链记录系统中自初始信息的每一笔交易信息,并且每个节点都要下载存储并实时更新数据区块,所以,每个节点的数据都完全同步的话,网络压力较大,每个节点的存储空间容量要求可能会成为制约其发展的关键问题。

 

(3)抗压能力问题。基于区块链构建的系统遵循木桶理论,要兼顾所有网络节点中处理速度和网络环境最差的,所以,如果将区块链技术推广至大规模交易环境下,其整体的抗压能力还有待验证。如果每秒产生的交易量超过系统(最弱节点)的设计容纳能力,交易就自动进入到队列进行排队,带来不良用户体验。

 

二、区块链在金融领域的应用

 

(一)金融基础设施

 

区块链可能作为互联网的基础设施,在很多领域都表现出广阔的应用前景。在金融行业中,区块链技术将首先影响支付系统、证券结算系统、交易数据库等金融基础设施,随后该技术也会扩及一般性金融业务,比如信用体系、“反洗钱”等。这是因为,基于区块链技术的特点,其将首先切入信任要求高且传统信任机制成本高的基础设施领域,过去,基础设施都是公共产品,而区块链新技术和新制度使更多人有可能参与公共产品供给。未来的互联网金融是要利用区块链等互联网技术,改造传统金融机构的核心生产系统,把金融企业架构在互联网上。

 

当前的信息互联网可统称为TCP/IP模型,HTTP是应用层中最重要的应用协议。在价值互联网中,区块链是在应用层里的一个点对点传输的协议。它的价值与信息互联网中HTTP协议的价值是一样的。区块链的巨大潜力和前景就是可以重构传统金融业的基础设施与核心生产系统,而不仅仅停留在APP等应用层面。这是因为,在网络层次,区块链是建立在IP通信协议基础上的,是建立在分布式网络基础上的;在数据层面,区块链这一数据库系统是崭新的,明显优于现有金融体系的数据库;在应用层面,基于区块链的登记结算、清算系统以及智能合约、物联网能大幅提升效率,区块链上的金融活动是可编程的金融。.

 

(二)数字货币

 

从安全、成本等角度看,纸币被新技术、新产品取代是大势所趋。数字货币发行、流通体系的建立,对于金融基础设施建设和经济发展都是十分必要的。遵循传统货币与数字货币一体化的思路,数字货币的发行、流通和交易应由央行主导,体现便利性和安全性,做到保护隐私与维护社会秩序、打击违法犯罪行为的平衡,要有利于货币政策的有效运行和传导,要保留货币主权的控制力,数字货币是自由可兑换的,同时也是可控的可兑换。

 

(下转第27页)

 

(上接第25页)

 

区块链技术在比特币上的成功证明了可编程数字货币的可行性。英国央行的研究表明,中央银行可以考虑发行基于区块链的数字货币,这可增加金融稳定性。数字货币的技术路线可分为基于账户和不基于账户两种,也可分层并用而设法共存。区块链技术的特点是分布式簿记,不基于账户,而且无法篡改,如果数字货币重点强调保护个人隐私,可选用这一技术。不过,目前区块链占用的计算资源和存储资源太多,应对不了现在的交易规模,需要解决这一问题才能得到推广应用。

 

(三)自金融

 

如果从服务的角度、从非货币创造角度来看,现代金融都是通过中介机构实现的。互联网时代,有可能实现去中介化的真正意义上的直接金融。不过,这种可能性还不完全,最主要的原因是目前互联网金融是在原有金融基础之上的,无法跳出来,区块链技术提供了一种可能性。区块链可分为公有区块链和私有区块链。公有区块链就是像比特币这样的,认可了协议,就成为区块链的组成部分。私有区块链仍然是要获得许可的,银行系统的区块链技术,需要对每一个参与者进行审核。私有区块链非常近似于一种自金融的形态,公有区块链更类似于对私有区块链底层的支持和保障。当区块链技术普遍应用,金融管理技术的第三方化普通呈现,基于区块链技术的自金融就完全成为可能。

 

三、区块链应用与金融监管

 

区块链技术是目前唯一无需第三方就可用于记录和证明交易一致性和公司财务准确性的工具。因此,它可以满足潜在监管者和公众对于审计有效性、准确性和时效性的要求,在金融领域有着广阔的应用前景。但其发展仍受到现行制度的制约。一方面,区块链对现行体制带来了冲击,因为其去中心、自治的特性淡化了国家、监管等概念。比如,以比特币为代表的数字货币挑战了国家的货币发行权和货币政策调控权,导致货币当局对数字货币的发展持保守态度。另一方面,监管部门对这项新技术也缺乏充分的认识和预期,法律和制度建立将会严重滞后,导致区块链运用缺乏必要的制度规范和法律保护,增大了市场主体的风险。

 

区块链金融技术一旦在金融业普遍展开以后,监管的去金融属性化就产生了,监管职能、监管方式和监管手段将会被重新界定。比如,证券借贷、回购和融资融券如能通过区块链交易,监管部门就可考虑利用这个公共账本的信息对市场中的系统性风险进行监控,不仅高效而且可靠。从宏观金融视角看,当自金融时代产生以后,货币创造和传导机制以及信用创造格局将会变化。从微观金融视角看,随着区块链技术的进一步发展,金融与商业已经难以区分,将超越分业和混业监管的含义,金融监管体系的改革需要从这个视角来探讨。

 

区块链技术带来的“去中心化”仍需要中心化的部门提供规范和保障支持。监管机构可主动拥抱互联网金融的新技术,美国证监会委员Kara Stein认为,监管机构需要处于引导位置,利用区块链技术的优势并快速响应其潜在的弱点。比如,区块链技术希望打破特权和人为操纵,让计算机算法实现“信用自由公证”。但从实践来看,由于缺乏监管,比特币等数字货币交易面临的投机和洗钱风险就很高。因此,区块链技术应用需要监管部门制定相关标准和规范,保证金融创新产品得到合理运用。同时,还要提高消费者权益的保护,加强金融消费权益保护的教育工作,提高消费者的风险防范意识。