期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 欧姆定律内接法

欧姆定律内接法精品(七篇)

时间:2023-07-28 16:33:02

欧姆定律内接法篇(1)

一、将定值电阻改用电阻箱进行实验

绝大部分老师在进行苏科版欧姆定律实验教学时常常有这样的一个困惑,定值电阻标有10欧姆,在进行实验时定值电阻的阻值却不准确,给欧姆定律实验带来了一些不必要的麻烦。我认为定值电阻不准确的原因是:定值电阻出厂时是很精确的,但是由于学校购置后存放在实验室的条件不好,另一方面定值电阻存放时间过长,现在实验室中的定值电阻还是八十年代的产品。所以有些定值电阻的接线柱上面已氧化,电阻线也发生了化学变化,常见的10欧姆的电阻只有8欧姆左右。学校的实验经费有限,不可能每年都购买新的定值电阻。另外在研究电流与电阻的关系时,要多次改变定值电阻的阻值,多次改变所连的电路,浪费了许多实验时间。为此我尝试用电阻箱来代替定值电阻进行实验,效果显著。一方面电阻箱电阻线在箱内,不易氧化。另一方面电阻箱内电阻的精确度高,一般实验室用的J2362-1电阻箱的误差为0.1欧姆,大大高于定值电阻的精确度。另外在进行研究电流与电阻的关系时,要多次改变定值电阻的阻值,利用电阻箱进行实验就不必重复拆线连线,节省了许多实验时间,大大提高了课堂效率,让学生在课堂上有更多的时间来提高自己的知识技能。

二、电源由干电池组改为学生电源

这个探究欧姆定律的实验在书本上用干电池组进行学生实验,但是使用时由于干电池使用时间较长,干电池内部会发生化学变化,干电池的电阻会发生变化,对实验的操作会产生影响。即使用了三节干电池,定值电阻两端的电压不一定达到3伏。另外从环保的角度分析,一学期电学内容的学习,学生至少要进行三次电学学生实验。如果大量使用干电池作为电源进行实验,一个中等规模的初级中学会产生一千多个废旧电池,一方面大量浪费了学校有限的办公经费,另一方面学校对废旧电池处理不当,对周围环境会产生严重影响。综合上述考虑,我认为用学生电源来替代干电池,学生电源干净污染少,还可以避免干电池内阻对实验的影响。当然学生电源并不是没有缺点,学生电源如果使用不当对人身安全有危险。我认为今后物理老师进行电学物理实验时,尽可能使用学生电源,只要安全措施恰当,学生电源是进行欧姆定律和其他电学实验最好的电源选择。

三、导线由接线端带叉口的导线改为两端是鳄鱼夹的导线

学生在进行欧姆定律实验时连七根线,学生在连接电路时,经常不能捏紧螺母,造成接触不良,实验效果较差,为了提高学生做欧姆定律实验的效率,我校在进行欧姆定律实验时,用鳄鱼夹来代替带叉口的导线。可节省连接导线的时间,我做过调查,学生用鳄鱼夹代替带叉口的导线连接电路后,连接欧姆定律实验电路图的时间大大的提高了。另一方面连接电路的成功率由原来的50%提高到80%左右,减少了一些不必要的检修时间。节省了实验操作时间,增加了学生进行探究的时间。另外为了提高实验的精确度鳄鱼夹最好用铜制,导线改用较粗的铜导线,在导线与鳄鱼夹连接处应用锡焊或银焊,这样导线与鳄鱼夹不易脱落。焊接处应加一根橡胶管加以保护,这样同学们在使用时不易折断,尽可能提高实验的成功率和精确度。有些老师认为实验存在误差可以证明实验的真实性,其实这种观点是不科学的,在以前实验环境较差、实验器材精确度不高,在这种情况下误差较大也是正常的。但是现在无锡地区经济基础较好,各校都在进行现代化实验改造或已经完成现代化实验改造。如果此时实验误差较大,这与物理老师的严谨,对科学的一丝不苟的精神是不相符的。

四、数据处理时采用整数

欧姆定律内接法篇(2)

关键词:数学推理;科学探究;问题情境;科学方法;理论联系实际

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2017)1-0019-3

人教版高中物理选修3-1第二章第七节《闭合电路的欧姆定律》是电学知识的核心内容,其中包含了许多科学思想方法,是学生学习和体会科学思想方法的好素材。作为一节典型的规律探究课,本节内容较抽象,学生在学习时,对电源内电路认识模糊,难以理解电源有内阻;对内外电路的电压与电源电动势的关系及路端电压与负载关系感到疑惑,对其中蕴含的科学方法未能深刻领会。“如何有效突破这些教学难点?”“如何设计好闭合电路欧姆定律的探究过程,有效实施三维目标教学?”一直是广大物理教师研究的重要课题,本文试图通过对本节课的教材、教法的分析,探究形成学生认知困难的主要原因以及在本节课中如何有效实施探究教学,培养学生的核心素养。

1 教材、教法分析

人教版教材是把《闭合电路的欧姆定簟钒才旁诘缭础⒌缍势、欧姆定律、串并联电路、焦耳定律和导体的电阻之后来学习的。很显然,这种安排的意图是在承接“从做功角度认识电动势”的基础上,引导学生从功能关系角度来建立闭合电路的欧姆定律,体现了循序渐进的教学原则。顺应这种构想,教材对本节内容以如下方式呈现:先直接给出闭合电路的概念,然后从功能关系出发, 根据能量守恒,理论推导出闭合电路的欧姆定律和U+U=E,再根据闭合电路的欧姆定律,理论分析路端电压与负载的关系。这种呈现方式的好处是:既充分体现了功和能的概念在物理学中的重要性,又有利于学生从理论角度理解闭合电路的欧姆定律。从教材体系来看这种呈现方式具有一定的合理性和科学性。

笔者曾多次参与“闭合电路的欧姆定律”的观摩教学,领略了执教老师们的各种处理方法,比较有代表性的是以下两种教法:

第一种教法是沿用原教材的思路,采用比较传统的方式,注重理论探究,先从理论上推导得出闭合电路欧姆定律的数学表达式,再应用定律讨论了路端电压随外电路电阻的变化规律,最后引导学生运用规律解题,把立足点放在训练学生的解题能力上。

第二种教法注重突出实验的地位,发挥实验在探究教学中的作用。利用实验创设悬念,引入课题,设计探究实验,让学生在实验中总结归纳出内外电压之间的关系,再利用教材中的图2.7-3实验探究路端电压与负载的关系。

根据课后反馈发现,沿用原教材思路设计的教学,效果并没有达到设计者想象的结果,究其原因,主要有以下几个方面:

1.教材中的闭合电路的欧姆定律是从理论角度得出的,注重于数学推理,比较抽象,缺乏令人信服的探究实验,学生无直接经验感知和相应的认知过程,难以形成深刻的理解。

2.教材对闭合电路,特别是内电路的建构过于直接,无感知过程,学生对教材中为了突出闭合电路而提供的闭合电路中电势高低变化的模型图难以理解,加之学生对部分电路的欧姆定律印象深刻,对电源内部的电路无直观印象,对电源也有内阻心存疑虑,难以突破初中形成的“路端电压不随外电路变化”的思维定势。

3.教材是利用纯电阻电路中的能量守恒关系推导得到IR+Ir=E和U+U=E,这种处理方式,会让学生对U+U=E的普适性产生怀疑:非纯电阻电路还适用吗?

4.作为一节规律探究课,本节课包含了许多科学思想方法,教材过于注重理论推导,忽视了实验探究,淡化了猜想、类比、比较、分析等多种科学思想方法教育,这对培养学生的探究能力和体验研究物理问题的方法是不利的,也不利于提高课堂教学的有效性。

第二种“通过设计多个实验来进行实验探究”的处理方法,调动学生学习的主动性和积极性,学生能获得更直观的认识,有效地突破一些教学难点,但由于本节知识点多,思维量大,设计过多的实验(特别是设计繁杂的分组实验)势必会分散学生的注意力,干扰学生的正常思考,挤压学生思考和实践应用的时间,影响了学生主体作用的发挥,效果同样不尽如人意。

2 教学建议

2.1 尊重学生的认知规律,科学设计探究过程

从物理学史来看,欧姆定律是基于实验而发现的,并非演绎推理的结果,教材通过功能关系分析来建立闭合电路的欧姆定律。这种处理方法带来的负面影响是学生缺乏感性认识,没有参与知识发现过程中的情感体验,难以形成深刻的理解,课堂上学生学习的积极性也不高。规避这种负面影响的方法就是在教学设计时,应当尊重学生的心理特点和认知规律,科学地设计探究过程,让学生在亲身探究中理解定律,体验方法。基于这种指导思想,笔者在教学设计时,先用两节新电池和内阻较大的9 V电池组分别给灯泡供电,产生了与学生日常生活经验相矛盾的现象来设置“悬念”――引入新课。然后,引导学生针对“引入实验”中的现象展开探究,让学生在实验探究中分析、思考、归纳,得出电源内电压和外电压之间的关系。接着再引导学生利用功能关系,从理论角度来推导、探究,让实验得出结论在理论上获得支撑。最后,引а生利用所学规律解决引入实验和实际生活中的问题。这种在引入实验为基础的“实验和理论推导相互结合的探究过程”的设计,既避免了设计过多的实验,又让学生亲身体验了探究的过程,加深了对知识的理解,深刻领会到物理学科的严谨性和流畅性,感受到物理的探究之美和应用之美。同时,又能激发学生的学习热情,使物理课堂教学产生无穷的乐趣,进而实现高效的物理课堂教学。

2.2 合理创设问题情境,引导学生质疑探究

作为一节规律探究课,本节课的重点是如何落实探究教学,让学生在探究中理解闭合电路的欧姆定律,感知科学探究的过程和方法。在探究教学中,问题是探究的起点,没有问题就不可能有探究,正是在问题的驱动下,学生才能积极思考,从而产生探究欲望。这就需要教师在深入挖掘规律形成过程的基础上,精心创设问题情境,以问诱思,引导学生融入到探究学习的情境中去。例如:在构建“闭合电路”概念时,用两节新电池和内阻较大的9 V电池组分别给灯泡供电后,可设置如下问题情境:“为什么灯泡接到电动势为9 V的电池时,亮度反而暗了?难道电池坏了?”“为什么电池与灯泡接通时两端的电压变小?减小的电压哪儿去了?”“电池有内阻?可能吗?”“我们来看看电池(触摸电池),电池变热了,什么原因导致工作的电池会变热?”学生在问题的引领下观察、实验、体验,由此认识到“电源内部也有电阻和电流”“电源内部电流的通路,称为内电路”。这种以问题启发学生思考,以实验引导学生体验来构建闭合电路的方法,既弥补了教材对内电路建构的非直观性,也让学生经历了在质疑中分析、探究的过程,学生对闭合电路的认识潜移默化、水到渠成,远比直接灌输效果好。

在引导学生从能量角度验证实验探究结果时,设置如下问题情境:“刚才我们通过实验探究了闭合电路中的电流规律,这个结论可靠吗?”“如果我们能从理论上找到依据,是不是更可靠?如何从理论上来分析呢?”“从能量角度行吗?”“内、外电路在时间 t 内消耗多少电能? ”“这些能量从何而来?”学生在上述问题的引导下,发现也可以从能量角度来推导得出与实验相同的结果。

在引导学生探究路端电压与负载的关系时,设置以下问题情境:“实验表明,灯泡变暗是由于路端电压变小的缘故,你们能说说路端电压与什么有关吗?”“它们之间具体的关系是什么?”“如何设计实验来研究呢?”“从实验数据中能得出什么结论?”“能从理论上分析为什么会发生这样的变化吗?”“如果外电阻断开,路端电压为多少?外电阻短路,路端电压又为多少?”“谁能说说路端电压随外电阻变化的根本原因是什么?”在这一个个问题的引领下,学生从实验探究到理论分析两个方面找到了路端电压与外电阻的关系,不仅体验了科学探究过程,提高了理论分析和实验探究的能力,也养成了乐于探索、勤于动手的好习惯。

2.3 注重渗透科学方法教育,加深对规律本质的认识

作为一根主线,科学探究法贯穿在整个课堂教学过程中,教学中要注意尊重学生的心理特点和认知规律,强化科学探究法的显性教育:以引入实验为线索,引导学生经历“观察实验、提出问题、猜想假设、设计实验、分析论证”等过程,领会科学探究的方法。

“闭合回路中的电势变化”抽象而难以理解,突破这一难点的最重要的方法就是“比法”。教材试图以图1的模型来形象地说明这个问题,但这种模型对学生来说还是比较抽象,难以理解。笔者用如图2所示的“电梯加滑梯”模型和闭合电路加以类比,来说明闭合电路中的电势高低变化情况。这样的方法,既简单又源于学生的生活经验,学生容易接受,教学中应注意引导学生体会类比法的作用。

“演绎推理法”在“闭合电路欧姆定律的推导”和“路端电压与负载的关系推导”中两次用到,教学中要注意借助问题情境,把规律的探究以一个个问题的形式呈现出来,让学生在问题的引领下经历演绎、推理过程,构建对“闭合电路的欧姆定律”和“路端电压与负载关系”的正确理解,体验演绎推理过程中获得成功的愉悦。

另外,本节课中,要特别注意引导学生在了解路端电压与负载电阻的关系的基础上,通过极限法分析和理解电路断路时的路端电压和短路电流的现实意义,体会极限法在物理学习中的作用和意义,有效地训练学生突破思维定势,培养创造性的思维能力。

2.4 注重理论联系实际,物理与生活的联系

研究和学习物理最重要的方法就是理论联系实际,将理论和实际、物理与生活联系起来,可以帮助学生更透彻地理解所学的物理知识,培养学生的创造性思维和逻辑思维能力。欧姆定律与生产、生活联系密切,教学设计时,应注意还原知识的产生背景,注重将知识应用于实际生活。例如:新课引入可以从生活现象来提出问题,引发学生思考探究;在得出路端电压与外电阻R的关系后,引导学生通过将R推向两个极端情况的分析,来理解实际中“为什么电源开路时路端电压就等于电源的电动势”及“为什么电源不能用导线直接相连”;在学完了本节知识后,可引导学生用本节课所学知识分析解决新课引入及生产、生活中的实际问题。让学生充分地感知从生活走进物理、从物理回到生活的过程,培养学生利用物理知识分析解决实际问题的能力,建构对知识(尤其是难点知识)的正确理解,从而真切地感受所学物理知识的实用性,充分理解物理学科对时展的深远意义。

参考文献:

欧姆定律内接法篇(3)

班级:

姓名:

【学习目标】

1、掌握欧姆定律,能熟练地运用欧姆定律计算有关电压、电流和电阻的简单问题。

2、培养学生解答电学问题的良好习惯。

【学习重、难点】

欧姆定律的内容、数学表达式及其应用。

【自主预习】

1、欧姆定律的内容:

2、公式:

【课堂导学】

上一节课的实验得出的实验结论是什么?把上一节课的实验结果综合起来,即为欧姆定律:

1、欧姆定律的内容:

2、公式:

公式中符号的意义及单位:

U—

R—

I—

——

说明:

欧姆定律中的电流、电压和电阻这三个量是对同一段导体而言的。

3、应用欧姆定律计算有关电流、电压和电阻的简单问题。

(1)、利用欧姆定律求电流:应用公式:

例1:一条电阻丝的电阻是97Ω,接在220V的电压上,通过它的电流是多少?

(2)、利用欧姆定律求电路的电压:由公式

变形得

例2、一个电熨斗的电阻是0.1KΩ,使用时流过的电流是2.1A,则加在电熨斗两端的电压是多少?

(3)、利用欧姆定律求导体的电阻:由公式

变形得

例3、在一个电阻的两端加的电压是20V,用电流表测得流过它的电流是1A,,则这个电阻的阻值是多少?

4、通过以上的简单电学题目的计算,提出以下要求:

(1)、要画好电路图,在图上标明已知量的符号、数值和未知量的符号。

(2)、要有必要的文字说明,物理公式再数值计算,答题叙述要完整。

我的收获:

课后反思:

课堂练习

1、对欧姆定律公式I=U/R的理解,下面哪一句话是错误的:(

)

A.对某一段导体来说,导体中的电流跟它两端的电压成正比;

B.在相同电压的条件下,不同导体中的电流跟电阻成反比;

C.导体中的电流既与导体两端的电压有关也与导体电阻有关;

D.因为电阻是导体本身的属性,所以导体中的电流只与导体两端电压有关,与电阻无关。

2、如果某人的身体电阻约在3000Ω到4000Ω之间,为了安全,要求通过人体的电流不能大于

5mA,那么此人身体接触的电压不能大于:(

A.5V

B.15V

C.30V

D.36V

3、甲、乙两导体通过相同的电流,甲所需的电压比乙所需的电压大,则它们的阻值大小关系是:(

)

A.R甲>R乙;

B.R甲=R乙;

C.R甲

D.无法比较

4、有一电阻两端加上

6

V电压时,通过的电流为

0.5A,可知它的电阻为

Ω,若给它加上

18

V电压,导线中电流为

A,此时导线电阻为

Ω,若导线两端电压为零,导线中电流为

A,导线电阻为

Ω。

5、要想使1000Ω的定值电阻通过8mA的电流,那么应给它加________V的电压;如果该定值电阻所允许通过的最大电流是25

mA,那么它两端所能加的最大电压是_________V。

6、一个定值电阻接在某段电路中,当电压为1.5V时,通过的电流为0.15A,当电压增大为原来的2倍时,则下列说法正确的是(

A.电流为原来的2倍

B.电阻为原来的2倍

C.电流为原来的1/2

D.电阻为原来的1/2

7、将2Ω和4Ω的电阻串联后接人电路,已知2Ω电阻通过的电流是0.5A,则4Ω电阻上的电压和电流分别为:(

)

A.1

V、0.5

A;

B.2

V、0.5

A;

C.2

V、1

A;

D.0.5

V、1

A。

8.一个20Ω的电阻,接在由4节干电池串联的电源上,要测这个电阻中的电流和两端的电压,电流表,电压表选的量程应为

(

)

A.0~0.6A,0~3V

B.0~0.6A,0~15V

C.0~3A,0~3V

D.0~3A,0~15V

9.如图所示电路,当图中的开关S闭合时,电流表的示数为1.2A,电阻R的阻值

是2.6Ω,电压表有“+”、“3V”、“15V”三个接线柱,问电压表应使用的是哪两

个接线柱?

10、如图所示的电路中,A、B两端的电压是6V,灯L1的电阻是8Ω,通过

的电流是0.2

A,求:

(1)

通过灯L2的电流;

欧姆定律内接法篇(4)

知识目标

1.理解欧姆定律及其表达式.

2.能初步运用欧姆定律计算有关问题.

能力目标

培养学生应用物理知识分析和解决问题的能力.

情感目标

介绍欧姆的故事,对学生进行热爱科学、献身科学的品格教育.

教学建议

教材分析

本节教学的课型属于习题课,以计算为主.习题训练是欧姆定律的延续和具体化.它有助于学生进一步理解欧姆定律的物理意义,并使学生初步明确理论和实际相结合的重要性.

教法建议

教学过程中要引导学生明确题设条件,正确地选择物理公式,按照要求规范地解题,注意突破从算术法向公式法的过渡这个教学中的难点.特别需强调欧姆定律公式中各物理量的同一性,即同一导体,同一时刻的I、U、R之间的数量关系.得出欧姆定律的公式后,要变形出另外两个变换式,学生应该是运用自如的,需要注意的是,对另外两个公式的物理含义要特别注意向学生解释清楚,尤其是欧姆定律公式.

教学设计方案

引入新课

1.找学生回答第一节实验得到的两个结论.在导体电阻一定的情况下,导体中的电流

跟加在这段导体两端的电压成正比;在加在导体两端电压保持不变的情况下,导体中的电

流跟导体的电阻成反比.

2.有一个电阻,在它两端加上4V电压时,通过电阻的电流为2A,如果将电压变为10V,通过电阻的电流变为多少?为什么?

要求学生答出,通过电阻的电流为5A,因为电阻一定时通过电阻的电流与加在电阻两

端的电压成正比.

3.在一个10的电阻两端加上某一电压U时,通过它的电流为2A,如果把这个电压加在20的电阻两端,电流应为多大?为什么?

要求学生答出,通过20电阻的电流为1A,因为在电压一定时,通过电阻的电流与

电阻大小成反比,我们已经知道了导体中电流跟这段导体两端的电压关系,导体中电流跟这段导体电阻的关系,这两个关系能否用一句话来概括呢?

启发学生讨论回答,教师复述,指出这个结论就叫欧姆定律.

(-)欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.

1.此定律正是第一节两个实验结果的综合,电流、电压、电阻的这种关系首先由德国

物理学家欧姆得出,所以叫做欧姆定,全国公务员共同天地律,它是电学中的一个基本定律.

2.介绍《欧姆坚持不懈的精神》一文.

3.欧姆定律中的电流是通过导体的电流,电压是指加在这段导体两端的电压,电

阻是指这段导体所具有的电阻值.

如果用字母U表示导体两端的电压,用字母R表示导体的电阻,字母I表示导体中的电流,那么欧姆定律能否用一个式子表示呢?

(二)欧姆定律公式

教师强调

(l)公式中的I、U、R必须针对同一段电路.

(2)单位要统一I的单位是安(A)U的单位是伏(V)R的单位是欧()

教师明确本节教学目标

1.理解欧姆定律内容及其表达式

2.能初步运用欧姆定律计算有关电学问题.

3.培养学生应用物理知识分析和解决问题的能力.

4.学习欧姆为科学献身的精神

(三)运用欧姆定律计算有关问题

【例1】一盏白炽电灯,其电阻为807,接在220V的电源上,求通过这盏电灯的电流.

教师启发指导

(1)要求学生读题.

(2)让学生根据题意画出简明电路图,并在图上标明已知量的符号及数值和未知量的

符号.

(3)找学生在黑板上板书电路图.

(4)大家讨论补充,最后的简明电路图如下图

(5)找学生回答根据的公式.

已知V,求I

解根据得

(板书)

巩固练习

练习1有一种指示灯,其电阻为6.3,通过的电流为0.45A时才能正常发光,要使这种指示灯正常发光,应加多大的电压?

练习2用电压表测导体两端的电压是7.2V,用电流表测通过导体的电流为0.4A,求这段导体的电阻,

通过练习2引导学生总结出测电阻的方法.由于用电流表测电流,用电压表测电压,

利用欧姆定律就可以求出电阻大小.所以欧姆定律为我们提供了一种则定电阻的方法这种

方法,叫伏安法.

【例2】并联在电源上的红、绿两盏电灯,它们两端的电压都是220V,电阻分别为

1210、484.

求通过各灯的电流.

教师启发引导

(1)学生读题后根据题意画出电路图.

(2)I、U、R必须对应同一段电路,电路中有两个电阻时,要给“同一段电路”的I、U、R加上“同一脚标”,如本题中的红灯用来表示,绿灯用来表示.

(3)找一位学生在黑板上画出简明电路图.

(4)大家讨论补充,最后的简明电路图如下

学生答出根据的公式引导学生答出

通过红灯的电流为

通过绿灯的电流为

解题步骤

已知求.

解根据得

通过红灯的电流为

通过绿灯的电流为

答通过红灯和绿灯的电流分别为0.18A和0.45A.

板书设计

2.欧姆定律

一、欧姆定律

导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.

二、欧姆定律表达式

三、欧姆定律计算

1.已知V,求I

解根据得

答通过这盏电灯的电流是0.27A

2.已知求.

解根据得

通过的电流为

通过的电流为

答通过红灯的电流是0.18A,通过绿灯的电流是0.45A

探究活动

【课题】欧姆定律的发现过程

【组织形式】个人和学习小组

【活动方式】

1.制定子课题.

欧姆定律内接法篇(5)

关键词:伏安法 电桥法 桥式伏安法 阻值比较 误差分析

引言

高中阶段,学生接触测电阻最多也最熟悉的莫过于伏安法测电阻了。原因在于伏安法测电阻的理论基础是欧姆定律。而欧姆定律是高中电路部分的重点。但是,局限于高中生的知识储备有限,对电路略知一二,但对电路的变换和由此引起的新的计算不是很了解。由电路和器件引起的误差不可避免,我们总是在避免或者减小电路器件引起的误差。一个新的方法-桥式伏安法,便进入人们的视线。电桥法与伏安法结合起来,即桥式伏安法。传统的伏安法和较新颖的桥式伏安法的区别在哪里?桥式伏安法的理论基础可靠成立么?和伏安法相比,它的优点是什么?这些都是我们关系的问题。桥式伏安法是在伏安法的基础上建立的,对伏安法需要重新认识。我们先对伏安法和桥式伏安法进行详细说明。

一、伏安法概述

1.1伏安法测电阻

测量电阻的方法很多,如伏安法、电桥法、欧姆表法等。其中伏安法是一种用途比较广泛的方法。它不仅能测量电阻值,也能用来验证欧姆定律。因为其基础便是欧姆定律。伏安法测电阻是用电压表和电流表分别测出待测电阻两端的电压和流过电阻的电流,然后用欧姆定律公式计算出待测电阻的值。

1.2传统接法

伏安法测电阻的传统接法分为电流表内接法或外接法(图1)。当K连接A时为内接法,当K连接B时为外接法)。

伏安法测电阻是用电压表和电流表分别测出待测电阻两端的电压和流过电阻的电流,然后用欧姆定律公式计算出待测电阻的值。但电表内阻阻值对测量有影响,这种影响使内接法和外接法都无法从电压表和电流表同时直接准确读出待测电阻的电压和电流。[1][2]由缺陷和局限性得到的结果在高中阶段也是可以理解的。

然而,由于电表内阻不能忽略的存在,这种近似计算必然存在一定程度的方法误差。只有对电表内阻值进行相应修正后,才能完全消除电表内阻对测量的影响。如此,能避免方法误差便是很必要的。而侧阻值实验的精度在不断提高,桥式电桥法便是在这种情况下出现。

二、桥式伏安法测电阻

由于内接法和外接法都存在实验理想化下的局限性,近年人们寻找伏安法测电阻的新接法,现在已经发明了四种新接法。它们分别是电压补偿法、电流补偿法 、电压电流双补偿法和等值电流法。[2]这四种新接法都从本身线路中完全消除了电表内阻的影响,都能从电压表和电流表上直接读出待测电阻两端的电压 和流过的电流。这种不需要理想化并且直接避开器件局限性的电路很好。但由于需要增加补偿线路,因此这四种新接法都比较复杂。高中生在他们的水平上不是很容易接受。本文将对一个新颖简便的新接法—-桥式伏安法,进行讲述。并探讨这种方法的优点和可行性,更关键的是在不同测量环境下该方法的误差与伏安法误差进行比较,更加深入全面了解桥式伏安法的特性。此方法非常巧妙地以电桥平衡原理为基础,不需补偿线路即能完全消除电表内阻的影响。

2.1电路接法

连接方式如图2。其精髓便是将伏安法中提到的流过电压表的电流非常有依据的消除,而不是伏安法中采取理想化忽略近似计算。这样便首先消除了由器件而引起的方法误差。这主要是电桥法的功劳。[3](如图三)我们知道,在这个电路中,只要想办法使电流表(检流计)两端电势相等,则通过电表的电流就可以为零。这种情况就称为“电桥平衡”。根据电桥平衡所需满足的关系,我们就可精确地测量电阻了。

首先调节可变滑动电阻R动。R动的阻值大小不需准确调定,只需根据待测阻值R的大小估值,将R动调到与R 的数量级相差不多即可。可见操作比较简单。然后

接通开关K,调节R动使检流计指针指零。记下此时电压表的读数和电流表的读数。所测得的电压V和电流A,然后代入公式,即可求得待测电阻R的值。

2.2测量原理

当CD支路无电流时,显然可见,电压表的读数刚好就是待测电阻R两端的电压,电流表的读数就是完全流过电测电阻R的电流。单独看待测电阻周围的电线,CD可以看成直导线,刚好形成一个标准的外接伏安法测电阻。因此,将其带入欧姆定律公式是可行的。将测得的电压和电流代入公式求得的R阻值是准确的,没有方法误差,这里已完全消除了电表内阻的影响。

三、比较分析讨论

用电桥法测电阻是将待测电阻与已知电阻进行间接比较,因此电桥法需要有已知的标准电阻。电桥法是利用电桥平衡公式求待测阻值。而桥式伏安法不需标准电阻,是利用电压表和电流表测阻值的电压和电流,再由欧姆定律公式求阻值。同时,由于是通过欧姆定律计算,通过桥式伏安法很巧妙的避开了伏安法测量时的误差,则有效地消除了由伏安法测电阻时的理论局限,消除了由其带来的误差,改善和提高了实验的准确性。由此可见,桥式伏安法是伏安法的一种接法,它与电桥法又有本质区别。通过数据我们可以看到,桥式伏安法测量阻值也是中值阻值较好。小阻值或大阻值都不理想,误差很大。在用桥式伏安法时,要注意以上几个误差来源的事项。

参考文献:

[1]伏安法测电阻时由RA和RV引起的系统误差的修正.宿迁学院五系,江苏 宿迁 223800.朱晓瑞.

欧姆定律内接法篇(6)

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

欧姆定律内接法篇(7)

一、刑事合作进程中的制度设计与缺陷

在刑事合作领域,1992年的《马斯特里赫特条约》,尤其是1997年的《阿姆斯特丹条约》大大提高了欧盟对成员国决策的影响。在《马斯特里赫特条约》中,第K1条以及第K3条规定,为了达到欧盟自由迁徙等目标,欧盟理事会(司法与内务事务理事会)可以适用共同立场、共同行动以及公约等法律形式来规范成员国之间的刑事合作。《阿姆斯特丹条约》第29条、第31条以及第34条则规定,为了使欧洲公民在“自由、安全与司法的区域”中享有高度的安全保障,欧盟理事会在成员国刑事合作方面可以适用共同立场、框架决定、决定以及公约等法律形式。

这些欧盟条约的规定意味着,欧盟在刑事合作领域除了拥有与成员国协商以缔结国际公约的权力外,还有权适用对成员国具有相当影响力的共同行动(《马斯特里赫特约》)、框架决定或决定(《阿姆斯特丹约条约》)等法律形式。在《阿姆斯特丹条约》生效后,框架决定和决定代替了共同行动。然而,无论是刑事决定的相互承认还是刑事法律的相互接近,“框架决定”的适用频率是最高的,也是最重要的。

框架决定的特点在于,对成员国的约束力仅反映在结果上,成员国可以根据各自的情况选择实施的形式和方法,其适用不需要经过成员国议会的批准或全民公决,即使框架决定的实施可能会造成成员国法律的修改或补充。虽然框架决定对成员国具有间接的约束力,但它对刑事合作领域的影响巨大,有学者甚至认为框架决定在第三支柱领域所起到的作用类似于指令在第一支柱中的作用。因此,通过制定对成员国具有约束力(但不具有直接效力)的框架决定,欧盟加强了对成员国刑事合作的影响。

《阿姆斯特丹条约》第29条规定,建立“自由、安全与司法的区域”所需要的三种途径包括,更加密切的警务合作、司法合作以及成员国刑事法律的相互接近。第31条第5项还规定,在有组织犯罪、反恐以及贩运毒品领域,欧盟将逐步建立犯罪构成要件以及刑罚的最低规则。此外,第34条第2款第2项还规定,为了使成员国的法律与规定相互接近,欧盟委员会可以适用框架决定。这些规定表明,除了使犯罪构成要件以及刑罚这两个刑事实体法领域相互接近外,框架决定不应当用于别的领域。此外,考虑到《阿姆斯特丹条约》首次规定刑事实体法的相互接近,应当对此进行严格的解释。因此,管辖方面的法律、刑事程序法以及在创制新的合作形式方面都不得适用框架决定。

然而,在实际操作中,欧盟除了在犯罪构成要件以及刑罚方面实施了相互接近外,还在管辖、刑事程序法以及新的合作形式等诸多方面运用框架决定,进而大大超越了欧盟条约的授权。比如,在创建新的合作机制方面,欧洲逮捕令的诞生完全取代了传统的引渡制度,并在规定中引入了32种犯罪不适用双重犯罪原则的做法,这样的变革是颠覆性的。

在犯罪种类方面,《阿姆斯特丹条约》第31条第5项仅规定了构成要素与刑罚相互接近的3种犯罪,即有组织犯罪、恐怖主义行为以及贩运毒品。如果适用严格解释,只有上述三种犯罪可以成为刑事法律相互接近的对象。然而,实际涉及到的犯罪种类远远超出了欧盟条约中的规定,甚至超出了欧盟理事会坦佩雷会议以及“打击有组织犯罪新千年规划”中所包含的犯罪类型,而坦佩雷会议以及“千年规划”中的犯罪种类已经超越了欧盟条约的规定。

除了恐怖主义行为与贩运毒品外,借助“有组织犯罪”这个开放性的概念,其它许多犯罪都成为欧盟进行刑事法律的相互接近的对象,比如种族主义与仇外、高科技犯罪、贩运人口、财政犯罪、税务诈骗、对儿童的性剥削、环境犯罪以及未经许可的入境、中转与拘留等。因此,欧盟主导的刑事法律的相互接近完全超出了欧盟条约以及相关的重要政策文件。通过适用包含上述内容的框架协定,欧盟理事会以及欧盟委员会似乎在故意忽视欧盟条约规定的限制,进而扩大对成员国刑事合作的影响。

这种变化的一个重要因素在于,自从《阿姆斯特丹条约》生效后,欧盟司法与内务理事会几乎再也没有通过传统条约的形式来规范成员国的刑事合作,而是在绝大多数情况下选择了更加灵活的框架决定,尽管欧盟条约第34条第2款第4项规定公约在该领域中也是一种立法形式。

因此,有学者认为,欧盟司法与内务理事会越来越多地滥用了框架决定等立法形式,造成了欧盟决策的不透明与不民主:框架决定无需成员国议会的审查即可生效,而在此过程中欧盟议会也仅仅具有接受咨询的作用,监督力度不大,缺少共同决策的权力。

此外,尽管欧洲法院的司法解释能够部分地弥补一些缺陷,其司法管辖权也比《马斯特里赫特条约》中的规定有所扩大,但仍需成员国的同意才能启动,造成框架决定的适用缺少足够的司法控制。[1]这些刑事合作领域中的缺陷表明,这些不足将会影响成员国进一步制定与实施法律的动力,甚至会在某种程度上损害相关立法的合法性。

在刑事决定的相互承认方面,虽然它是“自由、安全与司法区域”的基石,并非所有的成员国都热衷于扩大其适用的范围。作为欧盟范围内首个生效的刑事决定的相互承认机制,欧洲统一逮捕令是在美国911恐怖袭击,使欧盟成员国受到震惊,进而达成一致政治意愿的情况下产生的。整个决策过程只有短短的三个月,成就了国际刑事合作领域中的重大转折,与其相关的欧洲统一冻结令也相继产生。

然而,在统一冻结令之后,对于其它领域的刑事决定的相互承认的框架决定,成员国的协商进程明显减缓,目前许多仍在草拟阶段,其中包括被判刑人的移转、以共同体为基础的惩罚、审前释放以及对犯罪嫌疑人的监督、从业禁止以及一事不再理等诸多方面。显然,目前上述框架协议已无法在海牙计划所设定的时间结点前产生。比如,与对儿童性侵犯相关的从业禁止的立法,海牙计划规定 2005年底完成,但目前仍处在筹备阶段,预计还要持续相当长的一段时间。

除了成员国的数量增加使决策进程减缓外,由于立法上的不足使执行已经生效的框架决定遇到诸多困难,进而也影响了其它框架决定的诞生。比如,欧洲统一逮捕令在德国的实施就遇到了宪法上的障碍。欧洲统一逮捕令规定了引渡本国国民的条款,但德国宪法规定本国国民不得引渡到他国,这样的巨大冲突使统一逮捕令在德国的执行一度受阻。最终,德国就此对本国宪法中的相关条款进行修改,才保证其实施。类似的情况也出现在塞浦路斯与波兰等国。虽然这些成员国最后都予以解决,但却是对本国现行法律体系进行重大调整后实现的。[2]

可见,虽然框架决定在制度设计上的价值之一是保障成员国在适用法律中的灵活性,为其根据本国情况对具体的制度安排留有余地。然而,目前已生效的框架决定的一些规定却显得越发细化,给成员国的实施带来了诸多不便。在立法过程中,决策者应当避免制定那些可能会导致成员国法律制度巨大变动的法律。

造成这种局面的关键原因在于,欧盟框架决定在第三支柱中的立法缺乏足够的透明度、不民主以及缺少监督。为了解决框架决定甚至是欧盟第三支柱的这些缺陷,许多学者建议应该完善立法程序,将欧盟条约标题6中关于第三支柱的规定完全纳入第一支柱,尽管这意味着成员国的主权将受到欧盟的进一步侵蚀。[3]

二、欧洲法院的重要判决

与第三支柱向第一支柱的转化相关,欧盟以及成员国曾一直在第一支柱与第三支柱各自“势力范围”的划分问题上存在分歧,而欧洲法院2005年的一个判决对此做出了初步的回答。欧盟条约第34条赋予欧盟委员会在刑事合作领域提出立法动议的权力。第31条第5款又将这些立法动议细化为有组织犯罪、恐怖主义以及贩运毒品等犯罪的法律的相互接近。第47条规定,当第一支柱与第三支柱领域发生冲突时,第一支柱优先于第三支柱。

然而,欧盟及其成员国对第47条的解读形成了两种截然相反的观点。大多数成员国认为,欧盟委员会在刑事法方面的权力仅限于提出动议,并不包括决定是否适用该动议的权力,后一项权力理所当然地归属于成员国。少数成员国以及欧盟委员会则认为,在刑事制裁成为保护欧共体核心利益的唯一手段的情况下,欧盟条约第47条实际上赋予了欧盟委员会决策权,进而迫使成员国将某种行为犯罪化。

多年来,代表欧共体利益的欧盟委员会与体现成员国利益的欧盟理事会在实践中达成一项不稳定的妥协:对于第31条第5项所规定的内容,欧盟委员会在其权力范围内可以通过决定,而欧盟理事会同时也可以在其所认为的权力范围内适用决定。欧洲法院2005年9月13日的判决宣告了这种妥协状态的结束。

2002年12月19日,欧盟理事会通过了一个用刑法保护欧盟环境利益的框架决定。但是,欧盟委员会认为理事会无权通过这样的决定,因为环境问题显然在第一支柱范围内,欧盟委员会对此独自拥有提出动议权,并与欧盟理事会和欧盟议会共同行使决策权。欧盟理事会中的成员国一致认为,即使刑事法涉及到了第一支柱的领域也应当是在第三支柱的范围内,欧盟理事会独自对此拥有决策权。在欧盟理事会通过这个决定后,欧盟委员会将这个问题提交给欧洲法院。

欧洲法院在关于此案的第C-176/03号判决中指出,在某些情况下,通过刑法保护欧盟环境利益的决定,能够并且应当在第一支柱范围内做出。然而,欧洲法院在此案中仅就环境问题的刑法规制问题予以裁判,并未涉及到欧盟委员会与欧盟理事会所关注的有关权力范围争议的其它广阔领域。因此,欧洲法院未来做出的涉及到其它领域的相关判决会逐步对该问题予以解答。[4]

欧洲法院的这个判例表明,第一支柱和第三支柱的界限还不是特别清晰,这给第一支柱向第三支柱的渗透留有余地。同时,欧洲法院的判决也顺应了欧盟一体化过程中第一支柱的影响日益扩大的趋势。除了欧洲法院的司法解释外,欧盟条约中也有个别条款为第一支柱的延伸打下了基础。

三、《里斯本条约》开创刑事合作的新局面

尽管《马斯特里赫特条约》规定,第三支柱领域的决定要在所有成员国一致同意的情况下做出,但在制定条约之时,立法者已经预见到欧盟的影响会逐步扩大,因此公约中一个条款就为此作了铺垫,即《阿姆斯特丹条约》第42条。

第42条规定,对于来自欧盟委员会或某一个成员国的提案,在向欧盟议会咨询后,欧盟理事会可以就第29条中的事项采取一致行动,决定是否应当将其纳入欧盟条约标题4(欧共体)的范围,同时决定相关的投票条件;欧盟理事会还应当建议成员国依据各自的宪法要求适用这些决定。

这意味着,欧盟理事会有权决定将部分或全部刑事合作的事项从第三支柱转移到第一支柱。一旦纳入到第一支柱,不但有效多数的表决机制将发挥作用,欧盟委员会还将在提出立法动议方面拥有更多的权力,而欧盟议会也会更多地参与立法过程,以往成员国全体一致的表决机制将被废除。

2006年6月底,欧盟委员会提议在条件允许的情况下适用第42条的规定。芬兰作为当时的欧盟轮值主席国与欧盟委员会共同提出了这个议案,引起了广泛关注。欧盟委员会与芬兰称,适用第42条使第三支柱纳入第一支柱的做法不仅可以提高欧盟区域刑事合作决策的效率,还由于欧盟议会更多的参与而弥补了“民主赤字”或“缺乏合法性”等诸多不足。[5]

随着欧盟一体化进程的不断深入,上述第三支柱向第一支柱转化的规定在2007年底的《里斯本条约》中得到了充分的体现。《里斯本条约》取消了欧盟三根支柱的划分,将第三支柱完全并入第一支柱:在刑事合作领域中,实施有效多数的表决机制,欧盟委员会独自享有提案权,欧盟议会通过共同决定机制也将发挥更大的监督作用。

下图将欧盟一体化进程与欧盟区域刑事合作进程的关系简单地加以表示:

─────────────────────┬──────────────────────────────────

│欧盟一体化进程 │欧盟区域刑事合作进程 │

├─────────────────────┼──────────────────────────────────┤

│1957年《罗马条约》 │成员国在欧洲理事会柜架下 │

│ 欧洲经济共同体 │缔结刑事合作方面的国际公约 │

├─────────────────────┴──────────────────────────────────┤

│欧洲经济共同体逐步发展经济一体化,成员国在欧洲理事会框架下开展刑事合作。 │

├─────────────────────┬──────────────────────────────────┤

│1986年《单一欧洲法令》 │1.创建申根机制 │

│ 欧洲共同体[6] │2.启动政治合作机制,成员国在欧洲经 │

│ │ 济共同体框架下通过政治合作制定一 │

│ │ 些刑事合作公约 │

├─────────────────────┴──────────────────────────────────┤

│由“共同市场”向“单一市场”转化,欧洲经济共同体开始探寻政治合作的途径。 │

├─────────────────────┬──────────────────────────────────┤

│ 1992年《马斯特里赫特条约》 │1.申根机制开始运作 │

│ 欧洲联盟 │2成员国在第三支柱框架下通过全体一 │

│第一支柱 第二支柱 第三支柱 │ 致表决机制: │

│欧共体 共同外交 司法与内务事务 │ 缔结刑事合作公约 │

│ 与防务政策(包括刑事合作) │ 制定并实施“共同行动” │

│(超国家)(政府间)(政府间) │ │

├─────────────────────┴──────────────────────────────────┤

│刑事合作被纳入欧盟的第三支柱,成员国开展“政府间”的合作。 │

├─────────────────────┬──────────────────────────────────┤

│ 1997年《阿姆斯特丹条约》 │1.欧盟吸收了申根机制 │

│ 欧洲联盟 │2.在“自由、安全与司法区域”里,欧 │

│第一支柱 第二支柱 第三支柱 │ 盟与成员国在第三支柱下通过全体一 │

│欧共体 共同外交 刑事方面的 │ 致表决机制制定并实施: │

│ 与防务政策 警察与司法合作 │ 刑事决定的相互承认的 │

│(超国家)(政府间)(政府间) │ 框架决定 │

│ │ 刑事法律的相互接近的 │

│ │ 框架决定 │

├─────────────────────┴──────────────────────────────────┤

│欧盟三根支柱的结构不变,但第三支柱框架下的刑事合作更为灵活。 │

├─────────────────────┬──────────────────────────────────┤

│2007年《里斯本条约》 │刑事合作领域的变化如下: │

│ 欧洲联盟 │1.取消“第三支柱”,欧盟区域刑事合作 │

│ (超国家) │ 被纳入“超国家”的立法机制。 │

│ │2.在刑事合作领域,欧盟理事会适用有 │

│ │ 效多数表决机制;欧盟委员会拥有单 │

│ │ 独的立法提议权;欧盟议会具有立法 │

│ │ 的“共同决定权”。 │

│ │3.欧盟以“指令”的立法形式进行: │

│ │ 刑事决定的相互承认 │

│ │ 刑事法律的相互接近 │

├─────────────────────┴──────────────────────────────────┤

│欧盟取消三根支柱的结构,刑事合作被完全纳入欧盟“超国家”的运作框架。 │

────────────────────────────────────────────────────────

转贴于   从对欧盟一体化以及欧盟区域刑事合作的进程分析中可以看出,欧盟逐步扩大对成员国刑事合作影响的三个关键节点分别出现在1992年的《马斯特里赫特条约》、1997年的《阿姆斯特丹条约》以及2007年的《里斯本条约》中。

关于前两个条约的重要影响,前面已分别做出某些分析。总体而言,1992年的《马斯特里赫特条约》通过创立第三支柱,将成员国的刑事合作纳入到欧盟范围内,使欧盟开始对刑事合作施加影响。然而,这种做法的代价是,成员国必须在欧盟理事会达成全体一致后才可以通过相关法律。

当时,要想在欧盟15国内部达成全体一致难度很大,往往需要经过长期的协商,而一旦其中的某一个成员国表示反对,整个决策过程将无果而终。即使法律在经过长期的协商后最终得以通过,也成为多方讨价还价的妥协,导致部分条款令人费解、包括诸多适用的例外、以及相互参照等技术上的勉强处理。这些不足都是“政府间”合作的实质体现,以换取欧盟在立法过程中对成员国施加有限影响,进而暂时达到一种机制上的平衡。

随着欧盟一体化的进一步发展,代表较为先进合作模式的申根机制被纳入欧盟,《马斯特里赫特条约》中的平衡机制被打破。但是,考虑到成员国当时的适应程度有限,1997年的《阿姆斯特丹条约》仍然保留了三支柱的结构,同时开始实施比传统公约更具灵活性的“框架决定”。框架决定保证了欧盟立法最终能被成员国接受,而成员国还可以根据本国情况选择各自的转化模式。于是,在建设“自由、安全与司法的区域”的初期,欧盟与成员国的利益在刑事合作问题上再次达到暂时的平衡。

然而,随着欧盟一体化的迅速发展,第三支柱的协调机制本身限制了框架决定的效力,导致立法上的“民主赤字”以及执行不畅等诸多弊端。为了解决这些难题,2007年的《里斯本条约》彻底将第三支柱纳入第一支柱,在欧盟超国家平台上运行。但是,这意味着成员国主权在很大程度上受到“侵蚀”。

为了打消27个成员国的疑虑,《里斯本条约》为此特别设置了“紧急刹车”条款,规定某个或某些成员国可以紧急阻止适用关乎其切身利益的敏感立法,而其它成员国仍旧可以适用该项立法。对于英国以及爱尔兰这两个普通法系国家,《里斯本条约》为它们保留了原来在《阿姆斯特丹条约》中规定的“选择退出或加入”的机制。于是,欧盟与成员国的利益在刑事合作问题上第三次达到平衡。

总之,欧盟区域刑事合作的进程表明,随着欧盟一体化的发展,成员国的刑事合作逐步被纳入到欧盟的运作框架中。欧盟与成员国在该领域中经历了两次短暂的“动态平衡”后,在2007年的《里斯本条约》中又形成了一次新的平衡。在从1957年到2007年的50年里,欧盟区域范围内的刑事合作从无到有,范围从小到大,最终形成了欧盟这个“超国家”实体掌控的27国的刑事合作局面。

然而,欧洲的有识之士已经指出:“欧盟的一体化进程不能冒进,欧盟目前的法律与政策应当着重解决那些成员国自身再也无力解决的问题,比如全球化的挑战、移民、能源安全以及反恐等事项”。[7]这样才有利于在欧盟与成员国之间形成具有一定稳定性的平衡。因此,任何体制结构的设计也都应当在保障成员国利益的基础上,有助于欧盟权力的行使,进而保障刑事合作顺利运行,并推动欧盟区域刑事合作的良性发展。

【注释】

[1]Gert Vermeulen, Where do we currently stand with harmonization in Europe? Harmonization and harmonizing measures in criminal law, edited by Andres Klip and Harmen van der Wilt, Amsterdan, 2002, pp.65-71; Some critical reflections on the process of harmonization of criminal law within the European , Harmen van der Wilt, Harmonization and harmonizing measures in criminal law, edited by Andre Klip and Harmen van der Wilt, Amsterdan, 2002, pp.80-81.

[2]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.32-33

[3]Dionysios Spinellis, Harmonisation and harmonizing measures in criminal law: Objections to harmonization and future perspectives, Harmonization and harmonizing measures in criminal law, edited by André Klip and Harmen van der Wilt, Amsterdan,2002, p.90; Some critical reflections on the process of harmonization of criminal law within the European , Harmen van der Wilt,Harmonization and harmonizing measures in criminal law, edited by Andre Klip and Harmen van der Wilt, Amsterdan, 2002, p.81.

[4]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.31-32.

[5]Matti Joutsen, The European and the cooperation in criminal matters: the search for balance, HEUNI Paper No. 25, pp.33-34.