期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 新能源与科学工程

新能源与科学工程精品(七篇)

时间:2023-09-22 09:50:39

新能源与科学工程

新能源与科学工程篇(1)

关键词:风力发电;太阳能发电;人才需求;风能与动力工程;新能源科学与工程

作者简介:陈建林(1975-),男,湖南浏阳人,长沙理工大学能源与动力工程学院,副教授;陈荐(1967-),男,湖南衡阳人,长沙理工大学能源与动力工程学院,教授。(湖南 长沙 410114)

基金项目:本文系长沙理工大学教研教改项目(项目编号:JG1236)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)22-0020-03

风电和太阳能发电是我国战略性新兴产业之一,发展风能与太阳能也是我国实现传统化石能源为主过渡为可再生能源和清洁能源为主的必然之举。近年来,我国风电与太阳能发电迅猛发展,对新能源产业人才提出迫切需求。自2006年以来,我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办“风能与动力工程”本科专业;按照2010年《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校又设置“新能源科学与工程”、“新能源材料与器件”等新能源产业相关的本科专业;2013年,根据教育部要求,“风能与动力工程”专业将统一更名为“新能源科学与工程”专业。面对新能源产业发展需求和我国新能源产业人才培养现状,本文对“风能与动力工程”专业过渡为“新能源科学与工程”专业的人才培养模式进行探索与实践。

一、我国风电产业发展现状

1.总体装机情况

自2007年,我国风电装机容量呈高速增长趋势。如表1所示为2001~2012年我国新增及累计风电装机容量(数据来源:CWEA)。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万千瓦,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万千瓦;累计安装风电机组53764台,装机容量达到7532万千瓦;风电并网总量达到6083万千瓦,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。

图1 2001~2012年中国新增及累计风电装机容量

至2012年上半年,我国规划建设的百万千瓦级、千万千瓦级风电基地包括甘肃酒泉基地(首期380万千瓦)、蒙东基地通辽开鲁基地(150万千瓦)、蒙西达茂巴音基地(160万千瓦)、河北承德基地(100万千瓦)、新疆哈密基地(1080万千瓦)的建设项目已部分或全部完成。此外,全国还有6个百万千瓦级风电基地正在组织开展建设前期工作,分别为宁夏贺兰山基地(450万k千瓦)、甘肃武威民勤红沙岗基地(100万千瓦)、吉林四平大黑山基地(170万千瓦)、锡林郭勒基地(300万千瓦)、兴安盟桃合木基地(200万千瓦)、呼伦贝尔基地(250万千瓦)等。

至2012年底,全国累计核准风电项目1651个,累计核准容量9040万千瓦(含国家核准计划外项目517万千瓦),其中内蒙古自治区累计核准容量2084万千瓦,居全国之首。2012年上半年全国风电累计吊装容量6190万千瓦,累计并网容量5572千瓦,在建容量3468万千瓦,并网容量占核准容量的62%。其中内蒙古风电并网容量突破1500千瓦,领跑全国,河北、甘肃、山东、黑龙江、江苏、新疆、山西、广东、福建等省区并网容量也均超过100万千瓦。

2.风力发电投资企业情况

2012年上半年,国电集团新增并网容量190万千瓦,累计并网容量1172万千瓦,继续保持全国风电并网容量首位;华能集团新增并网容量100万千瓦,累计并网容量759万千瓦,居第二;大唐集团新增并网容量101万千瓦,累计并网容量675万千瓦,居第三。五大发电集团累计并网容量3170万千瓦,约占全国并网容量的57%。2012年上半年全国投资企业基本保持稳定发展状态,同比2011年上半年并网容量降低了约16%。表1所示为2012年上半年主要投资企业并网容量统计情况。

3.风电机组制造商情况

大规模风电基地建设,为我国风电机组制造商开拓了广阔的市场。2012 年中国风电新增装机容量排名前二十的企业几乎占据了国内98%的市场份额,其中金风新增风电装机容量最多,达到2521.5兆瓦,占据19.5%的市场份额。2012 年,我国风电新增装机容量排名前三的企业分别为金风、联合动力和华锐。2012年中国风电新增与累计装机排名前二十的机组制造商分别如表2与表3所示。

另外,我国海上风电也取得较大进展。截至2012年底,中国已建成的海上风电项目共计389.6兆瓦,是除英国、丹麦以外海上风电装机最多的国家。我国海上风电开发提供风电机组的制造商中,华锐、金风、Siemens 所占份额较大,机型主要以2MW以上的风电机组为主。

二、我国风电人才需求及培养现状

风电产业的高速增长也带来了风电人才的短缺。我国的风电人才需求主要为三个方向:一是风电开发企业,如国电、华能、大唐、国华、华电、中电投、中广核、华润等下属的风电场,主要从事风电场运行与维护方面的工作;二是风电机组制造商,如华锐风电、金风、广东明阳、国电联合动力、湘电风能、Vestas、上海电气、东汽、Gamesa、GE等,这类企业一般需要高端的风电研发人才;三是风电规划设计或建设单位,主要从事风电场的规划、设计和施工等方面的工作。

目前,我国风电人才培养大体上形成了三个层次的格局:第一梯队是博士、硕士研究生培养,主要由国内各高校及研究机构借助风电领域的课题研究培养和造就一批具有较高学术水平、创新能力的风电领域高层次人才。第二梯队是本科生培养。据统计,自华北电力大学2006年创办我国第一个风能与动力工程本专业以来,包括长沙理工大学、河北工业大学、内蒙古工业大学等,全国已开设风能与动力工程本科专业学校有16所(2013年起,“风能与动力工程”专业更名为“新能源科学与工程”专业)。第三梯队是高职生。高职院校主要培养从事风电机组制造、风电场运行与维护的一线技能型人才。

从长沙理工大学(以下简称“我校”)首届风能与动力工程专业毕业生就业考研与出国情况来看,毕业生出现不同层次的走向。截至2013年3月20日,风能与动力工程专业2009级毕业生63人,已签约49人,就业走向主要为中国大唐集团、国电集团、华能集团、电力投资集团、华润集团等发电企业的下属新能源公司,少部分为风电机组制造商和电力建设单位;读研7人,分别被华北电力大学、中南大学、湖南大学等大学预录取;出国深造2人,分别为丹麦科技大学和德国汉诺威大学预录取。从目前人才需求角度来看,由于近几年风电项目的迅速扩张,风电行业对风电场运行与维护的技能型人才有较旺盛的需求。

在风电大规模发展的同时,近几年我国太阳能发电也迅速扩张。截至2012年底我国累计光伏装机容量达到7.5GWp,预计2013年将新增光伏装机容量为10GWp,计划2015年新增光伏装机容量为40~50GWp,2020年新增80~100GWp。风电和太阳能发电作为新能源中两支主力军,出现并驾齐驱的局面,产业发展必然对专业人才提出迫切需求。2013年,教育部统一将“风能与动力工程”专业更名为“新能源科学与工程”专业。本专业也将面向更宽广意义的新能源产业需求,对专业培养方案进行调整。

三、新能源科学与工程专业人才培养模式的探索与实践

本科教育既是培养工程技术人才的中坚力量,又承担着为行业高端人才培养打基础的重要任务。本科生的优势在于理论基础、思维方法和发展潜力,但缺乏的是技术细节方面的训练。因此应始终以培养学生“基础理论扎实、工程实践能力与创新能力强为目标。从新能源产业自身发展角度来说,需要一批具有宽广知识体系、能够引领新能源技术发展的高水平创新型复合人才出现。新能源科学与工程本科教育应该既注重专业的基础性,又要注重工程实践性。为此,我校能源科学与工程专业人才培养模式在以下几方面进行了探索与实践。

1.以“厚基础、宽口径、强能力、高素质”为原则确立人才培养目标

2009年首届招生以来,本专业依托本校能源电力优势学科,立足新能源国家战略性新兴产业,面向风电产业人才需求,确定了“培养德、智、体、美等全面发展,基础扎实,知识面宽,有较高的综合素质、工程实践能力和创新能力强,具备较强的计算机应用能力和较高外语水平,系统掌握风能与动力工程专业基础理论和基本知识,能胜任风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风力发电项目开发等风能与动力工程专业的技术与管理工作,并能从事其他相关领域的专门技术工作应用型高级工程技术人才”的人才培养目标。2011年,本专业被确定为湖南省省级特色专业。2013年,根据教育部对本科专业整理工作的统一部署,将“风能与动力工程”专业将更名为“新能源科学与工程”专业。本着“厚基础、宽口径、强能力、高素质”的原则,对专业培养方案做了相应的调整,但仍然保留“风能与动力工程”专业的特色,以风力发电为重点,涵盖太阳能光伏/光热发电等新能源知识体系,培养具有宽厚理论基础和创新精神、实践能力强的应用型高级工程技术人才。

2.注重基础性和实践性相结合设置课程模块与培养环节

根据学校的特色和优势,编制风能与动力工程人才培养计划,共开设必修课35门,开设选修课23门,现已开出课程门数为58门,学生需选修33学分选修课程,选修课在总学分中的占比为19.6%。设置了理论力学、材料力学、风力机空气动力学、机械设计基础、电机学、电路理论、自动控制原理、风力发电原理、光伏发电原理与应用、太阳能热利用原理与应用等主要理论课程和计算机辅助设计、电工电子技术、微机原理与接口技术、风资源测量与评估、风电机组设计与制造、风电机组控制与优化运行、风电场电气工程、海上风力发电等技术类课程;以金工实习、电子工艺实习、机械设计课程设计、风电场电气工程课程设计、风电机组设计与制造课程设计、风电场认识实习、检修拆装实习、仿真实习、运行(毕业)实习、毕业设计(论文)等作为主要实践教学环节。风能与动力工程专业在教学环节的设置上实践教学贯穿全程。共4次集中实习,课程模块与培养环节关系如图2所示。

图2 风能与动力工程专业课程模块与培养环节关系

3.在工程实践中培养创新意识和创新能力

创新型人才是支撑和推动新能源产业发展的主要动力。创新源于实践,在工程实践中培养创新意识和创新能力。长沙理工大学经过多年的探索与实践,构建了培养“具有创新精神的应用型人才”的学生能力结构体系、能力培养的实施方案、实践教学体系以及管理模式,提出了“工程基础训练+工程创新训练+大工程意识训练”的工程教育模式。基于工程教育理念,形成了“三层次、四模块、三结合”的实践教学体系,即实验、实习、设计等主要实践教学环节按基础训练、提高训练、综合训练三个层次进行系统设计;将实践教学内容分为实验、实习、设计、课外实践四个模块;采用课内外、校内外、第一课堂与第二课堂三结合的方式组织实践教学。

新能源科学与工程专业是一个实践性很强的专业,在办学过程中十分重视实践教学,并建立了稳定的校内校外实习实训基地,通过加强实践教学培养学生的创新意识和动手能力。

(1)校内实习基地。建立校内“风电机组运行特性分析实验室”、“风力机变桨控制实验室”、“风力机偏航控制实验室”、“风力机组检修拆装实验室”、“大型风电场运行仿真实验室”、“风力机叶片振动特性实验室”、“风力机设备腐蚀与磨损实验室”、“光伏发电实验室”等专业教学实验室,为专业实验课、认识实习、拆装实习、仿真实习提供良好的条件。

(2)校外实习基地。根据本专业人才培养目标和要求,制定与社会发展需要相适应的人才培养方案,与大唐华银城步南山风电场、华电郴州仰天湖风电场、中电投九江长岭风电场、大唐漳浦六鳌近海风电场、湘电集团有限公司、湖南兴业太阳能有限公司、北京木联能软件技术有限公司等省内外相关企业共建“风能与动力工程”专业,形成学校与企业产、学、研全面合作的长效机制。风电专业骨干教师共18人次先后到内蒙古华电新能源辉腾锡勒风电场、福建大唐漳浦六鳌近海风力发电场、河南南阳方城风电场、新疆电力设计院、大唐甘肃酒泉风电场等风力发电企业进行技术交流和科技服务。风电专业学生在华电郴州仰天湖风电场、宁夏贺兰山风电场与太阳山光伏电站等基地开展了丰富的暑期实践活动。依托专业实验室,学生开展了大量科技创新实践活动,专业教师指导学生开展了部级(共4项)、校级(4项)“大学生研究性学习与创新性实验项目”的研究工作;参加全国大学生节能减排社会实践与科技竞赛、“挑战杯”湖南省大学生课外学术科技作品竞赛等各类科技性竞赛活动,获得较佳的成绩。

4.转变技术类或实践类课程的学习过程

本科教育的缺失是职业技能或技术细节方面的训练。理论知识宽广但实践动手能力差是目前本科教育存在的较普遍现象。本科毕业生感觉学了很多东西,又感觉什么也没有学到,学到的都是一些理论或概论性的东西。相反,高职院校的职业技能针对性很强,注重实际动手操作能力的培养,而弱化理论知识体系的教育,相比于本科生,高职生在职业技术方面更容易上手。但如果本科生像高职生那样培养,势必过于狭隘,也违背了大学本科教育的初衷。本科生的优势就在于理论基础、思维方法和发展潜力。因此,本科生的理论基础课程的学习可以沿用传统的书本教学为主,培养思维方法;技术类或实践类课程学习则应放弃那种“先书本,再实践”或“只有书本,没有实践”的教学方式,而应遵循“在实践中学习”的原则。针对不同的专业特点有选择性地开设或加强职业技能型的课程。对于本专业来说,则应加强计算机绘图、电气与控制、模拟仿真、机械设计与制造等模块的技能培养。如此,本科生则不但具有宽广的理论基础,而且具有较强的职业适应能力。

四、结论

风电与太阳能发电作为我国战略性新兴产业,呈现蓬勃生机的发展局面。新能源产业发展为新能源科学与工程专业毕业生提供了广阔的就业空间,同时本专业人才也必将成为推动新能源产业发展的动力。本专业应以“工程实践能力”为核心,夯实理论基础,强化实践能力和创新意识的培养,支撑新能源产业的发展。

参考文献:

[1]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].风能,2013,(3).

[2]李俊峰,蔡丰波,唐文倩,等.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.

[3]袁剑波,郑健龙.工程实践能力:培养应用型人才的关键[J].高等工程教育研究,2002,(3).

[4]李录平,张拥华.基于工程意识和能力培养的理工院校实践教学改革与探索[J].黑龙江教育,2010,(4).

[5]李录平,张拥华,周键,等.高等学校实践教育多维度理念探析[J].中国大学教育,2011,(11).

[6]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31).

[7]姜玉立,何伟军.我国风电人才培养现状、问题及对策[J].中国电力教育,2012,(24).

新能源与科学工程篇(2)

关键词:新能源科学与工程;风力发电;太阳能发电;人才需求;课程体系

中图分类号:G642.3 文献标识码:A 文章编号:1007-0079(2014)26-0046-02

新能源属于我国战略性新兴产业,也是国民经济发展的基础性产业。面对环境污染与能源危机的双重压力,全球都在加快推进新能源产业发展。规模化开发与利用太阳能、风能、生物质能、地热能等为代表的新能源,实现我国传统化石能源过渡为清洁、可再生能源为主的能源结构是必然之举。中国将大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%。特别是近年来风力发电和太阳能发电作为新能源电力的两支主力军迅猛发展,出现并驾齐驱的局面,新能源电力产业的蓬勃发展对新能源专业人才提出迫切需求。在这种形势下,怎样培养适应新能源产业需求的人才,既有巨大的机遇,也有很大的挑战性。

为适应我国战略性新兴产业的需要,自2006年以来我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办风能与动力工程本科专业;2010年教育部紧急下达《关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校设置了新能源科学与工程、新能源材料与器件等新能源产业相关的本科专业。但怎么样才能更好地为国家发展新能源产业起到人才培养的支撑作用,培养什么样的新能源产业人才以及如何培养,怎么样结合学校自身的特色与资源优势开设专业方向和课程体系,是当前面临的主要课题。

一、我国新能源电力产业的发展形势

自2007年,我国风电装机容量呈高速增长趋势。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万KW,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万KW;累计安装风电机组53764台,装机容量达到7532万KW;风电并网总量达到6083万KW,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。2013年我国风电又新增风电并网容量1492万千瓦。2014年我国风电发展目标为1800万千瓦。根据2014年国家能源局印发“十二五”第四批风电项目计划显示,列入“十二五”第四批风电核准计划的项目总装机容量为2760万千瓦(27.6GW)。从2011年开始,我国为把握风电发展节奏,促进产业健康有序发展,国家能源局开始制定风电项目核准计划,前三批风电核准规模分别为2683万千瓦、1676万千瓦(后又增补852万千瓦)和2797万千瓦。至此,“十二五”以来拟核准的风电项目规模累计已超过1亿千瓦。

在风电大规模发展的同时,自2009年以来我国太阳能光伏发电也迅速扩张。截至2012年底,我国累计光伏装机容量达到7.5GWp;截至2013年底,中国光伏发电新增装机容量达到10.66GWp,光伏发电累计装机容量达到18.16GWp。2013年全球光伏新增装机39GWp,比2012年增长28%。2013年,就新增光伏装机而言,中国、日本和美国成为世界上最大的三个市场,而德国则退居第四。中国2014年光伏发电的发展目标是全年新增光伏装机14GWp。根据《太阳能发电“十二五”规划》,中国光伏发电装机容量与发展目标如表1所示。

在太阳能光伏发电快速成长的过程中,全球太阳能光热发电也正以惊人的速度发展。截至2013年底为止,美国已有5座大型太阳能光热发电站投入运行,规模都在100MW以上。其中美国NRG能源公司联合Google、Brightsource公司投资22亿美元在加州莫哈维沙漠建设的太阳能发电站于2013年成功发电,装机规模为392MW,这是目前世界上规模最大的塔式电站。美国能源部SunShot计划光热发电的研发目标是到2020年实现75%的成本削减,在不依赖政策补贴的前提下将光热发电推至每千瓦时6美分甚至更低的水平。欧洲早在2009年12家跨国公司在德国慕尼黑签署协议,计划投资4000亿欧元在北非建立太阳能热发电厂,10年后开始供电,据估计到2050年,该项目在北非的发电厂将满足欧洲15%的用电需求,这也是目前世界上拟建中太阳能发电厂同类中最大的太阳能项目。此外,西班牙、南非、印度、智利、摩洛哥、以色列、沙特、阿联酋、科威特以及澳大利亚都已经开始了大规模光热发电的兴建,印度已有50MW规模的电站并网运行。中国在北京延庆县八达岭建设了首个规模为1MW的太阳能热发电示范电站,于2012年8月成功发电,但还没有商业化规模电站。可以预见,随着国外太阳能光热发电公司进入中国和国内太阳能光热发电技术的研究进展,中国未来十年将在太阳能光热发电方向上大有作为。

二、新能源科学与工程专业人才培养的定位

2012年,教育部将原风能与动力工程和新能源科学与工程合并统一改为新能源科学与工程。相应地,风动专业也将面向更宽广意义的新能源产业需求,需要对专业培养方案进行调整;特别是更名为新能源科学与工程,就业的主战场不能较好地定位,致使专业课程体系达不到市场的期望值,对该专业课程体系怎样设计仍需继续研究探讨。从用人单位和学生自身需求上来看,专业课程设置和职业能力培养占有很重要的位置。其主要原因有两个:一是我国经济水平还欠发达,从读大学所付出的成本上来看,大多数学生期望接受到职业技能方面的训练;二是用人单位企盼招收到适合于工程技术需要的、能够尽快进入工作角色的应用型、技能型、复合型人才。

对于专业设置,国内其它专业的普遍做法是根据就业渠道下设专业方向。专业必须有支撑产业为基础才会有生命力。因此,本文提出“以学科为基础设置大类专业,以产业为支撑开设专业方向”的观点。新能源科学与工程专业应该在强化“工程实践能力培养”的基础上,必须以风力发电、太阳能发电作为就业主战场,分别面向风电机组设计与制造、风电场工程、太阳能发电工程三个主要领域,设置各具特色的专业方向的课程体系。

三、新能源科学与工程专业课程体系的优化

新能源科学与工程专业自2010年教育部批准开设以来,全国已有34所高校开设此专业。2013年5月19日,“首届全国新能源科学与工程专业建设研讨会”在华北电力大学召开,指出课程体系是否合理、课程内容是否先进直接关系到人才培养的质量。现阶段我国系统培养新能源科学与工程专业本科生、研究生的工作才刚刚起步,对于相应课程体系的构建正处于探索阶段。

根据国内部分高校新能源科学与工程专业公布的培养方案,其课程体系设置与专业定位(如表2所示)。总体上来看,各高校的课程体系呈现自由发展、特色发展的局面,这有利于各学科交叉融合,促进新能源产业发展,但同时应注意一些专业基础课程的共性、相通性问题。课程体系可以大致分为两大类:一类是遵循厚基础、宽口径的原则,强调能源类基础理论课程教学(A类),但专业核心课程各高校有所偏重;另一类则是专业方向针对性较强,更强调职业能力培养(B类)。例如风动方向加强了力学、机械、电气方面的课程模块,太阳能方向则强调了半导体物理、材料科学的课程模块,但缺少光学、热学、电气工程方面的教学。

表2 国内部分高校新能源科学与工程专业的课程设置与专业定位

学 校 专业课程体系 专业定位

A类:

浙江大学、华中科技大学、西安交通大学、中南大学、重庆大学、上海理工大学等 专业基础课程:工程热力学、工程流体力学、传热学、应用电化学、固体与半导体物理、材料科学基础、工程制图、机械设计基础、电工电子技术、自动控制原理等

专业核心课程:可再生能源和新能源概论、太阳能电池原理与制造技术、太阳能光伏发电系统与应用、太阳能热利用原理与技术、风力发电原理、生物质能转化原理与技术、核能发电概论、氢气大规模制取的原理和方法、能源与环境、燃料电池概论、薄膜材料与器件、半导体材料、新能源材料、热泵技术、能源低碳利用技术、Matlab及其工程应用、CFD软件应用等 具备热学、力学、电学、机械、自动控制、能源科学、系统工程等理论基础,掌握可再生能源与新能源专业知识

B类1:

华北电力大学、河海大学、长沙理工大学、沈阳工业大学等 专业基础课程:理论力学、风力机空气动力学、材料力学、机械设计基础与CAD、、画法几何与机械制图、电机学、电路原理、模拟电子技术、数字电子技术、电机学、电力电子技术、自动控制原理、微机原理与接口技术等

专业核心课程:新能源与可再生能源概论、风力发电原理、风资源测量与评估、风电机组设计与制造、液压与气压传动、风电场电气工程、风电机组控制与优化运行、风力机组状态监测与故障诊断、风电机组测试与认证、风电场施工与管理、风电场建模与仿真、风力机设备材料、新能源材料、近海风力发电、风能与其它能源互补发电系统、风电场并网、风力发电机组计算机辅助设计、风电场规划与设计等 面向风电机组设计与制造、风电场工程等

B类2:

福建师范大学 理论物理基础、材料科学基础、固体物理学、材料分析方法与技术、材料热力学、单片机技术、电工电子技术、工程制图、磁性材料与器件、光电子材料与技术、太阳电池物理、光伏工程与技术、光热工程与技术、固体发光材料、半导体材料、电化学基础、磁熵变材料与磁制冷技术、传感材料及其传感技术、X射线分析技术、储能材料与技术、先进功能材料、光电薄膜与器件、锂离子电池原理与技术、材料设计与模拟计算、纳米材料与应用、新型能源材料与技术、太阳能光热转换理论及设备、太阳能热利用、薄膜材料与技术、光源设计与应用技术等 面向太阳电池及其它新能源材料技术研发

应当指出,大学的专业课程体系不可能完全为企业的需求而量身定做;即使课程体系相同,但由于学校资源的差别和培养方式、途径及方法的不同,人才培养的类型、质量与层次也会存在很大的差别。因此新能源本科专业教育主要考虑人才质量的基础性、技能型、创新型、复合型与可拓展性。专业基础课应该以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程。

以长沙理工大学(以下简称“我校”)新能源科学与工程专业为例,应针对风机制造、风电场、太阳能发电站三个就业领域,结合学校现有学科与专业优势,培养目标定位于既具有较宽广、厚实的专业基础,又有专业方向的特长。为此,针对新能源产业的发展需求和我校的学科优势,新能源科学与工程专业可增设太阳能发电工程方向。主要面向太阳能光伏、光热发电站及并网工程,同时兼顾太阳能领域的技术研发,为太阳能光热发电储备人才,开设材料科学、光学、热学、电气工程等模块的课程,主干学科为材料科学、电气工程,使学生具有材料科学、光学、热学理论基础,具备电气工程的职业能力。目前我校已有的材料科学与工程、光电信息科学与工程、热能与动力工程、电气工程及自动化专业为太阳能方向的开设奠定了基础。

四、结论

当前,我国风电、光伏发电呈规模化发展的趋势,太阳能光热发电也未雨绸缪。为适应新能源电力产业蓬勃发展的需要,新能源科学与工程专业应该“以学科为基础设置大类专业,以产业为支撑开设专业方向”。在风力发电、太阳能发电专业方向上,遵循厚基础、宽口径的原则,在强化“工程实践能力培养”的基础上,分别面向风机制造、风电场工程、太阳能发电工程三个主要领域,专业基础课应以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程体系。新能源产业属于国家战略性新兴产业,也是国民经济发展的基础性产业;面对环境污染与能源危机的双重压力,全球都在加速发展新能源产业。应当抓住这一有利时机,整合各校相关的资源优势,推动新能源科学与工程专业人才培养的发展,打造新能源专业品牌。

参考文献:

[1] 熊怡.论道学科学专业建设,共话新能源人才培养――首届全国新能源科学与工程专业建设研讨会综述[J].中国电力教育,2013,

(21):26-28.

[2] 熊怡.我国新能源人才培养的道与术[J].中国电力教育,2013,

(21):38-41.

[3] 陈建林,陈荐. 新能源科学与工程本科专业人才培养模式探究[J].中国电力教育,2013,(22): 20-25.

[4] 杨晴,陈汉平,杨海平,等.华中科技大学:新能源科学与工程专业建设探索与实践[J].中国电力教育,2013,(21):29-31.

新能源与科学工程篇(3)

关键词:新能源科学与工程;卓越工程师计划;实践教学;改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)01-0264-02

一、引言

近年来,我国的能源短缺与环境污染等问题成为制约我国经济又好又快发展的瓶颈,随着产业结构调整与培育新兴战略产业步伐加速,新能源产业的战略地位将愈加突出[1]。新能源领域的人才培养日益受到政府、高校和社会各界的广泛重视。目前,我国高校在新能源专业设置和新能源产业专业人才培养方面还落后于发达国家[2]。

我国工程教育的规模位居世界第一,但不是人才培养强国,人才质量难以满足需求。在瑞士洛桑的世界竞争力报告中,中国合格工程师的数量和总体质量在参加排名的55个国家中仅列第48位[3]。为加快我国向工程教育强国迈进,提升学生的工程实践能力,教育部联合其他有关部门共同实施“卓越工程师教育培养计划”。随着国家“卓越计划”的提出,在实践教学培养方面,对新能源人才的培养也提出了更高的要求[4]。作为传统能源特色高校的长沙理工大学,新能源学科和专业发展面临着许多新的挑战,由风能与动力工程专业调整转变过来的新能源科学与工程专业人才培养面临诸多现实和复杂的问题,实践教学作为其中的一个重要环节,必须得以及时解决。

本文首先分析当前我国新能源科学与工程专业实践教育状况,然后以长沙理工大学能源与动力工程学院(以下简称能动学院)新能源科学与工程专业的实践教学为例,结合近年来的实践教学经验和效果,探讨了改革的具体思路和措施,提出该专业的实践培养方案改革。

二、现状与问题

目前,我国从事新能源产业的技术骨干大多数是从其他行业转行过来的,他们普遍缺少新能源方面的专业系统培训和技术学习。具备突出实践创新能力的新能源专业人才尤为短缺,已经影响了我国新能源产业的健康发展。业内专家认为,中国新能源专业人才的创新化培养已刻不容缓[5]。《中华人民共和国可再生能源发》第三章第十二条明确指出:国务院教育行政部门应当将可再生能源知识和技术纳入普通教育、职业教育课程。

新能源科学与工程专业面向新能源产业,是一门涉及机械、流体、材料、电气和控制等多学科的新兴行业。这些人才不但能够将各学科知识结合起来,而且熟悉新能源应用技术的系统过程,但这些知识能力只有在长期的实践教学中进行培养积累才能形成[1]。实践教学是巩固理论知识和加深理论认识的有效途径,在高等学校中大力培养卓越工程师已经倡导多年,各高校通过各类项目资金等对实验室、实习基地等进行了升级,改善了学生实践实习的条件,促进了学生实践能力的提高,然而依然存在如下问题制约着卓越工程师人才的培养:

1.人才培养方案不明确:在我国,新能源科学与工程专业是一个较新的专业,开设的学校较少,其规模化人才培养才刚刚起步,人才培养模式和培养方案正在探索研究阶段,没有成熟的实践教学方案和模式可以借鉴。

2.实践教学软硬件条件缺乏:近几年,高校青年教师都是从学校到学校的培养模式,大部分缺少工程训练背景,制约了学生工程实践能力的提高和创新意识的培养。由于新能源类课程难度大,在一些专业实验、课程设计上往往缺乏足够硬件条件,学生实践操作能力得不到有效的训练,甚至有些关键环节仅停留在“认识层次”,而没有上升到真正意义上的“应用层次”。在这种环境下进行实践教学,学生得不到应有的学习和锻炼。

3.实践教学体系不健全:实践教学是卓越工程师人才培养的重要环节,对学生的创新能力的培养具有重要作用。目前学生培养方案只是注重书本知识,而对实际工作中起重要作用的工程实践技能的培养是较少。显然这种只注重传授学生“纸上知识”的培养方案是不健全的。

4.实践教学管理体制不完善:实践创新是学生自主学习和探索的活动,其实践内容和时间具有一定的灵活性和不确定性,无法按照十分严格的时间制度进行,这就需要灵活的教学管理制度。同时实践教学不仅在校内进行,还时常需要到企业进行实践活动,涉及的管理单位和管理人员较多,需要一个完善的责任制度和安全保障制度。

三、建议与对策

卓越工程师培养目标应体现工程知识、工程素质、工程能力。实践教学目的就是培养学生的专业实践能力和创新精神,所以学校以企业需求为设计主线,积极开展校企合作、整合校内与校外资源、改革与发展并重,推进工程实践人才的培养工作。

1.校企联合制订培养计划,共同开发人才资源。在本科生培养计划方案制定或修订过程中,与企业充分沟通,结合实际需求制定详细的培养方案。长沙理工大学在制定培养方案前也对大唐福建漳州六鳌近海风电场、内蒙古华电辉腾锡勒风电场等新能源企业进行了考察和交流,收到了良好的效果。另外长沙理工大学具有传统的能源电力行业优势和特色,与大唐湖南分公司、湖南省电力公司等企业联系紧密,在学生实践教学方面开展了一系列合作,如毕业课题来自企业的实际问题,学生实施双导师制等。

企业提供给学生的是一个系统而真实的实践环境,所有实践项目都按生产环节来安排。今后学校、企业和学生可以签订三方协议,企业在实习过程中对学生进行考察,承诺优先选用优秀人才,实现企业人才需求与学校人才培养的深度融合。

2.深入实施教师发展工程,加强实验室和实习基地建设。针对实践教学过程中教师工程能力的问题,可以采取以下措施:一是引进新教师时,优先考虑具有工程实践经验的人选;二是大力推进青年教师工程化,学院每年派遣一定数量的青年教师到相关企业接受“工程化”培训,为此长沙理工大学将青年教师的工程化纳入职称评定的基本条件;三是通过加强学校和企业之间的合作研究,提高学校青年教师的实践能力;四是聘请校内具有丰富工程经验的老教师,对青年教师进行指导和培训;五是从企业中聘请富有教学经验的高级工程师充实教师队伍,长沙理工大学能动学院依托湘电风能等企业的资源,聘请了多位高级工程师为本科生讲学。

建设创新实践基地是开展项目学习的硬件支撑和条件保障,可以从多方面加强建设:(1)整合校内资源,争取各级政府的支持,增加实验室建设投入,建立实践教学中心,大力推进开放式教学,教学场地、教学设备、师资均可共享,加大实践教学平台开放力度;(2)利用长沙理工大学在电力行业的影响力,通过吸引社会资源,联合企业单位,以产学研为切入点,共建实践教学基地;(3)利用长沙市麓谷大学生创业园区,开展创新创业实践活动。

3.改革教学方法和考核方式,积极开展科技创新与实践活动。着力推动以基于实践问题、项目为背景、面向企业需求的教学方法,建构实践教学的新模式。在考核方式上,改进传统的试验报告或笔试考核的评价方式,主要考察学生的应用实践能力,采取现场解决问题的模式进行考核。

通过鼓励学生参加各种科技创新竞赛与社会实践活动,培养大学生的实践能力。长沙理工大学能动学院积极承办各类竞赛,也鼓励学生参加全国大学生节能减排社会实践与科技竞赛、全国大学生挑战杯科技竞赛、以及学校组织的大学生创新性实验计划项目评比等活动。为此长沙理工大学能动学院还专门成立的大学生科技创新中心,聘请了经验丰富的老师专门负责,效果显著。

4.创新实践教学管理。加强实践教学管理,特别是加强行业实践阶段的管理、建立行业实践管理保障机制,是实践教学体系建构成功的关键。建立新能源科学与工程专业的实践教学网络平台,将基础实验和专业实验的实践教学说明书、多媒体课件、教学方式、仪器设备操作规程、教学科研成果等资源全部共享到网络平台上,实现优质资源的共享。

学生进入企业实践,建议签订学校、企业、学生三方协议,购买保险。在实习过程中采取“双导师”制,校内由专业教师负责,行业导师由企业高级技术人员或专家担任。实施动态和全过程的监控,加强教学过程评价,在提高学生能力的同时,及时分析评价信息,发现问题并提出整改建议,完善教学管理机制。

结语

当今社会,人力资源越来越成为推动经济社会发展的战略性资源。国家提出了培养卓越工程师的战略思想,这对新能源专业人才培养提出了更高的要求。探索新能源专业人才培养模式是一项长期复杂的系统工程。学校必须紧跟时代和企业的需求,不断地改进实践培养方案,不断地升级教学所需的“软件”和“硬件”,不断地加强实践教学管理,从而培养出更多符合生产力发展需求的卓越工程师。

参考文献:

[1]陈学俊.对能源科学与工程发展的若干建议[J].院士与学部,2005,20(6):451-455.

[2]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31):31-33.

[3]徐世军,范伟,黄贤英.面向卓越工程师培养的专业课程教学实践[J].计算机教育,2013,(13):22-25.

新能源与科学工程篇(4)

物联网工程、智能电网信息工程:

共掀IT新浪潮

“物联网”被世界公认为是继计算机、互联网与移动通信网之后的世界信息产业第三次浪潮,被列为国家重点发展的战略性新兴产业之一。物联网依托IT技术,让孤立的物品(冰箱、汽车、设备、家具、货品等)接入网络世界,让物与物、人与物之间能沟通交流。目前,物联网技术开始运用于智能交通(如公交实时查询、智能打车、实时交通指挥)、环境保护(如污染源实时监控)、公共安全(如周界安全防范系统)、平安家居(如实时监控报警系统)等领域。

智能电网是将物联网技术充分应用到电力系统,从而使电网运行更加可靠、安全、经济、高效,满足更大的用电需求,容许各种不同发电形式的接入等功能。物联网作为“智能信息感知末梢”,在线监测和实时掌控电网各个环节重要运行参数。从发电环节的接入到检测,变电的生产管理、安全评估与监督,以及配电的自动化、用电的采集,还有营销这方面都要采用物联网技术。国家电网已经确定了2020年全面建成智能电网的目标。

为了大力发展物联网、传感网和智能电网,培养更多的相关人才,教育部在2010年批准设置了“物联网工程”“智能电网信息工程”这两个与物联网技术相关的专业。

物联网工程专业

物联网工程专业主要培养具有扎实的物联网专业知识,掌握物联网应用技术、具备物联网工程项目的规划和施工管理、物联网设备安装与调试、物联网应用平台设计与开发、物联网维护与管理、物联网设备营销与技术支持等职业能力和素质的高技能人才。

特色课程:物联网工程概论、高性能网络计算、物联网信息安全。

就业去向:主要在电力、能源、交通、医疗、贸易等与物联网相关的企业和政府管理部门,从事物联网相关的电路硬件(如无线传感器)开发、维护,网络部分(如通信架构、网络协议和标准、信息安全等)的开发、管理与维护。

我国开设该本科专业的高校较多,目前已超过100所,考生报考时可优先选择这些专业实力强的学校。

推荐院校:北京邮电大学、南京邮电大学、天津理工大学、北京科技大学、哈尔滨工业大学。其中,天津理工大学为了利用和借鉴台湾电子技术领域的先进经验,培养方案采用“3+1”联合培养,学生大一、大二在天津理工大学学习,大三到台湾中华大学继续学习,大四回到天津理工完成毕设,毕业后颁发天津理工大学的学士学位证书。

智能电网信息工程专业

智能电网信息工程专业主要培养掌握智能电网相关的理论知识,在新能源发电与智能接入技术、电网智能调度与控制技术、电能计量与监测、计算机与网络技术等方面有专长,可以在网络化、信息化、智能化电气系统领域从事研究、开发、设计、运行维护与管理等工作的高级工程技术人才。

特色课程:自动控制理论、电机学、电力系统分析、电力电子技术、智能电网技术。

就业去向:主要在电网公司、发电公司、科研设计院、高等院校等相关行业或部门,从事设计、开发、生产运行与管理、科学研究、技术支持等工作。

推荐院校:华北电力大学、南京理工大学、重庆邮电大学、青岛科技大学。

物流管理、物流工程:

经济发展的“加速器”

《物流术语》中提到:物流是“物品从供应地向接收地的实体流动过程。根据实际需要,将运输、储存、搬运、包装、流通加工、配送、信息处理等基本功能实施有机结合”。在国际上,物流产业被认为是国民经济发展的动脉和基础产业,其发展水平成为衡量一个国家现代化程度和综合国力的重要标志之一。随着世界经济的高速发展和全球化趋势的日益突出,现代物流理论和技术已在发达国家得到了空前的应用和发展,并产生了巨大的经济效益和社会效益。面对我国加入WTO后所面临的机遇与挑战,引进和发展现代物流理论和技术,培养现代物流经营管理的高级人才,已成为当务之急。因此,现代物流业是我国“朝阳产业”,有很广阔的发展前景,国家对物流专业的人才需求很大。下面为大家介绍物流行业的两个热门专业,物流管理和物流工程专业。

物流管理专业

物流管理专业主要学习经济、会计、贸易、管理、法律、信息资源管理、计算机等方面的基本理论和专门知识,培养具有一定的物流规划与设计、物流管理、物流业运作等能力,能在经济管理部门、贸易公司、物流企业从事政策制定,物流业运作管理应用型、复合型、国际化的物流管理人才。

特色课程:物流规划与设计、采购与供应管理、采购项目管理、运输管理、仓储管理、配送管理、包装学、采购决策与库存控制、现代物流管理学、电子商务与物流系统等。

就业方向:毕业生可以去各级经济管理部门和工商企业,从事物流管理工作和与物流相关的铁路、航空、港口、仓储等管理和技术工作。也可以去一般企业(工厂、贸易公司)里做物流工作(比如仓库收发货、保管、计划、采购、运输管理、进出口关务),或去物流企业里工作(比如销售、客服、物流咨询策划)。

推荐院校:北京工商大学,北京物资学院,南开大学,北京交通大学。由于国外的物流行业发展早,教学理念、师资等较国内更优,如果有意出国继续深造,可以考虑报考新加坡东亚管理学院、美国麻省理工学院、密歇根州立大学。

物流工程专业

物流工程专业培养具备物流学、运筹学、管理学、交通运输组织学、运输经济学、运输商务管理等基本理论和基本知识,能在物流企业、交通运输企业及机械或电子制造企业、科研院所、政府机构等部门,从事物流系统规划与设计、物流技术设备和物流自动化系统的设计与集成、物流系统运行与维护的复合型以及应用型的高级工程技术与管理人才。

特色课程:管理学、运筹学、工程图学、机械设计基础、生产与库存控制、供应链管理、物流工程、物流机械技术、国际物流学、电子商务概论、物流系统工程、运输会计学等。

就业方向:在各类制造单位、商贸、物流企业,从事物流系统分析设计、物流系统运营管理、物流项目规划建设等相关技术及管理工作,也可在专业咨询公司、教育培训机构、相关政府部门以及其他社会团体从事物流相关工作。

推荐院校:北京交通大学、天津理工大学、武汉理工大学、浙江大学

通过对以上两个专业的介绍,我简单总结下它们的区别:

一、物流管理专业应用管理学的基本原理和方法,对物流活动进行计划、组织、指挥、协调、控制和监督,使物流系统的运行达到最佳状态,实现降低物流成本、提高物流效率和经济效益的目标。物流工程专业是以物流系统为研究对象,从工程和技术的角度,研究物流系统的规划设计与资源优化配置、物流运作过程的计划与控制以及经营管理的工程领域。

二、物流管理专业以管理科学与工程为学科基础,同时跨工商管理和经济学学科;物流工程专业以管理科学与工程为学科基础,同时跨交通运输类学科和机械类学科。

三、物流管理专业偏向文科性质,授予管理学学位;物流工程专业侧重理工科,授工学学位。

新能源材料与器件、资源循环科学与工程:

将低碳进行到底

根据美国能源信息署预测,2020年世界能源需求将达到128.89亿吨油当量,2025年将达到136.50亿吨油当量。近年来,受石油价格上涨、全球气候变化的影响,可再生能源开发利用日益受到国际社会的重视,各国都纷纷提出了明确的发展目标,制定了支持可再生能源发展的法规和政策,我国亦是如此。十报告提出,“推动能源生产和消费革命,控制能源消费总量,加强节能降耗,支持节能低碳产业和新能源、可再生能源发展,确保国家能源安全”。在这样的大背景下,新能源产业市场前景广阔,属21世纪的朝阳产业之一。接下来为大家介绍两个与新能源技术相关的两个专业:新能源材料与器件专业和资源循环科学与工程专业。

新能源材料与器件专业

新能源材料与器件专业重点研究与开发新一代高性能绿色能源材料、技术和器件(如通讯、汽车、医疗领域的动力电源),发展新能源材料(新型锂离子电池材料、新型燃料电池材料和新型太阳能电池材料)的学术研究方向。新能源技术是21世纪世界经济发展中最具有决定性影响的五个技术领域之一,新能源材料与器件是实现新能源的转化和利用以及发展新能源技术的关键。新能源材料与器件本科专业,是由材料、物理、化学、电子、机械等多学科交叉,以能量转换与存储材料及其器件设计、制备工程技术为培养特色的战略性新兴专业。

新能源材料是实现新能源的转化和利用以及发展新能源技术的关键材料,该类材料包括晶体硅材料、硫系化合物半导体材料、纳米材料等。新能源器件是可以直接或经转换成人类所需的光、电、热、动力等任何形式能量的载能体,主要包括太阳能、风能、核能等形式的储能器件。

就业方向:本专业毕业生可以攻读“资源循环科学与工程”“微电子学与固体电子学”“电子科学与技术”“电子工程”“光电工程”及其他电子信息和电气类相关学科的硕士专业。能到国外一流研究机构进行相关专业的留学深造,能在新能源企业、研究所、汽车公司等单位,从事太阳能光伏发电、动力蓄电池、电动汽车设计与制造、燃料电池、节能环保等热门领域的前沿研究、设计、制造、建设、运行与管理等工作。

推荐院校:电子科技大学、华东理工大学、北京化工大学。

资源循环科学与工程专业

资源循环科学与工程专业是为了满足国家节能减排,低碳经济及循环经济等战略性新兴产业对高素质人才的迫切需求。该专业是在2010年设立的新兴交叉学科专业,涉及环境科学、经济、管理等诸多学科交叉与融合。资源循环科学与工程,是依托化学工程与基础的国家重点一级学科,主要以资源循环过程和产品工程为特色,在矿产资源优化利用及固体废弃物综合利用与开发上进行研究。

培养目标:本专业主要学习循环资源科学与工程专业基础理论知识,通过对循环经济工程技术相关理论知识的学习与工程实训锻炼,了解我国资源分布、产业布局、环境保护等方面的基本状况,具备从事循环资源科学与工程基础理论研究与工程技术开发、经营管理等方面的工作能力。培养面向国家建设需要,适应未来科技发展,掌握循环经济工程技术方面的基础理论知识,具备从事循环经济工程技术基础理论研究与技术开发的基本能力,能在循环经济工程技术领域从事科学研究、工程技术开发、经营管理等方面工作的高素质人才。

新能源与科学工程篇(5)

关键词:能源化学工程;专业建设;课程体系;师资队伍

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)06-0209-02

一、能源化学工程专业建设背景

能源与环境问题是21世纪人类面临的两大基本问题。随着世界经济的不断发展,人类社会对能源的需求越来越多,石油、煤炭等不可再生化石能源的储量逐渐消耗殆尽,且全球每年因消耗化石能源而向空气中排放大量的气体(CO2、SOx和NOx等),除了引起局部地区的烟尘、灰霾、酸雨、光化学雾和连带的重金属铅的污染外,更造成了全球的气候变化、温室效应日渐显现。含碳能源(煤、石油和天然气)的高效洁净利用及具有清洁、低碳、可再生等优势的太阳能、风能、地热能、生物质能、海洋能等新能源的开发和利用成为未来中国经济可持续发展的关键。为适应我国对可再生能源和清洁能源等新能源的迫切需求,东北石油大学化学化工学院根据自己的办学定位,发挥已有的专业优势,主动适应,准确定位,于2010年新增了能源化学工程本科专业,也是教育部首批建立的10个能源化学工程专业之一。专业获批后,于当年从09届转来1个班的学生,并新招10级2个班的学生,目前已有1届毕业生。关于能源化学工程专业本科生的培养方案、培养模式和培养体系则处于不断探索和完善中。

二、能源化学工程专业定位与培养目标

新专业的定位决定了专业以后的发展方向,也决定了师资队伍的配置、实验室建设、课程体系的建立以及学生毕业后的就业等。专业人才培养目标的制定,首先必须在对专业深入分析和了解的基础上,结合国情和学校的条件,考虑专业发展与社会进步对人才的客观、合理的要求。所以本专业定位应以拓宽专业面、培养宽口径的掌握能源化学工程专业知识和技能,具备新产品、新工艺、新设备、新技术研究和开发的基本能力,能从事化石能源(包括石油、煤、天然气)、新能源(包括太阳能、氢能、生物质能等)化工过程工程的研制与开发、装置设计、生产过程的控制以及企业经营管理等方面的工作,具有创新精神和较强工程实践能力的高级应用型人才。

三、能源化学工程专业课程体系的构建

课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。能源化学工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。专业按照东北石油大学“通识教育+学科专业基础+专业教育+实践教学”四个层面设置课程,构建了厚基础、宽口径、重视学科交叉的课程体系。通识教育主要包括两课、综合基础、外语、计算机、体育、公共艺术及跨学科门类修读课程;学科专业基础主要包括高等数学、大学物理、无机化学、有机化学等学科基础课程以及物理化学、化工原理、化工热力学、化学反应工程、线性代数、分析化学、工程制图等等专业技术基础课程;专业课程主要包括石油加工工程、基本有机化工工艺学、能源化工设计、能源转化催化原理(双语)等课程,同时开设了大量的专业选修课,注重学科交叉,拓展了学生的知识面;实践教学包括实验课程和实践教学环节两个部分,实验含课程实验和专业实验,所有的化学、物理类课程均设置了配套课程实验。实验中增加了综合性、设计性实验以及创新性的比重。实践教学环节除了实习、实训、课程设计、毕业设计外,还开设了创新实践和科研训练等环节,在实践教学活动期间,学生可灵活选择在企业或校内完成。各教学环节学分分配情况如图1。

能源化学工程专业构建的课程体系的特点是:注重各部分之间的系统性与协调性,充分强调理论教学与实践环节并重,基础理论与专业知识并重的原则,力求体现德、智、体、美全面发展。培养的学生既有丰富的基础理论和专业知识,又有较强的实验技能和实验设计能力,并了解所学专业方向的学科前沿及发展趋势。

四、师资队伍建设

没有高水平的师资队伍就无法建设高水平的专业,所以师资队伍是专业建设的根本保障。东北石油大学制定科学合理的人才引进政策,采用各种优惠条件吸引高层次人才来校工作,补充新专业建设所需的专业教师,重点引进高水平的学科专业带头人以及主干课程的专任教师,重视已有人才的培养提高,充分发挥老教师带青年教师的传帮带作用,提高教师队伍的整体水平和素质。目前本专业已有10名教师,全部具有博士学位,2名教授,4名副教授,同时还聘请了企事业单位、科研院所及其他高校等高水平的专业人员担任新专业的兼职教师。已经构建了年龄、职称、学历等结构合理、教学与科研综合水平高的具有发展潜力教师队伍,保证了新专业的建设顺利完成。

以上是针对战略性新兴产业相关的本科能源化学工程专业的学科特点和办学定位,从培养目标确定到课程体系、师资队伍等方面的建设进行了初步的探索与实践。为适应国家经济发展对战略性新兴产业相关人才的迫切需求,下一步我们将进一步创新人才培养模式、完善课程体系,形成科学的人才培养方案,建立科学的管理制度,从而有效地保证人才培养质量,为社会培养具有创新精神和较强实践能力的高素质能源化学工程专门人才。

新能源与科学工程篇(6)

能源动力产业既是国民经济的基础产业,又在各行各业中有普遍的应用,也是国家科技发展方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化,科技发展的趋势等,都对本专业的生源、就业等形成了挑战。本期我们着重向大家介绍能源与动力工程专业,以及与其相关的一些信息,以供考生参考。

李学文,太原市48中高中语文高级教师,太原市优秀教师,太原市优秀班主任,太原市十佳百优教师,太原市语文学科带头人,太原市名师培养对象。

专业介绍・能源与动力工程

【历史沿革】能源与动力工程,2012年前称为热能与动力工程。该专业涉及传统能源的利用、新能源的开发和如何更高效地利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面则包括内燃机、锅炉、航空发动机、制冷及相关测试技术。

【专业缘起】热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细,比如热能与动力工程专业中就包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业。但随着能源动力科学技术的飞速发展和新问题的出现,浙江大学率先将热能与动力工程专业改成能源与环境系统工程专业,得到广大青年学子和社会各界的认同。不久后,清华大学也将热能与动力工程专业改成能源动力系统及自动化专业。

【培养目标】(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);(2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向;(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

【培养要求】本专业学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等学科的理论基础,热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。

【毕业生应获得以下的知识和能力】(1)具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;(2)较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;(3)获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;(4)具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;(5)具有较强的自学能力、创新意识和较高的综合素质。

【主干学科】动力工程与工程热物理、机械工程、流体力学。

【主要课程】工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术、燃烧学等。

【主要实践性教学环节】包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。

【主要专业实验】传热学实验、工程热力学实验、动力工程测试技术实验、流体力学实验等。

西安交通大学能源与动力工程学院的前身为创建于1921年的机械工程科动力组,1952年全国大规模院系调整时,脱离机械工程系变为动力机械系,1956年随学校主体迁往西安,是当时交通大学整体西迁的科系之一。

学院师资力量雄厚,荟萃了国内外能源与动力工程、工程热物理、核能科学与工程等学科领域享有盛誉的教授、专家和学者。现有教职工258名,其中教师172人,实验技术人员62人,行政管理人员24人。其中中国科学院院士2名、中国工程院院士1名、部级教学名师2名、部级有突出贡献专家8名,教授75名、副教授59名。教师队伍士学位获得者占73.3 %。

学院拥有动力工程及工程热物理、核科学与技术等2个一级学科博士点和博士后流动站。拥有包括工程热物理、热能工程、动力机械及工程、流体机械及工程、制冷及低温工程、化工过程机械、核科学与工程、核技术与应用、化学工程等在内的9个二级学科博士点以及2003年增设的能源环境工程、后续能源与能源新技术、航空动力与空间环境工程3个博士备案点,其中动力工程及工程热物理一级学科,热能工程、流体机械及工程、动力机械及工程、制冷及低温工程、工程热物理、核能科学与工程6个全国重点学科,热能工程、流体机械及工程2个二级学科是我国最早批准的首批全国重点学科。下设热能工程系、制冷及低温工程系、流体机械及工程系、动力机械及工程系、化工过程机械系、核科学与技术系、化学工程系、环境工程系等8个系和热与流体中心、教学实验中心。完成了大量国家和省部级科研项目以及与企业的合作项目,作为首席科学家和主持单位主持国家973重大项目2项,并与多个国家与地区的研究机构和企业建立了合作关系,承担了与美、英、日、韩、希腊、香港等国家和地区的多项合作项目。

在有史以来的多次部级评估中,该院热能工程、流体机械及工程2个二级学科的评分均始终名列全国第一,动力工程及工程热物理一级学科博士点的评分也始终在全国名列前茅。

有问必答・关于报考

问题1:能源与动力工程专业的学生应有怎样的知识和能力?

(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力。

(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。

(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。

(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。

(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。

(6)具有一定的计算机知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。

(7)具有较强的自学能力、分析能力和创新意识。

问题2:能源与动力工程专业的学生就业方向?

根据专业方向不同,毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程、动力工程、制冷工程方面的研究与设计、产品开发、制造、试验、管理、教学。或发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂、空调厂、制冷设备厂、暖通工程等领域工作。也可从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。还可在本专业或其他相关专业继续深造,攻读硕士、博士学位。

问题3:能源与动力工程专业人才培养目标和培养规格,专业方向的不同有差异么?

根据专业人才培养目标和培养规格,因专业方向的不同而有所差别。

(1)热能动力及控制工程方向(含能源环境工程方向)

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(2)热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

(3)制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

(4)水利水电动力工程方向

掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

问题4:能源与动力工程专业的学生需要系统掌握哪些知识?

掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。

掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。

问题5:能源与动力工程中的能源动力系统及自动化专业主要研究什么?

研究将煤炭、石油、天然气等一次能源转化为电力、热能等二次能源的生产和利用过程;研究人工环境、制冷空调、低温生物医学等领域的科学技术问题;还研究风能、太阳能、生物质能等新能源的开发利用。能源转换与利用过程排放的有害物质将造成环境污染,因此能源的生产必须高效、清洁。能源与环境系统专业不仅对自动化控制十分依赖,而且是一个复杂系统工程,集合了热科学、力学、材料科学、机械制造、环境科学、计算机科学、自动控制科学、系统工程科学等高新科学技术。能源与环境系统工程专业具有很宽的专业知识面,是一个能源、环境与控制三大学科交叉的复合型专业。

【意林散文】

羞 涩

文/刘心武

在我的艺术世界里,羞涩几乎无处不在。

我羞涩地画水彩和油画,不仅是因为我没受过扎实的基本功训练,也不仅是因为我害怕别人对我的画作鄙薄,而主要是因为我对色彩、明暗、笔触、韵味等充满了虔诚。对于我来说,那相当于宗教信徒走进了教堂。

我更常常羞涩地面对着大自然。

更具体地说,是常常羞涩地面对着大自然中最琐屑的细部。

新能源与科学工程篇(7)

一、我国新能源科学与工程专业开设状况

2008年世界金融危机之后,为了推进我国产业结构的转型,总理提出了发展战略性新兴产业的构想。2010年国务院通过了《关于加快培育和发展战略性新兴产业的决定》,提出要培育和发展包括新能源产业在内的七大战略性新兴产业。随后教育部发文鼓励有条件的高校申办战略性新兴产业相关专业,并于2010年首次批准浙江大学、华北电力大学等11所大学开设“新能源科学与工程”专业,2011年和2012年又先后批准了23所大学开办该专业。截至2012年,教育部共批准国内34所大学开设了新能源科学与工程专业,详见表1。

从表1可以看出,开设新能源科学与工程专业的大学中“985工程”大学有7所,“211工程”大学13所,还有3所农业院校。这些大学分布在全国的17个省市,其中,江苏最多有10所,占总数的近三分之一;其次是北京和辽宁,各3所;河南、山东、福建、江西和湖北各2所;吉林、黑龙江、广东、河北、陕西、浙江、上海和重庆各1所。从地域分布状况看,开设新能源科学与工程的高校主要集中在中东部省份,西部省份开设该专业的高校只有2所。

二、新能源科学与工程专业人才培养方案对比

作者对各所大学网上公开的人才培养方案进行了收集整理,并进行了对比分析。从收集到的资料看,各所大学关于新能源科学与工程专业的人才培养模式大体可以分为两类:一类在课程体系的设置上充分体现本科人才培养的“宽口径”原则,课程内容涵盖各种新能源,包括风能、太阳能、生物质能、地热能、氢能、核能等;另一类在课程体系的设置上更多地体现了“专业化”要求,设有专业方向,侧重于太阳能、风能和生物质能中的某一类。基于上述第一种思想进行的课程设置,体现了新能源的综合性和交叉性,但存在的问题是难以兼顾风能、生物质能和太阳能等不同的新能源对专业基础知识要求的不同。风能的专业基础侧重于机械和电气,生物质能的专业基础主要有热能、化学和生物学,而太阳能的专业基础是物理、化学和材料科学。因此,由于缺乏相关专业基础知识做支撑,这样的课程设置对每种新能源专业知识的讲解会存在内容深度方面的局限。基于第二种思路所开展的课程设置强调了专业的方向性,其不足在于削弱了对学生新能源综合知识的培养。表2是国内部分高校新能源科学与工程专业主要课程设置情况。

通过对表2的分析,可以得出以下几点结论:

(1)即使是同一类型的培养方案,各个高校之间在课程设置上也存在着较大差别。比如同属于“宽口径”型培养方案的西安交通大学与重庆大学和浙江大学的课程设置均存在较大差异。从课程所涉及的专业内容看,西安交通大学的培养方案涵盖了风能、太阳能、生物质能、水能、地热能、氢能,以及储能和节能等专业内容。而浙江大学的课程内容除了涉及太阳能、风能、生物质能和氢能外,还有三门与环境相关的课程,分别是能源与环境技术进展、能源与环境系统工程概论和低碳能源技术。

(2)上述人才培养方案课程体系的共性在于大部分培养方案体现了能源动力类专业的学科基础,这些课程包括工程热力学、传热学、流体力学等。这与教育部新修订的《普通高等学校本科专业目录(2010)》将新能源科学与工程专业设为能源动力类特设专业的要求是一致的。

(3)分析测试能力的培养受到重视。作为应用性很强的专业,培养学生具备从事现代能源技术与装备研究及应用的能力十分重要,因此一些学校开设了相关课程,比如,西安交通大学开设了《新能源过程、状态与材料性能测试与分析技术》,华北电力大学开设了《生物燃料分析与测试》、《太阳电池材料测试与分析》等课程,上海理工大学开设了《动力工程测控技术》等。

(4)课程设置充分体现了创新性。许多高校的课程设置都充分体现了方案设计者的创新意识,比如浙江大学设置的《低碳能源技术》、《能源与环境系统工程》等课程考虑了能源与环境的关系,这些课程可以起到拓宽学生知识视野的作用。再比如一些学校设置的《储能技术原理》则符合新能源这种分布式能源产业化发展的重大需求。享有国际声誉的社会批评家杰里米·里夫金在其新作《第三次工业革命》中提出,组成第三次工业革命五大技术支柱中“储能技术”是其中一项。

三、国外高校新能源专业开设及人才培养方案的设置情况

美国的一些高校已开办相关专业来培养新能源方面的人才。2005年,俄勒冈州技术学院开设了美国第一个可再生能源工程本科专业,之后,伊利诺斯州州立大学和约翰布朗大学开设了可再生能源专业,埃弗格来兹大学开设了替代能源与可再生能源管理专业,威斯康辛大学普莱维尔分校开设了可持续与可再生能源系统专业,纽约州立大学坎顿技术学院开设了可再生能源专业。在欧洲,德国历史最悠久的国立农业大学、欧洲农业大学综合科研实力排名第一的霍恩海姆大学开设了生物基产品与生物能源专业;挪威阿格德尔大学和挪威生命科学大学开设了可再生能源专业。此外,美国的一些高校开设有新能源相关的辅修专业,比如,科罗拉多矿业大学开设了能源辅修专业,学生可以在可再生能源和传统能源之间选择一个方向进行学习,托莱多大学设置了可再生能源辅修专业。表3是国外部分开设新能源专业大学的课程设置情况。(表中主要课程为笔者翻译,原英文课程名可登陆相应学校网站查询)

从表3所列几所大学的情况可以看出,国外大学的新能源类专业人才培养方案与国内大学在两个方面具有较大的相似性。一是国外新能源专业人才培养方向也存在“宽”与“专”两种类型,前者如约翰布朗大学、埃弗格来兹大学等,这些学校的专业培养方向涵盖了太阳能、生物质能等多种可再生能源;而霍恩海姆大学则属于后者,其专业名称即是生物基材料和生物能源。二是不同大学之间的课程设置同样存在着较大差别,充分体现了每所大学自身的特色。

国外一些大学虽然也有分专业方向的做法,但是这些做法与我们国内的设计有不同之处,国外是按照在共同的基础课程之上,通过专业课的不同来划分方向,这与国内完全根据专业方向对应设置基础课的做法明显不同。比如,纽约州立大学坎顿技术学院设置了10门涵盖风能、太阳能、生物质能、地热能的专业课程模块,但只要求学生从中选修4门,这其实是为了便于学生自主选择专业方向所进行的一种设计。威斯康辛大学普莱维尔分校的培养则从另外一个角度划分了专业方向,分为设计与分析方向、开发与管理方向,一个方向侧重于培养学生的设计研究能力,另一个方向侧重于培养学生从事新能源开发和管理的能力,每个方向单独设有相对应的课程模块。

国外大学在课程设置方面普遍比较重视经济及管理类课程的开设,并将这些课列为必修课。比如Principles of Management(管理学原理),Principles of Supervision(监督原理),Project Management(项目管理),Project Management for Renewable Energy(可再生能源项目管理),Economics of Biobased Energy Production(生物能源生产经济学),Managing an Alternative Energy Project(替代能源项目管理)等。国内大学对这类课程的重视程度不如国外大学。

美国的大学对高年级学生开设有Capstone Course(国内翻译为顶峰体验课程),比如Alternative and Renewable Energy Management Capstone Course(替代能源与可再生能源管理顶峰体验课程),Renewable Energy Capstone(可再生能源顶峰体验课程),Capstone Project(顶峰体验项目)等。这是一门将所学知识应用于特定主题、问题或设计的课程,过程包含资料(文献)收集、量化分析、产品设计、小组讨论与合作等,类似于我们的毕业设计。但是二者之间也存在较大区别,毕业设计是一个必修的、学分较多的项目研究课程,而顶峰体验课程表现出了紧凑多样的课程形式、多层次的课程目标、人性化的选修制度,具有团队合作、学术整合和产学融合的特点,被许多国家的高等教育引进。

四、结论与建议

通过对我国新能源人才培养的现状进行分析整理,可见:

(1)我国已初步构建了新能源人才培养的专业体系,在各所大学所制定的新能源科学与工程专业人才培养方案中,既有面向培养具备新能源综合知识与能力人才的方案,又有侧重于培养系统和深入掌握某类新能源专门知识人才的方案。不同的培养模式可以为新能源技术和产业的发展提供不同类型的专门人才。

(2)新能源种类多样且处在快速发展的过程中,加之不同种类的新能源对专业基础知识的要求存在差别,这些因素加大了专业课程体系构建的难度,在“专”与“宽”之间如何平衡和取舍还需要各个大学在现有人才培养方案的基础上,开展广泛深入研究,以便对人才培养方案进一步完善和改进,使其更符合新能源产业发展需求。

(3)我国新能源科学与工程专业与欧美等发达国家的新能源专业的人才培养方案和课程体系,无论是在设计理念,还是在具体内容方面都有很强的相似性,在体系先进性方面与国外处在同一水平上。但同时,我们也应积极学习和借鉴国外大学优秀的教学改革成果,比如美国大学顶峰体验课程的设置。

基于以上结论,笔者就我国的新能源人才培养提出以下几点建议:

(1)作为一个新兴专业,很多课程没有现成的教材可供选用。如果按目前的培养方案,大多数课程都需要各学校单独来编写,而要完成如此多新教材的编写,无疑是一项非常繁重的工作,而且也难以在较短的时间内完成。因此,从新能源科学与工程专业的长远和健康发展角度考虑,应该分类构建面向全国的专业基础课和专业课课程体系,在此基础上各大学可再根据各自的特点设置体现自身特色的课程。只有这样才能为全国性专业教材的编写奠定必要的基础。