期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 数字农业概述

数字农业概述精品(七篇)

时间:2024-01-16 16:22:43

数字农业概述

数字农业概述篇(1)

>> 近年来我国财商教育研究述评 近年来我国政府公信力研究述评 近年来我国政治生态研究述评 近年来我国农业(村)信息化研究热点述评 近年来我国对于美国学前教育的研究述评 近年来我国农民工基本公共服务均等化研究述评 近年来我国农村社区建设的研究述评 我国近年来政治生态研究综述 近年来我国学术界对假新闻问题研究述评 我国电子书包研究综述 近年来我国价格上涨刍议 近年来我国水污染状况浅析 近年来我国社会阅读活动概述 近年来我国农民工体育研究进展 近年来我国理论界关于井冈山精神研究综述 近年来我国农村养老问题研究综述 近年来我国农民工继续教育研究综述 近年来我国高职教育研究的关注点 近年来我国环境绩效审计研究与进展 近年来我国经济运行情况及货币政策研究 常见问题解答 当前所在位置:l

[2]李镜镜,张志强.国内电子书研究的文献计量分析[J].出版科学,2013(21):85-90

[3]邓开锋.整合·优化·创新·延伸[D].重庆:西南大学,2012

[4]马力海,张波. 电子书背后的著作权困惑[J].出版参考,2010(16):16-17

[5]李华. 从典型案例看版权保护是数字出版发展的基石[J].科技与出版,2011(5):4-6

[6]万冬朝. 电子书版权保护机制研究[D].广州:华南理工大学,2011

[7]李云. 电子书格式标准化问题刍论[J]. 河南图书馆学刊,2011(6):5-9

[8]张大伟,杨丽娟. 电子书标准化中的政府角色与“后发国策略”[J].新闻大学,2011(4):141-144

[9]焦灵芝.亚马逊电子书平台研究[D].南京:南京大学,2013

[10]吴雷,毕昱.破冰数字出版:数字内容投送平台的建设研究[J].编辑之友,2013(1):79-82

[11]毛文思.电子阅读器:缘何国内国外两重天[J].出版参考,2012(24):20-22

[12]陈勇.我国电子阅读器市场面临的问题及对策[J].出版发行研究,2013(3):62-64

[13]任殿顺. 电子书阅读器产业链竞合博弈分析[J].中国出版,2010(6):38-41

[14]王艳玲.电子书定价方法概观[J].图书馆学刊,2011(7):73-75

[15]沈明.中外数字图书发展现状及定价机制比照[J].出版广角,2013(13):82-83

[16]胡兴球,曲文风.电子书定价的价格歧视策略探讨[J].科技与出版,2013(8):14-18

[17]安达. 电子书的七种商业模式[N]. 中国图书商报,2011-11-25(006)

[18]姚娟. 中美数字出版商业模式比较研究[D]. 湘潭:湘潭大学,2011

[19]安小兰. 从封闭走向开放:电子书商业模式的演进[J].现代出版,2011(4):35-38

数字农业概述篇(2)

关键词:数字农业;时空推理;专家系统

0引言

数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。

为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。

1主要关键技术研究现状

1.1数字农业

数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。

1.2时空推理

近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。

1.3时空数据标准与共享

不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:

(1)空间数据交换

空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。

(2)基于GML的空间数据互操作

开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。

1.4时空本体

1.4.1本体、语义Web和OWL

本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。

1.4.2时空本体

基于本体方法对时空建模的相关研究工作如下:

1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。

2主要研究内容(1)农业时空数据规范

现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。

(2)农业基础时空数据库

基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。

(3)农业时空分析方法库与农业时空知识库

时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。

(4)农业时空本体库

在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。

以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。

(5)系统体系结构

系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。

(6)基于平台开发农业生产智能应用系统

基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。

3相关系统对比分析

3.1数字农业空间信息管理平台

平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。

3.2全国农业资源空间信息管理系统

全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。

3.3中国西部农业空间信息服务系统

计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。

(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。

(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。

4结束语

数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。

参考文献:

[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.

[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.

[3]Geographymarkuplanguage(GML)[EB/OL].(2003)./techno/specs/002029PGML.html.

[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.

[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).cs.ou.edu/database/documents/zg01.pdf.

数字农业概述篇(3)

 

栏目设置

主要栏目:农业发展战略、农业可持续发展、生态农业、农村生态环境保护、区域开发、农业经济、农业工程。

 

 

投稿要求

1.文章标题:一般不超过300个汉字以内,必要时可以加副标题,最好并译成英文。

2.作者姓名、工作单位:题目下面均应写作者姓名,姓名下面写单位名称(一、二级单位)、所在城市(不是省会的城市前必须加省名)、邮编,不同单位的多位作者应以序号分别列出上述信息。

3.提要:用第三人称写法,不以“本文”、“作者”等作主语,100-200字为宜。

4.关键词:3-5个,以分号相隔。

5.正文标题:内容应简洁、明了,层次不宜过多,层次序号为一、(一)、1、(1),层次少时可依次选序号。

6.正文文字:一般不超过1万字,用A4纸打印,正文用5号宋体。

7.数字用法:执行GB/T15835-1995《出版物上数字用法的规定》,凡公元纪年、年代、年、月、日、时刻、各种记数与计量等均采用阿拉伯数字;夏历、清代及其以前纪年、星期几、数字作为语素构成的定型词、词组、惯用语、缩略语、临近两数字并列连用的概略语等用汉字数字。

8.图表:文中尽量少用图表,必须使用时,应简洁、明了,少占篇幅,图表均采用黑色线条,分别用阿拉伯数字顺序编号,应有简明表题(表上)、图题(图下),表中数字应注明资料来源。

9.注释:是对文章某一特定内容的解释或说明,其序号为①②③……,注释文字与标点应与正文一致,注释置于文尾,参考文献之前。

10.参考文献:是对引文作者、作品、出处、版本等情况的说明,文中用序号标出,详细引文情况按顺序排列文尾。以单字母方式标识以下各种参考文献类型:普通图书[M],会议论文[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利〔P〕,汇编[G],档案[B],古籍[O],参考工具[K]。

11.基金资助:获得国家基金资助和省部级科研项目的文章请注明基金项目名称及编号,按项目证明文字材料标示清楚.

12.作者简介:第一作者姓名(出生年月-),性别,民族(汉族可省略),籍贯,现供职单位全称及职称、学位,研究方向。

13.其他:请勿一稿两投,并请自留原稿,本刊概不退稿,投寄稿件后,等待审查。审查通过编辑部会通知您一般杂志社审核时间是1-3个月;

数字农业概述篇(4)

关键词:农业机械;数字化技术;制造技术;应用

在信息时代背景下,传统农业逐渐向数字农业发展,数字农业主要指将工业技术和数字信息技术进行有机结合,使农业各对象可视化表达的目标得以实现,能够为农业机械制造过程提供可靠的依据和支持,对提高农业生产水平有较大的积极作用。下文首先对数字化设计与制造技术进行概述,其次对两者在农业机械上的应用进行阐述,以期为农业机械制造企业提供一定参考。

1数字化设计与制造技术简述

数字化设计与制造技术主要指使用计算机硬件、软件和网络环境对相关产品的设计,分析,装配以及制造等过程进行全面模拟,能够为实际生产过程提供可靠的依据。在农业机械设计及生产中应用数字化设计与制造技术具有如下优势:农业机械产品开发能力有所提升;产品研制周期明显缩短;农业机械开发成本有所降低;能够最大程度的实现初期设计目标,可以提高农业机械制造企业的市场竞争力,同时可以为其带来更多的经济效益。

2农业机械数字化设计与制造技术应用分析

数字化设计与制造技术包括多种先进的技术,下面对几种常用的技术进行说明:其一,对CAD/CAE/CAPP/CAM/PDM进行说明。前四种分别指计算机辅助设计,计算机辅助工程,计算机辅助工艺过程设计及计算机辅助制造,以上工具的合理应用对提高产品开发效率及效果有较大的积极影响;其中PDM技术能够对产品相关的数据和信息、人及各类组织等进行有效管理,使分布环境中数据共享的目标得以实现,同时为异构计算机环境提供了相应的应用平台。其二,对异地协同设计进行说明。其主要指在有网的环境中能够对相应产品进行定义、建模、产品分析、设计、数据管理和产品数据交换,使用其对多人、异地产品协同开发提供了便利条件。其三,对虚拟设计及制造进行说明。使用仿真、建模及虚拟现实技术等可以对产品的模型进行合理构建,在构建完成后工作人员可以对产品的性能,可装配性以及可加工性等方面的问题进行发觉,在经过分析后可以及时采取合理措施进行调整,进而提高产品设计合理性,为后期制造过程奠定坚实的基础;其四,对并行设计进行说明。并行设计主要指使用并行工程模式进行产品开发和制造,其对以往串行式产品开发模式存在的缺点进行弥补,在农机产品开发初期能够对后期实际需求进行更多的考虑,进而使产品研发效率较高,且研发效果较好。下面笔者对智能CAD技术在农机产品设计中以及数字化制造技术在高科技农业机械开发中的应用进行分析。

2.1智能CAD技术应用分析

第一,智能CAD技术在农机产品设计中的应用分析。工作符号推理是农业机械设计过程中的重要内容,传统CAD技术在符号推理方面存在一定的缺失,智能CAD技术能够对其存在的缺失进行弥补,在使用智能CAD技术后农业机械设计过程中信息利用率有所提升、重复设计情况明显减少且产品研发时间明显缩短,能够在短时间内完成农机产品的设计工作,进而可以为农业机械制造企业带来更多的经济效益。第二,参数设计在农机产品设计中的应用分析。农业机械设计过程具有型号、种类较多以及受季节影响较大的特点,为了更好的保证设计和合理性及效率在实际设计过程中可以对视力推理模块化参数设计及变量设计进行合理应用,并且在使用后能够对智能CAD技术使用中存在的问题进行最大程度的规避,为设计方案的合理性提供更多的保障。第三,装配模型在农机产品设计中的应用分析。装配模型其属于支持概念设计和变型设计中的一种,其主要指构建相应零部件的几何模型,在构建完成后结合装配信息对设计意图,产品原理以及功能等进行诠释,能够让工作人员尽快领悟设计意图,进而能够尽快展开生产。

2.2数字化制造技术在高科技农业机械开发中的应用

数字化制造技术在我国农业机械设计及制造中得到广泛应用,在实际应用过程中可以使用数控及虚拟技术等对农业机械产品的虚拟样机进行制造,为实际生产过程提供了一定的有利条件。下面对使用三维CAD技术设计农机产品虚拟样机的流程进行说明:其一,使用参数设计、变型设计等技术对相关产品的三维CAD模型进行构建,通过模型的构建能够实现所有零部件模式化的目标;其二,根据相关数据和信息对二维工程图进行构建;其三,使用各类分析原理对模型进行分析,将其同三维装配体设计进行有机结合;其四,将三维CAD模型作为主要依据对PDM结构体系进行合理构建;其五,工作人员严格按照虚拟样机的要求对三维CAD产品进行制作,与此同时对开发体系进行合理构建;其六,对三维虚拟样机进行监测和试验,通过以上两过程可以准确的发现虚拟样机存在的问题,在经过分析后可以采取有效措施进行处理,从而对虚拟样机具有较高的合理性进行提升。

3结束语

通过上文可知在农业机械研发及生产过程中对数字化设计及制造技术进行合理应用对缩短研发时间及提高产品质量有较大的积极作用,为此农业机械制造企业需要对数字化设计及制造技术产生足够的重视,根据自身实际情况和时展的需求对其进行分析和研究,不断的扩大应用范围,使农业机械研发及实际生产过程向数字化、智能化技自动化的方向发展,加快农机制造企业的发展速度。

引用:

[1]陈英姿.农业机械数字化设计与制造技术的应用[J].农家科技(下旬刊),2015(10):305-305.

[2]吴发辉.农机数字化设计与制造技术的研究与应用[J].南方农机,2016,47(7):50,71.

[3]任晓光,刘佳.农业机械数字化设计技术研究与展望[J].河北农机,2014(2):33-33,34.

数字农业概述篇(5)

[关键词]数字农业 空间信息管理 3S技术

中图分类号:TN919.8 文献标识码:A 文章编号:1009-914X(2016)01-0281-01

引言

二十一世纪高新农业技术的重要象征是数字农业(Digital Agriculture)技术。数字农业发展和各种农业数据是密不可分的,由于农业生产的空间分布较广泛,农业资源在地理分布地域广泛,而且地理分布地域广阔,农业数据的获得是基于农业生产和资源的,所以需要农业领域空间信息技术获得更多更准确的农业数据[1]。数字农业空间信息管理平台的应用能有效的促进农业和农村的发展以及平衡农业和环境之间的发展。美国的地球物理环境公司对3S技术在农业领域发展所起的支撑作用进行了研究,首先他们制定了地球观测卫星计划,收集卫星图像,监测农作物的生长,通过技术分析所得到的相关数据,为农场主提供相应的耕种方法,防止农作物的病虫害以及为提供具有预防和预测性的信息,确保农业生产顺利进行,避免过多的经济损失[2]。 在1997年,美国国家研究委员会发表了报告“21世纪的精细农业―农作物管理中的地学空间和信息技术”,提出了信息技术在农业生产现代技术条件下的巨大空间的全面系统的分析,并由此掀起了数字农业研究的高潮,对由此可能带来的机遇和挑战进行了论述[3]。

1 数字农业空间信息管理框架

在数字农业建设过程中,数字农业空间信息管理平台处于核心位置。计算机网络是数字农业空间信息管理平台建设的基础,其核心是其数据库系统,建立一套RS、GIS、GPS、MIS、ES和其他的技术的集合体,通过数字农业空间信息管理平台尽可能的应用3S技术和空间数据库,对地理信息系统、遥感和遥测技术、全球定位系统、虚拟化技术的系统、农业技术自动化系统准确、高效、快速、全面和规范的使用。该平台还包括计算机技术和网络和数据通信技术系统。如图1所示。这里有它们的四个至关重要有效含量分析。

(1)农业信息分类编码标准

农业信息交流与共享的基础是农业信息分类和编码,这是一个用自己的信息编码规则改变许多重复的基本信息分类和编码,改变了过去在不同部门情况有的不统一,有的不能共享的情况。截止目前,在农业信息方面,中国还未制定相应的农业分类编码的标准,在农息信息分类编码方面要加强农业信息标准化,要对农业信息分类与编码,存储农业信息,实现信息之间的交流和共享。

(2)基于GPS/GPRS的移动式农业生产过程信息采集技术

通过GPS/ GPRS信息采集技术的空间定位和GPS信息采集的优势实时监测农业生产过程,通过GPRS无线宽带网络数据传输和实时的优势,在生产过程中控制移动信息采集,从而实现全面的技术集成。

(3)数字农业地理信息系统技术平台和各种类型的数据采集系统

基于农业数字空间信息平台出发,设置信息可视化和实时监控功能于一体,在搜集和采集农业信息时,根据自身的信息需求和生产数据的各个管理因素来获得所需要的有关气象,环境水文等信息,无论是从遥感数据,同时也对GPS信息的定位,都应包含不同的信息来源,有是由不同类型的传感器的实验数据组成。

(4)基于GIS的智能分布式控制农业机械

在自动控制系统中引入GIS时其自动控制系统的组成结构没有发生明显变化,在增强系统总体控制功能时,只需将控制器变为GIS或者在前端加一级GIS处理来实现,如图2所示。

2 基于Web Services的农业信息共享安全控制

(1)Web Services概述

Web Services体系架构与传统的面向对象系统一样,都包括继承、封装、消息传递以及动态绑定等基本概念,是面向对象体系架构组件化的实现和发展,在Web Services中将所有对象都看成服务,在API为网络中的其他服务所使用,通过实现的细节获得封装。

(2)基于Web Services的农业信息共享安全控制平台设计

在设计安全平台时根据用户服务、管理业务、数据服务三层构架,各个组件的设计理论基于面向空间、面向对象、面向用户以便各个应用模块都可以更方便的嵌入系统。

(1) 数据库设计

数字农业空间信息管理平台的数据由多个数据库组成。

(2)功能设计

园区空间信息管理平台由系统维护、综合查询、空间分析、决策支持、土地流转、动态监测6个子系统组成。平台在实现基于Web services的全方位农业信息与共享方面。点击平台功能界面的系统维护、综合查询、空间分析、决策支持、土地流转、动态监测中的任意一项。

系统维护、综合查询、决策支持、土地流转、动态监测每个功能模块的界面

显示了该模块包含的下一级以查询为主的子功能如土地流转包含商家信息统计、土地招租需求、招商土地查询、项目特别推荐、高级查询向导,点击每个子功能模块可浏览相应的信息。空间分析模块是基于WebGIS的以地图和专题图显示为主要功能的模块。

(3)GIS实现

当前的浏览器不支持矢量图形是实现GIS在网上浏览的主要问题。现在家庭JSP提供了两种方法来解决这个问题:首先,服务器端解决方案,载体转化为研究范式B浏览器支持JPEG,GIF格式的文件,客户端使用Java脚本的HTML网页;二是在浏览网页的客户端自动下载java小程序解决,通过下载转换,使得普通的Web浏览器具备支持矢量图形格式的功能,提供了显示方法。第一种方法主要适用要求相对较低客户端和观众,操作也比较简单。本文网络空间信息在园区采用的是第二种选择方法。

3 结论

实现区域农业技术跨越式发展的基础是数字农业空间信息管理平台,该平台是以3S技术作为核心技术,该系统是保证农业科技基础设施项目可持续发展的依据,对数字农业研究具有突破性的意义。文章中,以3S技术为出发点,以数字农业和农业信息研究为突破口,充分运用空间信息管理平台,结合上海现代农业园区信息应用,实现了平台的整体设计,并对数据库设计、系统功能设计、农业知识整合和空间分析等方面做了详细的设计,同时开发实践了一些功能,特别是采用的Web GIS技术,实现了Internet区域空间信息的,为园区运营的科学合理的管理提供了一个功能重要依据。

参考文献

[1] 韩苏闽.数字农业与农业信息化研究[J].科技传播,2014(2):20-23

[2] 刘丽艳.基于3S技术的数字资源建设[J].地理信息科学,2012(6):33-36

数字农业概述篇(6)

关键词 汉代;文字瓦当;农业习俗

作者简介 贺科伟(1981-),男,华中师范大学历史文化学院2007级博士生。(湖北武汉430079)

瓦当亦称瓦头,瓦当是筒瓦顶端的下垂部分,常为圆形和半圆形,起着保护椽头和装饰屋檐的作用。陈直先生引《西都赋》曰:“《文选》注引韦昭说,裁金碧以为榱头,则谓檐口出头之木,瓦当之位置,正在榱头之上,或因此得名。”秦汉瓦当主要有可分为三部分:一文字,二图像画,三图案画。据现的考古发掘资料可知:文字瓦当始于西汉初年,在武帝至王莽时期较兴盛,东汉以后逐渐减少。瓦当既有欣赏价值又有文物考古价值,对于历史、建筑学、文字学和考古学的研究都有重要参考价值。从古代的金石学家到现代历史学家、考古学家、美术家多有收藏和著录者,著述成果颇丰。但学界对于汉代文字瓦当中关农业吉语的瓦当,尚未充分重视,笔者不揣鄙陋,拟对汉代文字瓦当中反映的农业吉语及与农业相关的瓦当人手,探讨汉代的农业生产习俗,以为引玉之砖。

一、农业吉语文字瓦当中的汉代农业生产习俗

汉代文字瓦当的内容除具体建筑物、歌功颂德语外,其它文字多都与吉祥语有关,其中有大量与农业生产习俗相关的吉语,对此笔者分析如下:

(一)粮食作物生产习俗。“五谷满仓”瓦当(图1),陕西淳化县董家村出土。传统说法将汉代粮食作物统称为“五谷”,即黍、粟、麦、菽、稻,但这个时期的粮食作物品种已大大超出了“五谷”。《吕氏春秋》中提到的粮食作物有禾、黍、粟、麦、菽、稻、大麦等;《汜胜之书》提到的粮食作物有黍、禾、小麦、大麦、稻、大豆、麻、稗等。瓦当文字的“五谷”也为考古出土的大量汉代粮食作物遗存所证实,下面将文字瓦当出土较为集中的西安地区,考古发掘的部分农作物种类列表如下:

“五谷”作为汉代主要粮食作物,其重要地位是不言而喻的。汉初经过秦末战争的蹂躏,民生凋敝,汉高祖即位之初就实行“休养生息”及一系列的鼓励农耕的政策,经过几十年的休养生息,社会经济得到恢复和发展,并出现“太仓之粟陈陈相因,充溢露积于外,腐败不可食”的局面。由此可知,瓦当中出现“五谷满仓”之类的农业吉语瓦当正是汉代重农思想的体现。

(二)桑蚕业生产习俗。“崇蛹嵯峨”(图2)、“口监口桑”(图3)残瓦,西安汉长安城遗址出土,陈直先生在《秦汉瓦当概述》中认为上述两瓦皆为上林苑茧馆之物。《三辅皇图》谓上林苑中置茧馆,为皇后亲蚕之地。桑以饲蚕吐丝,麻以缉治成布,丝、麻、布、帛是汉代人民衣物的主要来源。桑蚕和农耕一样为汉代政府所重视并被视为本业,桑蚕业在秦汉时期获得了重大的发展。汉代从中央到地方都采取鼓励和推动农桑生产的政策,如汉景帝后二年诏:“欲天下务农蚕”,汉昭帝元平元年诏“天下以农桑为本”。许多地方官员也积极倡导“劝勉农桑”的政策,如宣帝时黄霸在颖川“务耕桑,节用殖财,种树畜养”;龚遂在渤海“劝民务农桑”;东汉时茨充在桂阳教人种桑拓、养蚕。汉献帝建安九年(204年),曹操击破袁绍后,颁布了租调令:“其收田租亩四升,户出绢二匹、绵三斤而已,他不得擅兴发。使得绢帛丝棉和谷物一样是每个农户必须向政府交纳的物品,反映了农民养蚕种桑的普遍性和农桑并重、耕织结合的生产体制的进一步确立。

桑蚕业除了作为农副业存在,生要为了纳赋和自用的桑蚕以外,作为出售和赢利性的桑蚕业已经出现。如《史记・货殖列传》记载战国秦汉时期山东地区就经营上千亩桑田。蚕桑织品不但是衣被原料之一,而且是中央王朝向北方游牧民族交换和对外贸易的重要物资,特别是张骞通西域以后,丝绸成为中国与西方贸易的大宗商品,并形成了联系东西方的“丝绸之路”。

(三)畜牧业生产习俗。“六畜蕃息”瓦当(图4),陕西淳化县出土,此类瓦为汉代兽栏用瓦。藩息,意为滋生、繁衍。此外,还有“六畜兴旺”瓦当(图5)等。《汉书・艺文志》中《相六畜》三十八卷,所谓“六畜”指马、牛、羊、猪、犬、鸡,是汉代最重要的畜禽。“六畜”除了作为汉代的家禽是当时人们日常生活中的主要肉食来源,还应特别指出的是六畜中的马和牛在农业耕作、军事战争、交通运输、赏赐、祭祀等方面有着极其重要的意义。《艺文类聚》卷八五《风俗通》引应劭语:“牛乃耕农之本,百姓所仰,为用最大,国家之强弱也。”牛者,军农之重要的畜力,关系到国力的强弱,深为秦汉官府与民间百姓所重视。秦汉时期国家颁布了法律对牛实行保护,《睡虎地秦简・秦律十八种・厩苑律》规定:耕牛腰围减瘦一寸,要笞打主事者十下。《张家山汉简・贼律》:“贼伤人畜产,与盗同法。畜产为人牧而杀伤口(四九)”《张家山汉简・田律》:“诸马牛到所,皆勿敢穿,穿穿置它机能害人、马牛者,虽未有杀伤也,耐为隶臣妾。杀伤马牛,与盗同法。(二五一)”汉代一些地方官员也制定法规保护耕牛,如《后汉书・第五伦传》载:第五伦在任会稽太守时,“会稽俗多淫祀,好卜筮。民常以牛祭神,百姓财产以之困匮,其自食牛肉而不以荐祠者,发病且死先为牛鸣,前后郡将莫敢禁。伦到官,移书属县,晓告百姓。其巫祝有依托鬼神诈怖愚民,皆案论之。有妄屠牛者,吏辄行罚。民初颇恐惧,或祝诅妄言,伦案之愈急,后遂断绝,百姓以安。”

“(马)甲天下”瓦当(图6),瓦文“甲天下”三个字与马形呼应。陈直先生在《秦汉瓦当概述》中认为此种瓦当为汉代马厩所用之瓦,上画二马姿态雄峻,马形或释为鹿非是。今存至少五件,五件瓦当大体上可断定为汉甘泉宫的遗物,其中三件完整,两件残缺。

马在汉代不但用于作战、交通运输,而且还是耕种的工具。西汉初,民生凋敝,战马奇缺,“天子不能

具钧驷,而将相或乘牛车”。为抗击匈奴,需要大批的战马,汉王朝曾于景帝前元三年(公元前154年)在西北边大兴马苑三十六所“始造苑马以广用”,养马三十万匹,而武帝“为伐胡,盛养马”。经过七十余年的努力,到汉武帝时期终于出现了“众庶街巷有马,仟伯之间成群,乘牝者摈而不得会聚。”的局面。这些关于六畜的吉语文字瓦当,反映了畜牧业在汉代人们的日常生活中的重要位置。

(四)农业生产时序习俗。“时序”残瓦(图7),陈直先生在《秦汉瓦当概述》中指出:“时序残瓦,仅存右边,《东都赋明堂诗》云:‘五位时序’,亦同此义。”瓦当的文字虽然保存不完整,但由此也可以推断

“时序”在汉代人们农业生产习俗中有着重要的意义。《吕氏春秋》的

《十二纪》系统的描述了一年十二个月的天象规律、物候特征、生产时序等等。《吕氏春秋・盂春纪》:“孟春行夏令,则风雨不时,草木早槁,国乃有恐。行秋令,则民大疫,疾风暴雨数至,藜莠蓬蒿并兴。”《吕氏春秋・仲春纪》:“仲春行秋令,则其国大水,寒气总至。寇戎来征。行冬令,则阳气不胜,麦乃不熟,民多相掠。行夏令,则国乃大早,暖气早来,虫螟为害。”《吕氏春秋・孟夏纪》:“孟夏行秋令,则苦雨数来。五谷不滋,四鄙人保。”等等。在《淮南子・时则》中有相似的记载,从中也可以看出汉代人们已经认识到违背农业生产“时序”会对农物的生长造成严重的破坏,甚至威胁到国家的安定。对于农业生产“时序”在这一时期被法律保护,睡虎地秦简《秦律十八种》的《田律》

春二月,勿敢伐材木山林及雍(壅)堤水。不夏月,勿敢夜草为灰,取生荔、口(卵)觳,毋?(四)

毒鱼鳖,置(穴并)罔(网),到七月而纵之。唯不幸死而伐绾(棺)享(椁)者,是不用时。邑之绗(近)皂及它禁苑者,(五)

甘肃敦煌悬泉置汉代遗址发掘出土的泥墙墨书《使者和中所督察诏书四时月令五十条》,其中也有关于生产“时序”的内容。如“孟春月令”有“禁止伐木”的条文:

禁止伐木。谓大小之木皆不得伐也,尽八月。草木零落,乃得伐其当者。(九行)

“中(仲)春月令”又有禁止焚烧山林行猎的内容:

毋焚山林。谓烧山林田猎,伤害禽兽口虫草木……(二七行)

二、吉语瓦当之外反映农业相关的瓦当

(一)仓储。关于仓的文物,秦汉考古多有发现。云梦睡虎地秦简中有仓律,汉代的墓葬中多有陶仓随葬,汉墓中的画像石、画像砖上也有很多的仓的图像。瓦当中关于仓的文字记载也是十分丰富。发掘出土了很多文字瓦当,如“京师仓当”(图8)、“华仓”(图9)、“京师庾当”(图10)等瓦当。

“京师仓当”(图8)瓦当,作于西汉中期,1980年陕西华阴峪乡汉京师仓遗址出土。它证实了《汉书・王莽传》颜师古注:“京师仓在华阴灌北渭口”的记载。“华仓”(图9)、“京师庾当”(图10)瓦当,陈直先生在《秦汉瓦当概述》中指出:“西汉时仓庾所用之物。”《诗・小雅・楚茨》:“我仓既盈,我庾维亿。”毛傅:“露积日庾。”《国语・周语》:“野有庾积。”韦昭注:“庾,露积谷也。”《史记・孝文本纪》:“发谷庾以振贫民。”裴驷集解:“胡公曰:‘在邑日仓,在野日庾。”《说文》:“庾,一曰仓无屋者。”段玉裁注:“无屋,无上覆者也。”《释名・释宫室》:“庾,裕也,言盈裕也。露积之言也,盈裕不可胜受,所以露积之也。”古代仓庾通用。1980年到1983年,陕西省考古研究所对京师仓遗址进行了正式的发掘,出土文字瓦当十二种三十九件,搞清了华仓即是京师仓、京师庾的别名。

“邑漕仓”瓦当(图11),1992年于陕西蒲城县东北发现。“邑漕仓”当属西汉时在洛水附近设立的漕运、储粮的粮仓。汉代农业发达,长安为京畿之地,粮食多通过漕运到达长安,“潋邑漕仓”瓦当的出土为研究汉代漕运及仓廪提供了新的资料。

(二)农官。“上林农官”瓦当(图12),西安南郊出土,陈直先生指出:《汉书・食货志》“水衡、少府、太仆、大农各置农官”。“上林农官”应指水衡都尉所属上林令之农官。《汉书・百官公卿表》中记载各级官吏的名称,印有农官名称瓦当的出土,成为证明这些官署实际存在的有力证据。

数字农业概述篇(7)

关键词:农牧业信息化;发展现状;发展趋势

0引言

进入21世纪以来,虽然基于工业社会要求的农业机械化、化学化、水利化和电气化在世界许多国家还没有全面完成,但随着信息技术的迅猛发展,以数字化为核心、网络化为趋势的信息化产业逐渐深入到社会的各个领域。信息化技术同时不断深入到农牧业生产的各环节中,形成了以数字化为特征的“数字农业”,给农牧业这个传统领域注入了新的活力[1]。农牧业信息化对于农业经济深入增长具有深远的影响,并且可以促进传统农业向现代化农业的转变[2]。加强农牧业信息化建设是发展现代农业的重要内容。

农牧业信息化是现代农业的重要标志,在驾驭农村市场经济中处于前置性的基础地位,是提高农业的综合生产力和经营管理效率的有力手段[3],是农业实现现代化的必经途径。随着信息社会和知识经济时代的到来,农业信息技术将在农业和农村经济的发展中发挥越来越大的作用[4]。没有农牧业的信息化,就没有国民经济的信息化,也就没有整个社会的信息化。农牧业信息化应当成为中国这个农业大国一种必然和必须的发展趋势,深入研究农牧业信息化是一项亟待探讨而且具有重大意义的课题[5]。

1农牧业信息化的概念

1.1信息化信息化概念包括信息和信息化两个最基本的概念。信息化是一个过程,与工业化和现代化一样,是一个动态变化的过程。在这个过程中包含3个层面和6大要素。所谓3个层面,一是信息技术的开发和应用过程,是信息化建设的基础;二是信息资源的开发和利用过程,是信息化建设的核心与关键;三是信息产品制造业不断发展的过程,是信息化建设的重要支撑。6大要素是指信息网络、信息资源、信息技术、信息产业、信息法规环境与信息人才。信息化就是在经济和社会活动中通过普遍采用信息技术和电子信息装备,更有效地开发和利用信息资源,推动经济发展和社会进步[6]。

1.2农业信息化

农业信息化有狭义和广义之分:狭义的农业信息化是指农业的数字化和网络化;广义的农业信息化是指农业全过程的信息化,在农业领域全面地发展和应用现代信息技术,使之渗透到农业生产、流通、消费以及农村社会、经济和技术等各个具体环节的全过程,从而极大地提高农业效率和农业生产力水平[7]。贾善刚指出:农村信息化的概念不仅包括计算机技术,还应包括微电子技术、通信技术、光电技术和遥感技术等多项信息技术在农业上普遍而系统的应用过程。

梅方权年认为,农村信息化是一个广义的概念,应是农业全过程的信息化,是用信息技术装备现代农业,依靠网络化和数字化支持农业经营管理,监测管理农业资源和环境,支持农业经济和农村社会信息化[8]。

农业信息化可以从4个方面来加以描述和概括:一是农业劳动者的高度智能化;二是农业基础设施装备信息化;三是农业技术操作自动自控化;四是农业经营管理信息网络化[5,9]。农业信息化不仅包括计算机技术,还应包括微电子技术、通信技术、光电技术和遥感技术等多项技术在农业上普遍而系统应用的过程。

农业中所应用的信息技术包括计算机、信息存储和处理、通讯、网格、多媒体、人工智能以及“3S”技术(即地理信息系统GIS、全球定位系统GPS和遥感技术RS)等。在发达国家,信息技术在农业上的应用大致有以下方面:农业生产经营管理、农业信息获取及处理、农业专家系统、农业系统模拟、农业决策支持系统和农业计算机网络等[5,10]。数字化作为农业信息化的核心内容,就是按人类需要的目标,对农业所涉及的对象和全过程进行数字化和可视化的表达、设计、控制和管理。在数字水平上,对农业生产、管理、经营、流通、服务以及农业资源环境等领域进行数字化设计、可视化表达和智能化控制,使农业按照人类的需求目标发展。数字农业主要包括农业要素(生物要素、环境要素、技术要素和社会经济要素)的数字信息化、农业过程的数字信息化(数字化实施和数字化设计)以及农业管理的数字信息化[1,11]。农业信息化实质是充分利用信息技术的最新成果,全面实现农业生产、管理、农产品加工、营销以及农业科技信息和知识的获取、处理、传播与合理利用,加速传统农业的改造,大幅度地提高农业生产效率、管理和经营决策水平,促进农业持续、稳定、高效发展进程。农业信息技术就是实现农业各种信息采集、处理、传播和贮存等方面的技术。

根据信息技术在农业应用领域的不同,主要分为气象遥感技术、卫星定位技术、农业专家系统和农业自动化技术等[4]。数字农业的本质是把信息技术作为农业生产力重要要素,将工业可控生产和计算机辅助设计的思想引入农业,通过计算机、地学空间、网络通讯和电子工程技术与农业的融合,在数字水平上对农业生产、管理、经营、流通、服务以及农业资源环境等领域进行数字化设计、可视化表达和智能化控制,使农业按照人类的需求目标发展[1]。

笔者认为,农业信息化是指涉农领域(农、林、牧、副、渔)所有对象的数字信息化,具体体现在农业基础设施装备的数字信息化、农业生产过程的数字信息化、农业资源环境的数字信息化、农业生产管理的数字信息化、农业经营管理的数字信息化、农业市场流通的数字信息化、农业劳动者的高度智能化以及农民生活的数字信息化,应用计算机技术、微电子技术、人工智能技术、自动控制技术、“3S”技术、通信技术和网络技术等高新技术实现农业的数字信息化,并付诸实施于农田精耕细作、病虫害防治、林区规划管理、畜禽渔业的生产操作自动化和数字化管理以及农民生活消费的网络信息化等方面,集农业科学、计算机科学、地球科学、信息科学以及网络科学等高端科学于一体的综合性领域。

1.3畜牧业信息化

畜牧业信息就是对畜禽品种资源的遗传育种、饲养管理、饲料营养、疫病防制、器械设备、畜产品加工及其经济利用的有关理论和应用研究中表现出来的信息,主要包括各种畜禽遗传育种信息、饲料营养信息、畜禽经济信息、生产和经营管理信息、疾病防治信息以及专家人才信息等内容。根据畜牧业结构和研究内容,畜牧业信息可以划分为畜牧业自然资源信息、畜牧业生产信息、畜牧业科技信息、畜牧业经济信息、畜产品市场流通信息、畜产品加工信息、疫病防治信息、饲料营养信息、器械设备信息和单位属性信息等类别[12]。畜牧业信息化指的是在畜牧业领域充分利用信息技术的方法手段和最新成果的过程。具体来说,就是在畜牧业生产、流通、消费以及农村经济、社会和技术等各个环节全面运用现代信息技术与智能工具,实现畜牧业的科学化与智能化过程。畜牧业信息化不仅包括计算机技术,还包括微电子技术、通信技术、光电技术和遥感技术等多种技术在农业上普遍而系统的应用。

畜牧业信息化的内涵至少包括以下领域:一是畜牧业生产管理信息化,包括畜禽疫病防治、畜禽饲养管理等各个方面;二是畜牧业经营管理信息化,包括与畜牧业经营有关的经济形势、畜禽供求、国民收入、固定资产投资、物资购销和物价变动等;三是畜牧业科学技术信息化,是利用信息技术快捷与方便的特点,改变传统的畜牧业技术推广方法和手段,加快科技成果的传播和转化,提高畜牧业的科技含量和竞争力;四是畜牧业市场流通信息化,指畜牧业生产资料供求信息、动物产品流通(需求量)及收益成本等方面的信息化[13]。畜牧业信息化具有丰富的内涵,主要包括:畜牧业信息服务系统化和网络化;畜牧业生产设施装备信息化;畜牧业技术操作机械化和自动化;畜牧业管理决策信息化;畜牧业劳动者的信息化和知识化等[14]。

笔者认为,畜牧业信息化是指畜牧业饲养设施的操作自动化及数字信息化、畜牧业生产管理的数字信息化、畜牧业经营管理的数字信息化、畜牧业市场流通的数字信息化和畜牧业劳动者的高度智能化等,运用计算机技术、人工智能技术、自动控制技术、无线射频识别技术、“3S”技术、通信以及网络技术,实现精细饲喂、科学育种、饲养环境的监控、疫情监测、疾病防治以及产品溯源等。

2农牧业信息化的发展状况

2.1国外发展状况世界农业信息化技术的发展大致经过3个阶段:第1阶段是20世纪五六十年代的广播、电话通讯信息化及科学计算阶段;第2个阶段是20世纪七八十年代的计算机数据处理和知识处理阶段;第3个阶段是20世纪90年代以来农业数据库开发、网络和多媒体技术应用、农业生产自动化控制等的新发展阶段。

农业自动化技术在美国、西欧和日本已广泛应用于工厂化养殖、工厂化蔬菜花卉生产、仓库管理、环境监测与控制以及农产品精深加工中,如配合饲料全部生产流程的自动控制、日光温室中温湿度控制、灌溉及采收自动化控制。通过研制和使用农业机器人,代替人从事一些繁重的农事操作,如苹果收获、挤奶、喷药、组织培养以及作物育种等方面。

美国自20世纪70年代以来将计算机应用逐步推广到农场范围。典型的农业信息化系统有:1975年,美国内布拉斯加大学创建了AGNET联机网络,现在已发展成为世界上最大的农业计算机网络系统;美国国家农业书馆和美国农业部共同开发的AGRICOLA;信息研究系统CRIS可提供美国农业所属各研究所、试验站和学府的研究摘要。

美国计算机在农牧业信息化中的应用已相当普遍。譬如:畜禽饲养的计算机化,有管理猪生产的计算机信息系统;管理农业机械化的计算机以及在在农副产品加工方面也有广泛的应用;其中,计算机在温室环境方面的应用最显其能。

早在20世纪80年代,日本农林水产省就“人工智能与农业”专门组织了一个调查委员会,列出了知识工程在农业中应用的一整套实施项目;日本已建立了一些农业生产自动化管理系统,如植物工厂的蔬菜生产管理系统(菠菜、番茄、黄瓜、茄子、西红柿和草莓等已进入批量生产)、陆田水田耕作、畜牧生产、家畜卫生系统、农业工程和机械管理系统等。

德国在农业科学研究中,已广泛使用电子、信息技术等监测和自动控制各种试验场所的温度、湿度、光照时间和强度、风向风速等各项要素,均自动监测和记录;德国还研究出许多用计算机编程控制的试验仪器和设备;在农业生产中,装有遥感地理定位系统的大型农业机械可以在室内计算机自动控制下完成各项农田作业[15-16]。

荷兰在畜禽养殖基础设施以及温室种植方面的信息化工作水平处于世界前列。荷兰的科研人员在十多年前应用数字化技术,在奶牛自动饲养管理系统Porcod系统的基础上研发成功母猪自动饲养Velos管理系统[17]。

目前,农业信息技术研究主要集中在以下各方面:农业信息网络技术、农业数据库系统、农业管理系统、农业专家系统、“3S”系统、农业自动化控制技术、多媒体技术、精准农业、生物信息技术以及数字化图书馆技术[15,18]。

2.2国内发展状况

20世纪70年代中期,计算机应用技术开始进入我国农业领域,少数农业研究机构开展了计算机农业应用研究,从此农业信息化逐步在我国农业生产当中得以发展应用,具体发展阶段[19]如表1所示。

表1我国农业信息化发展阶段

阶段时间主要内容起步阶段1981-1985年科学计算、科学规划模型和统计方法应用普及发展阶段1986-1995年数据处理(EDP)、大型数据库的建立和MIS系统开发提高阶段1996-2000年国家在“攻关”和“863”项目中都分别设置农业信息技术重大专题和课题快速发展阶段2000至今农业信息化技术全面向农业生产实际渗透.

我国农业信息化进程起步较晚。20世纪80年代以来,将系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统和地理信息系统等技术应用于农业、资源、环境和灾害方面的研究,已取得一些重要成果,不少成果已得到应用,有些成果已达到国际先进水平。如中国农业科学院草原研究所应用现代遥感和地理信息技术建立了“中国北方草地、草畜平衡动态监测系统”[20]。

中国国家科技部从1990年开始连续支持“农业智能应用系统”的研究与应用,“数字农业”渐成气候,已研制出棉花、水稻、芒果等多种作物的生育全程调控和农事管理专家系统,以及鱼病防治和苹果生产管理专家系统。“十五”期间,国家科技部等部门继续加大对以“数字农业”为主要内容的农业信息技术研究,以“精准农业”、“虚拟农业”、“智能农业”和“网络农业”等内容为切入点,组织实施“数字农业科技行动”。通过该行动的实施,突破一批“数字农业”的关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,研究开发一批实用性强的农业信息服务系统,初步构建我国“数字农业”的技术框架,从而加速了我国农业信息化进程[1]。

2003年,科技部“863计划”在生物与现代领域启动实施了“数字农业技术研究示范”重大专项。这些专项以突破一批关键技术、研制一批数字农业产品、开发数字农业技术平台、集成示范应用为目标,构建我国“数字农业”的科学技术体系及示范应用体系。在农田信息自动采集、农田植物生长模拟与数字化设计、稻麦品质遥感检测、数字化种植技术平台构建等方面取得了突破性进展[21]。“863计划”智能计算机主题连续支持“农业智能应用系统”的研究与应用,已研制出棉花、水稻、芒果等多种作物的生育全程调控和农事管理专家系统,以及鱼病防治、苹果生产管理专家系统[22]。由农软开发的农牧场管理系统、育种分析系统和目前尚待完善的实验室数据分析系统、专家系统、决策支持系统等已在部分科研管理部门和现代化农牧场推广使用[15]。现在,国内研制的多媒体小麦管理系统(WMS)和棉花生产管理系统(COTMAS)都可以应用于生产[23]。我国与世界各国一样,畜牧业信息建设与利用也是从单机到网络的一个发展过程。在单机应用方面,主要用于生产管理和决策应用[12]。我国畜牧业充分利用以计算机为核心的信息资源优势,走畜牧业现代化和信息化的道路[24]。

3我国农牧业信息化发展面临的问题

目前,我国农业信息化存在的问题有:农民素质不高、信息化意识和利用信息的能力不强;农业产业化程度不高,难以形成正常的信息需求;网络成本较高,阻碍了信息化的普及;农业信息化基础工作水平低;信息技术实用性差,农业信息服务体系还没有完成,农业信息网络人才缺乏[25]。信息技术的进一步发展必须建立在网络化的基础上。我国的农牧业信息网络化的发展虽然对我国农牧业的发展起到了一定作用,但在建设过程中存在许多问题[12]。我国畜牧业信息化水平与发达国家相比还有很大差距,主要表现在:畜牧业基础设施薄弱,畜牧信息资源缺乏,尤其是能提供给用户的有效资源严重不足;畜牧信息技术成果应用程度低,严重阻碍了畜牧业现代化的发展,这也正是当前实施畜牧业信息化迫切需要解决的问题。目前,在畜牧业生产部门及基层畜牧场,由于受地域的限制和传统畜牧业的束缚,信息技术的普及远远不能同其他行业相比,从事畜牧行业的人员平均素质也远低于其他行业部门,尤其是基层的管理人员及边远的农牧场,其受教育程度普遍较低[26]。

笔者认为,我国农牧业信息化发展亟待解决的主要问题依然是农民科学素质的提高、信息化基础设施的建立与完善及完全解决“最后一公里”的难题。

4我国农牧业信息化的发展方向

1)网络化。信息技术发展是以微电子技术为基础、计算机技术和网络技术相互融合的高新技术。

2)智能化。信息技术的智能化发展进步很快,在农业上的应用也将得到长足的进展。农业专家系统、农业管理信息系统和农业决策支持系统的开发与应用是其中最突出的表现。

3)数字化。数字化内涵包含两层意思:一是随着数字技术的发展,原来的模拟信号被转换成数字信号,实现了在计算机网络上的高保真和快速传播,可以制成数字视频和音频信号在网络上传递,实现远程教育等;二是表现在科学计算可视化和虚拟现实技术[25]上。

建立统一的技术标准和规范,突破一批数字农业关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,建立数字农业应用服务系统,通过系统集成和应用示范,逐步建立我国数字农业的科学技术体系。在统一的技术标准下,对数字农业关键技术进行研究开发,通过系统集成构建数字农业技术平台,初步形成我国数字农业技术框架。在我国不同生态经济类型和不同农业生产管理类型地区,对数字农业技术进行集成应用示范,取得显著的社会经济效益,促进当地农业信息化的跨越发展,加速农业生产由传统、粗放、经验型向智能、精准和数字化方向的转变,提高农业生产力水平。通过该行动的实施,突破一批数字农业关键技术,建立数字农业技术平台,开发国家农业信息资源数据库,研究开发一批实用性强的农业信息服务系统,初步构建我国数字农业的技术框架,加速我国农业信息化进程,并逐步实现农业生产的精确化、远程化、自动化和虚拟化[1]。

我国的畜牧业发展已经进入到了新的发展阶段,建设集约化、专业化和优质高效的现代畜牧业已经成为必然[27]。在推进信息化的过程中,要通过计算机网络及通讯技术,把畜牧信息及时与准确地传达到用户手中,实现畜牧生产、管理和畜产品营销网络化,加速传统畜牧业的改造和升级,大幅度提高畜牧业生产效率、管理和经营决策水平[26];改变传统的畜牧业模式,使农民依靠信息引导进入市场、组织生产,走畜牧业现代化和信息化之路;加强对畜牧信息化工作的宣传,提高人们的信息意识和利用信息的能力积极促进畜牧业信息化的发展[24,26]。当前,现代信息技术与农业融合所衍生的“精准农业\"、“虚拟农业\"、“智能农业\"和“网络农业\"等均是数字农业的不同侧面,成为农业信息化发展的方向[28]。

笔者认为,我国农牧业信息化应逐步实现农牧业生产的操作的全面自动化以及完全智能化,并最终进入网络化农牧业。

5我国农牧业信息化的作用

农业信息化、智能化、精确化与数字化将是信息技术在农业中应用的结果,必将大大推动农业信息化,推动农业向高产、优质、高效及可持续方向发展。

作为21世纪农业的重要标志,发展数字农业及相关技术是我国发展现代农业必然选择的支撑技术,因此将数字农业确立为解决“三农”问题的平台,符合时展的需要。数字农业展现了美好的前景,它将极大解放农业生产力,改变农业作业方式,实现农业生产质的飞跃[1]。先进的信息收集、处理和传递技术将有效地克服农业生产的分散化和小型化的行业弱势。

强大的计算能力、智能化技术和软件技术,使农业生产中极其复杂和多变的生产要素定量化、规范化和集成化,改善了时空变化大和经验性强的弱点。将信息技术与航空航天遥感技术(RS)、农业地理信息系统技术(AGIS)以及全球定位系统(GPS)等相结合,加强了对影响农业资源、生态环境、生产条件、气象、生物灾变和生产状况的宏观监测与预警预报,提高了农业生产的可控性、稳定性和精确性,并能对农业生产过程实行科学与有效的宏观管理[5]。信息自动化技术使现代的养殖业有了根本性的改变,是形成统一标准化饲养的一种优化养殖方式。它有利于优化畜牧业区域布局;有利于解决人畜混居、相互交叉感染问题;有利于减少与外界接触,减少传染病的预防发生;有利于改善农民的生活环境,保护人们的身体健康;有利于改善畜禽养殖环境和生产性能的发挥;有利于提高畜禽的品质;有利于先进技术和设备的推广和生产效率的提高;有利于畜禽生产的宏观管理和相互之间的协调,从而促进畜禽业迅速发展,提高养殖者的经济效益[29]。同时,利用计算机控制实现自动补料、补水和补光等作业,节约劳动力。另外,通过多媒体模拟,可以在最适宜时期扩大生产,在市场行情最佳时销售,从而获得最大利润[30]。

广泛应用现代信息技术,促进农业和农村经济结构调整,增强农业的市场竞争力,发展农村经济,建设现代农业,增加农民收入,加速农村现代化进程,促进农业生产过程实现自动化和高效益化;通过计算机对来自于农业生产系统中的信息进行及时采集和处理,根据处理结果迅速地去控制系统中的某些设备、装置或环境,从而实现农业生产过程中的自动检测、记录、统计、监视、报警和自动启停等,实现农业自动化生产和对自然环境的实时监测[4,23]。传统的农业生产方式得以改造,农业生产效率将大幅度提高,生产成本下降;加快新品种选育,提高病虫害预测、预报和防止水平,减少损失,增加产出,获得更大的效益,这将提高人类对自然的认知能力,最大限度地控制和利用水、土、气等自然资源,减少农业生产的不稳定性[29]。科学指导农业生产管理,增加农副产品产量,提高农产品质量,降低农业生产成本,提高经济效益;实现科学化管理,提高对农业和农村经济发展的政策决策水平,最大限度避免自然灾害对农业造成的损失。

6结束语

推动农牧业信息化有利于实现农牧业生产的全面自动化及数字化;有利于降低农业生产的成本,提高农业生产的效率;有利于农牧业生产的集中管理,有利于降低传统农业靠天吃饭的不稳定性;有利于减少农产品市场波动,提高农业市场流通效率,从而增加农业生产的经济效益。

参考文献:

[1]缪小燕,高飞.“数字地球”与“数字农业”[J].农业图书情报学报,2004,15(2):30-33.

[2]XuZenghu,iLiYingbo.Developmentofagriculturalinfor-mationservicesystemanditsinteractionwithagriculturale-conomicgrowth-intensive:theCasefromChina[C]//ServiceSystemsandServiceManagement,2007Internation-alConferenceon,Chengdu,2007:1-5.

[3]付鸿瓒,解鸿博.进一步加快农业信息化体系建设[J].

现代情报,2008(6):76-78.

[4]佚名.农业信息化技术[EB/OL].[2009-03-16].

[5]胡伦赋.农业信息化研究[J].现代情报,2002,(11):43-45.

[6]黄胜海,邹剑敏.对我国畜牧业信息标准化建设的探索[J].中国禽业导刊,2003,20(14):9-11.

[7]佚名.什么是农业信息化[EB/OL].[2009-03-16].

[8]李道亮.中国农村信息化发展报告(2007)[M].北京:中国农业科学技术出版社,2007.

[9]佚名.什么是农业信息化[N].中国财经报,2005-12-28(6).

[10]杜桂莲,张勇.浅谈农业信息化[J].现代化农业,2003(11):23-24.

[11]熊海灵,杨志敏.试论数字农业与农业信息化[J].农业网络信息,2004(5):27-29.

[12]邹剑敏,黄胜海.对我国畜牧业信息建设与应用的思考[J].农业网络信息,2007(1):4-9.

[13]张晓航.畜牧业信息化建设推进现代畜牧业[J].今日科苑,2007(16):30.

[14]陈新文.为畜牧业插上IT的翅膀[J].中国畜牧杂志,2003,39(6):42-43.

[15]赵静,王玉平.国内外农业信息化研究述评[J].图书情报知识,2007(6):80-85.

[16]佚名.农业信息化[EB/OL].[2009-03-16]./directionary/showarticle.asp?id=121&sort.

[17]佚名.解放养猪业生产力的新技术-数字化养猪[EB/OL].[2009-03-19]./doc/2008/3/19/150228.htm.

[18]吕晓燕,卢向峰,郝建胜.国内外农业信息化现状[J].

农业图书情报学刊,2004,16(11):121-125.

[19]刘世洪.农业信息化与农村信息化[M].北京:中国农业科学技术出版社,2005.

[20]张建立,张建鑫,世昌.数字农业概述[J].农技服务,2007,24(9):116.

[21]佚名.数字农业和精确农业[J].北京农业,2006(6):4.

[22]吴吉义.国内外农业信息化现状分析[EB/OL].[2006-07-26]./tech/9/97096.ht-m.l[23]佚名.什么是农业信息[EB/OL].[2006-02-28].

[24]徐婷婷,付龙.加快畜牧业信息化应解决的几个问题[J].黑龙江畜牧兽医,2007(11):118.

[25]杜桂莲,张勇.浅谈农业信息化[J].现代化农业,2003(11):23-24.

[26]刘宇,蒋国滨.利用计算机及网络技术促进畜牧业信息化的发展[J].黑龙江畜牧兽医,2003(4):18.

[27]赵颖波.让信息化促进现代畜牧业建设[J].中国畜牧兽医文摘,2007(2):1.

[28]卢钰,赵庚星.“数字农业\"及其中国的发展策略[J].

黑龙江畜牧兽医,2003(4):485-488.