期刊大全 杂志订阅 SCI期刊 SCI发表 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 结构优化方法

结构优化方法精品(七篇)

时间:2023-06-05 15:42:08

结构优化方法

结构优化方法篇(1)

【关键词】工业建筑;结构设计;优化方法

1工业建筑结构优化设计的探讨

1.1工业建筑优化设计的目的。目前,在工业建筑优化设计的过程之中,依据各类建筑,其优化需求目标基本上可以分成两类:(1)传统概念之上的建筑结构设计与优化,其主要就是针对成本结构来进行优化设计,在最大限度之上来充分的保障设计的质量以及结构设计的科学合理性,最终于现代社会低碳环保的各项要求相符。(2)主要就是利用建筑结构的设计优化来满足企业工业生产的各项目标,达到建筑整体而结构的布局及设备置放的部位、分析与处理施工流程之中的各项数据,来最大程度之上加大工业生产作业的效率,提升企业的市场竞争力。

1.2工业建筑结构设计优化中的常见问题。在目前建筑结构设计优化设计的施工经验之中来进行分析,一般问题都是出现在优化之中。现如今,应用钢结构的范围逐渐的加大,这对于概念性设计与空间美学产生了较大的影响。此外,大部分工业建筑结构设计优化之中,设计人员对于整个结构规划布局缺乏一个全面化的认识,最终相应的也就引发了优化效果不显著情况的出现以及大部分企业对工业建筑结构设计优化不认可。

2工业建筑设计优化

2.1建筑结构优化的注意事项。现如今,在进行建筑结构设计的时候,我们国家大多建筑师基本上都不会参前期方案的设计,针对结构可行性与合理性来进行分析,在后期工程建设与方案设计相应的也就加大了难度,当然这也就需要增加对于工程的投入及应用。在工程结构设计前期就得要及时的引入结构优化的设计理念,这样一来不仅仅可以统筹兼顾来分析出工程优化设计的各项需求,而且还可以缩减企业资金的投入量,那么就可以在工程的初期进行合理的控制。

2.2建立完善的工业建筑结构优化体系。在工业建筑结构优化设计的过程之中,因为各个工业建筑结构的设计缺失统一的指导方案,那么就会使得建筑内部结构优化无法满足工业建筑结构的各项要求。所以在进行优化设计之前,首先要做的就是得完成的管理体系建立起来,利用管理体系以及工业建筑结构优化设计之中出现的各项问题来进行分析,并及时的制定出来行之有效的措施来解决,逐渐的工作的内容完善起来,最终在最大限度之上来充分的满足工业建筑结构优化设计质量管理的目的,加大工业建筑结构优化设计质量及其后期正式应用的使用效率。

2.3建立工业建筑结构设计优化模型。为了进一步科学、合理化的实现工业建筑结构优化设计的工作可以有条不紊的进行,在真是开展优化工作之前,要将结构优化设计模型建立起来,在众多变量参数之中选择出来其中的重要参数,逐步将函数模型建立起来,最终实现最佳的优化方案。

2.4吊车水平载荷。大部分工厂的生产均要利用吊车来进行输送体积偏大的获取,吊车荷载主要可以分为水平与竖直。SAP2000在结构分析之中可以将吊车的水平荷载利用等效静载负荷的方式来加到排架桩之上,另外竖直荷载主要就是利用移动式的静载负荷来进行施加的。

2.5电厂煤斗。煤斗是一种大型设备,其主要特征表现在:高度高以及体积大,并且有水平地震的重要性。针对支承构建而产生附加的扭矩以及弯矩,那么就得要利用相应的计算来进行补偿附加的内力。其主要步骤为:首先在设备的重心位置加设相应的支承结构,将附加的内力进行缩减;其次则是在与支承梁杆的轴心位置垂直的部位加设梁结构,使得支承梁的扭矩转变成为作用在梁上的弯矩;再者就是这个时候梁的抗弯能力十分的强,最终转移危险;最后则是支承结构抗扭配筋在不断的强化,楼板强度也随即加强。

2.6磨煤机隔振。对于火电厂而言,其发电过程之中始终无法离开煤炭,那么其中的关键工具就是磨煤机。振动的程度也会在很大程度之上影响到其他设备,特别是配电装置以及发电机组所处的控室。为了可以有效的避免这些问题的出现,那么弹性支承系统也因此而出现。(1)应用了弹簧振系统之后,磨煤机基础台座的重量约为一般基础快的二分之一。由于将之前的占地空间缩减,这对于工艺布置而言十分的有利。(2)应用了弹簧隔振系统之后,降低了磨煤机振动的频率,另外最为关键的就是有效的降低了磨煤机对于周边厂房及人员的影响。(3)因为磨煤机基础台座和锅炉厂房结构之间出现分离的现象,磨煤机基础施工的灵活性偏大。磨煤机基础施工的进行交叉是的施工,可以有效的缩减施工周期。(4)调平磨煤机,基础沉降可以通过弹性弹簧隔振器来进行相应的调整。(5)应用弹簧隔振系统之后,磨煤机自身受到荷载影响偏小,减小了磨煤机磨损的程度,使得磨煤机的运行可靠性进一步的提升。另外还可以有效的延长磨煤机的使用寿命,加大磨煤机大修的周期。(6)和一般基础相比之下,在应用弹簧隔振系统之后,磨煤机基础的振动具备可控制性,最为关键的就是传递到基础下荷载量减小了,所以可以适当的缩减地基基础处理的资金。综上所述,工业建筑结构设计是一项较为繁杂的工作,那么需要考虑各个方面的因素,从选择原材料到工程设计以及设计优化等等各个部分,依据工业建筑结构的特征来来具体的进行操作。逐渐的优化设计方案,在最大限度之上设计出来经济合理的方案。

参考文献

结构优化方法篇(2)

关健词 船舶结构;优化;设计方法

中图分类号 U66 文献标识码A 文章编号 1674-6708(2013)103-0100-02

进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。随着计算机信息技术的发展,在计算机分析与模拟基础上建立的船舶结构的优化设计,借鉴了相关的工程学科的基本规律, 而且取得了卓越的成效;基于可靠性的优化设计方法也取得了较大的进步;建立在人工智能原理与专家系统技术基础上的智能型结构设计方法也取得了突破性进展。

1经典优化设计的数学规划方法

结构优化设计数学规划方法于1960年由L.A.Schmit率先提出。他认为在进行结构设计时应当把给定条件的结构尺寸的优化设计问题转变成目标函数求极值的数学问题。这一方法很快得到了其他专家的认可。1966年,D.Kavlie与J.Moe 等首次将数学规划法应用于船舶的结构设计,翻开了船舶结构设计的新篇章。我国的船舶结构的设计方法研究工作始于70 年代末,已研究出水面船舶和潜艇在中剖面、框架、板架和圆柱形耐压壳等基本结构的优化设计方法。

由于船舶结构是非常复杂的板梁组合结构,在受力和使用的要求上也很高,所以在进行船舶结构的优化设计时,会涉及到许多设计变量与约束条件,工作内容很多,十分困难。船舶结构的分级优化设计法就是在这个基础上产生的,其基本思路是最优配置第一级的整个材料,优选第二级的具体结构的尺寸。每一级又可以根据具体情况划分成若干个子级。两级最后通过协调变量迭代,将整个优化问题回归到原问题。分级优化方法成功地解决了进行船舶优化设计中的剖面结构、船舶框架和板架、潜艇耐压壳体等一系列基本问题。

2 多目标的模糊优化设计法

经典优化设计的数学规划方法是在确定性条件下进行的, 也就是说目标函数与约束条件是人为的或者按某种规定提出的,是个确定的值。但是在实际上, 在船舶结构的优化设计过程、约束条件、评价指标等各方面都包含着许多的模糊因素,想要实现模糊因素优化问题, 就必须依赖于模糊数学来实现多目标的优化设计。模糊优化设计问题的主要形式是:

式中j 和j分别是第j性能或者几何尺寸约束里的上下限。

模糊优化设计方法大大的增加了设计者在选择优化方案时的可能性, 让设计者对设计方案的形态有了更深入的了解。目前,模糊优化设计法发展很快, 但是,还未实现完全实用化。多目标的模糊优化设计法的难点主要在于如何针对具体设计对象, 正确描述目标函数的满意度与约束函数满足度隶属函数的问题。

3 基于可靠性的优化设计方法

概率论与数理统计方法首先在40 年代后期由原苏联引入到结构设计中, 产生了安全度理论。这种理论以材料匀质系数、超载系数、工作条件系数来分析考虑材料、载荷及环境等随机性因素。早在50年代,人们就在船舶结构的优化设计中指出了可靠性概念,随后,船舶设计的可靠性受到人们的重视,开始研究可靠性设计方法在船舶结构建造中的应用。

船舶结构可靠性的理论和方法根据设计目标的不同要求, 可以得出不同的结构可靠性的优化设计准则。大体分为以下3种:

1)根据结构的可靠性R·,要求结构的重量W最轻,即:

MinW(X),s.t.R ≧R·

2)根据结构的最大承重量W·, 要求结构的可靠性最大或者破损概率最小,即:

Min Pf(X ) , s.t.W (X ) ≦ W·

3)兼顾结构重量和可靠性或破损概率, 实现某种组合的满意度达到最大,即:

Max[a1uw(X)+a2upf(X)]

式中, a1,a2分别代表结构重量和破损概率的重要度程度, 而且满足a1+a2≥1.0,a1,a2≥0;uw,upf分别为代表相应的满意度。

关于船舶结构的可靠性优化设计方法的研究越来越多, 逐渐成为船舶的结构优化设计中的重要方向。但是,可靠性的优化设计方法除了在大规模的随机性非线性规划求解中存在困难外, 还有一个重要的难点在于评估船舶结构可靠性的过程很复杂, 而且计算量大。

4 智能型的优化设计方法

随着人工智能技术(Al)和计算机信息技术的发展, 给船舶结构的优化设计提供了一个新的途径,也就是智能型优化设计法。

智能型的优化设计法的基本做法为:搜索优秀的相关产品资料,通过整理,概括成典型模式,再进行关联分析、类比分析和敏度分析寻找设计对象和样本模式间的相似度、差异性与设计变量敏度等,按某种准则实施的样本模式进行变换, 进而产生若干符合设计要求的新模式, 经过综合评估与经典优化方法的调参和优选, 最终取得最优方案。

智能型的优化设计法法的优点是创造性较强,缺点是可靠性较弱。所以在分析计算其产生的各种性能指标时,应当进行多目标的模糊评估, 必要时还应当使用经典优化方法对某些参数进行调整。

5 结论

通过本文对船舶结构优化设计方法的研究,我们得出在进行船舶结构优化设计的时候, 往往会涉及到很多相互制约和互相影响的因素, 这就需要设计人员权衡利弊, 进行综合考察, 不但要进行结构参数与结构型式的优选,而且还要针对具体情况对做出的方案进行评估、优选和排序。通过什么准则对不同的方案进行综合评估,得出最优方案, 成为专家和设计人员需要继续研究的问题。

参考文献

[1]郭军,肖熙.基于可靠性的船体结构多目标优化设计[J].上海交通大学学报,2010(1).

结构优化方法篇(3)

【关键词】建筑;结构设计;优化方法

引言

随着我国房屋建筑工程行业的高速发展,居民对房屋建筑的功能质量的要求越来越高,房屋建筑从单层、多层朝着高层建筑发展,其结构形式也越趋多样化和复杂化。在这种形势下,通过优化建筑结构设计以提高建筑质量、降低建筑成本并满足居民对房屋建筑的品质要求,对于房地产企业保持并扩大市场份额具有重大现实意义。

据统计,建筑设计阶段决定了建筑造价的80%以上,而这其中结构设计由决定了建筑总造价的50%左右。我国大部分建筑施工过程中的水泥、钢材用量均远远多于欧美发达国家,有巨大的可优化空间。本文首先分析了结构优化设计的现状,并对基于ANSYS的框架结构优化设计方法进行了研究。

1 结构优化设计现状分析

结构优化是指在满足国家和地方相关法律法规规定的结构安全度要求的基础上,根据实际建筑物的设计特点及设计需求,通过选择合理的体系及结构,结合精确的计算机模型计算、校核与应力分析,制定出详细的配筋方法等设计内容,最终达到有效降低结构构件经济指标及整体工程造价的目的。

按照结构优化发展的难易程度,可将其分为截面或者尺寸优化、形状优化、拓扑优化、布局优化以及类型优化等5个层次,但结构优化在建筑结构设计领域的应用还比较有限,主要因为:(1)在现行国家和地方相关法律法规中,对建筑优化设计的要求不够明确,设计人员往往仅对尺寸、钢筋数目等细节进行优化,没有考虑总体设计理念,无法获得最优结果。(2)设计人员仅了解最基本的结构设计理论和设计软件,在行业内部对结构优化设计理论和方法的推广不足。(3)相关结构优化设计理论和方法缺乏实践检验,由于实际结构设计的影响因素、变量和约束条件较多,给目标函数的建立带来较大困难,因此现有的结构优化方法中界定的优化目标与实际工程需求还有较大差距。

2 基于ANSYS的框架结构优化设计方法

优化设计的基本原理:基于数学模型构建优化模型,在此基础上使用优化方法和优化工具进行迭代计算,对目标函数进行求解,得到相应的机制,并最终获得最有结果。国内外结构分析模型及其优缺点比较如表1所示。

表1 国内外结构分析模型及其优缺点

模型 平面框架 协同工作 薄壁柱 墙组元 板-梁墙元 平面应力元 壳元墙元

简图

优点 计算快

手动校核 计算较快

考虑了空间整体性 适用于所有平面、效率高 剪力墙可以多点传力,变型较协调 变形较协调,自由度较少 简单实用,充分考虑墙平面内刚度 分析精确较高,能直接与一般梁柱单元连接

缺点 模型粗糙

适应面窄 适应面窄

近似结果 剪力墙要求比较规则,单点传力 尚在实用 结果偏柔,有时失真 近似考虑墙平面外刚度 自由度太多,计算效率低,数据和程序复杂

件 建研院

PKPM 建研院

XTJS 建研院TBSA

TAT 建研院

TBWE 美国加州

ETABS

清华

TUS/ADBW 大连理工

DASTAB

美国加州

ETABS(95) 建研院

SATWE

北大SAP84

ANSYS软件是以有限元分析为基础的大型通用CAE软件,该软件分为前处理、分析计算和后处理三个模块。优化设计包含在分析计算模块,ANSYS提供了零阶方法和一阶方法两种优化方法来解决各类优化模拟问题。运用某工程实例说明ANSYS在框架结构优化中的方法。

(1)工程实例概况。某房屋建筑的二层梁梁长5700mm,梁截面为250mm×450mm。其梁配筋,梁端负筋为4根三级钢,直径为16mm,梁底正筋为3根三级钢,其中2根直径为20mm,一根直径为16mm。箍筋为一级钢,直径8mm,间距200mm,加密区100mm。现优化器梁截面与钢筋截面。梁的相关结构如图1所示,其中梁上的均布载荷为P=43.3kN・m。

(2)构建目标函数。目标函数是梁单位长度上的总造价最小,目标函数如式(1)所示。

(1)

式中,为单位体积混凝土的价格,初始为0.000057元/cm3;为单位质量钢筋价格,初始为0.4831元/kg;为单元面积模板的价格,初始为0.00016元/cm3;为负筋的总长度与梁全长的比值,初始值为2。

(3)优化设计。建立分离式有限元模型,混凝土采用SOLID65单元,钢筋采用LINE8单元,进行模拟优化,梁的变形模拟图如图2所示,最终框架梁的优化结果如表2所示。

(a)钢筋混凝土梁应力图 (b)钢筋应力变形

(c)钢筋混凝土梁应力变形

图2 梁的变形模拟图

表2 框架梁优化结果

3 结语

房屋建筑结构设计首先需要保证建筑物的功能性、耐久性和安全性,在此基础上,应最大限度的控制建筑成本,才能有效提高企业的市场竞争力。为实现这些目标,就需要针对建筑结构设计不同阶段的内容和特征,将结构优化设计方法应用其中,以保证设计的合理性和可行性,并达到最终的优化设计目标。

参考文献

[1]李能能,董斌.房屋建筑结构设计中优化技术应用探讨[J]. 建筑设计管理, 2013 (12): 73-75.

[2]庹梦云.结合Ansys的框架结构优化设计[D]. 辽宁工业大学,2014

结构优化方法篇(4)

关键词:建筑结构设计;设计优化;方法

引言

进入21世纪以来,随着物质生活水平的不断提高,人们的生活理念发生了巨大的变化。作为人们工作生活的场所,房屋建筑的结构设计也成为人们关心的话题。在现代消费观念的影响下,房屋不再仅仅是供人居住办公,遮风挡雨的场所,同时还被赋予了满足人们审美观念的新功能。当前,除了最基本使用功能外,建筑正在被开发出越来越多的新用途,同时也是人们实现审美追求,提高生活格调重要途径。建筑设计师在设计房屋时,不仅要考虑房屋的使用功能,更要从美学角度考虑更多的内容。只有二者协调统一,完美结合,同时满足使用者在使用功能和审美要求上的双重要求,才能成为受人青睐的建筑佳品。房屋建筑的结构设计包含的内容非常广泛,其根本目标是实现功能完善、质量可靠、符合人们审美情趣的设计方案。要达到这个目标,需要持之以恒的长期学习和实践,需要汲取其它优秀设计方案的菁华,取长补短,融会贯通,不断优化设计方案,充分利用空间资源,最大程度地满足房屋使用者的实际需要。

1 建筑结构设计优化的内涵

影响一座建筑物好坏的因素非常多。一般来讲,人们对建筑物的评价来源于三个方面:外形、结构和质量。这些都和结构设计密切相关。房屋结构设计,不仅仅是整个建筑工程赖以实施的基本根据,更是一个建筑能否充分实现预定功能和目标的根本保障,是整个建筑工程的核心要素。优秀的房屋结构设计方案,应当能够在有效控制成本投入,降低施工难度的基础上,充分利用城市中的空间资源和其它资源,大幅提升建筑物的实用功能和安全质量。要取得优秀的设计方案,需要对既有设计不断进行优化改良,从而最大限度地实现使用者对房屋的功能要求、质量要求和审美需要。同时,优化后的结构设计还能够有效帮助建设者节约资金,降低建设成本。

2 实现建筑结构设计优化的一般方法

单纯从建筑角度来讲,结构设计优化主要分为房屋工程分部结构的优化设计和总体结构的优化设计两种。一所房屋的设计建造,要根据具体情况,综合考虑房屋建筑的人文要求、经济要求和周围环境要求等。合理充分利用资源,实现各种要素的和谐共存,是建筑房屋结构设计优化的基本理念。

2.1 建立结构优化的模型

实现建筑结构设计优化,首先需要建立一个数学模型,重现房屋的各项指标和影响因素间的复杂关系。可以按照以下几个步骤建立模型:

2.1.1 合理选择设计变量

设计变量通常优先选择对建筑结构影响大的参数,即和设计目标直接相关的那些内容,如损失的期望C2和结构的造价C1等,还有和限制条件相关的因素,如结构的可靠度PS等;为了减少设计量、计算量和编制程序的工作量,还可以把部分因素用预定参数来代表,这些参数通常具有影响细微、波动不明显的特点,往往通过局部调整或结构本身就能满足相关要求。

2.1.2 确定目标函数

出于建造成本的考虑,需要建立一组函数,通过这组函数可以准确描述预定条件中截面几何尺寸、钢筋的截面积和相应的失效概率之间的关系。

2.1.3 确定约束条件

房屋建筑安全可靠是房屋结构优化设计必须满足的基本条件,以此出发可以确定优化设计的约束条件。裂缝宽度、结构强度、构件的大小、结构应力、结构体系规格、可塑程度、确定程度等都是常见的约束条件。设计者要充分比较分析目标约束条件和实际约束条件,确保每个目标约束条件都有的放矢,符合实际,从而为设计优化提供根本保障。

2.2 设定计算方案

以提高安全性、耐久性和适用性为目标的建筑结构设计优化,往往具有约束条件复杂、变量众多、函数非线性的特点,为了方便分析计算,通常采用将有约束的优化问题转换成无约束的优化问题的方法求解。拉氏乘子法、复合形法、Powell 法等都是常用的优化计算方法。

2.3 程序设计

由于计算量巨大,计算过程复杂,为提高结果准确性和精度,通常利用程序来实现以提高安全性、耐久性和适用性为目标的房屋结构设计优化的计算过程。编写的综合程序要完全符合优化设计模型和计算方案,并具有功能完整、用途齐全、运转高效等特点。

2.4 结果分析

结果分析是房屋结构设计优化过程中非常重要的一步,它直接关系到优化设计方案的最终选择。程序运算的结果只是为房屋结构设计优化提供参考依据和备选方案,并非最终结果。由于上述模型函数主要体现的经济成本上的优化,在结果分析时,设计者需要把更多的因素纳入思考范畴中,在详细地比较分析基础上,选择出最佳的设计方案。前文已经提到,现代社会的建筑,不仅要满足实用功能,同时还需要满足使用者的审美需求。造价成本和工程质量不再是优化设计的唯二标准。设计者需要从安全性、耐久性、使用功能、经济效益、施工要求、美观程度,以及和周围环境的和谐统一等方面进行全方位多角度的考虑,要分析各种因素的影响,从使用者、建设方等多个角度考虑,综合各方意见进行比较。任何考虑上的偏颇和疏漏都有可能造成建筑设计上的缺陷,从而影响建筑的正常使用。必须平衡使用各种资源,才能实现结构设计的最优化。

3 结束语

房屋结构设计优化,本质上是一次综合所有影响的数据分析,对设计者的理论水平和实践经验提出了非常高的要求。房屋结构设计所需要达到的目标,绝大多数情况下不是一个单一的指标,而是一组指标的组合。这些指标往往互相影响,既是统一的,又是矛盾的,各有侧重点,又相辅相成。设计者应当综合考虑房屋的各种性能,选择最有助于实现房屋建筑综合效益的设计方案。在保障房屋安全和使用质量的前提下,设计者要用于创新,大胆实践,努力寻求更好的设计路线,应用现代化设计工具,更好地实现房屋结构设计的目标。

参考文献

[1]邹俊.建筑结构设计优化方法在房屋结构设计中的现实应用[J].科技传播,2010(10).

结构优化方法篇(5)

关键词:建筑结构;优化设计;应用价值;方法

中图分类号:S611文献标识码: A

1 建筑结构设计的重要性

随着经济建设的不断变化与发展,人们对于建筑行业的逐渐重视,新的技术以及理念也在不断地被应用于其中,计算机技术的普及引起了建筑行业新的变革与发展。建筑结构设计就是采取先进的设计手段及理念,在有限的空间范围内进行完整的!合理的优化设计,将使用空间最大化,同时还要特别注意结构设计与构件之间,结构与结构之间的空间布局。这也是检验建筑结构工程师是否合格的重要标准之一。工程师建筑结构设计的重点不仅仅体现在设计理念上,而且对于其结构设计的经验总结也是极其重要的,随着计算机的发展,对于工程师的设计手段又提出了新的标准与要求,建筑工程设计师不仅仅要掌握专业的设计理念,同时还要掌握基本的计算机技能,将设计理念与计算机技术相结合使其更上升一个合理的高度,此时设计理念就尤其的重要,在整个建筑结构中必须完全的充分体现出来。

2建筑结构设计优化方法的应用实践价值

2.1结构设计优化方法的应用

结构设计优化主要体现在房屋工程总体设计以及局部设计当中,在房屋建设分布设计中,结构设计优化技术起到了至关重要的作用,对于结构基础方案的优化、房屋建设的优化、围护方案的优化!结构设计的优化等一些列优化设计都离不开结构设计优化的整体布局与设计,在整个优化过程中,还要结合具体的实际工程情况,进行合理的分析与总结,将其设计优化的整理理念可以充分体现在建筑结构优化设计中,在满足相关规定的前提下,进行经济效益的结构设计优化,进而达到节约经济的目的。

2.2结构设计优化方法的实践价值

在进行结构设计优化的过程中,必须从其长远的利益出发,将其结构设计的合理性完全的在整体建筑结构中有所体现。不能只顾眼前的建筑结构设计所产生的经济效益,这样很容易导致在使用中,随着时间的累积而将导致严重的经济失衡。在传统的设计理念里,采用其结构设计优化可以使建筑工程造价的成本降低至 5%~30%左右.然在结构优化设计中,利用材料的性能可以有效的将其建筑结构优化的各个部门得到很好的协调,在满足建筑规范的前提下,达到“适用、安全、经济”的目的。

3 在建筑中结构设计优化的方法

3.1整体优化和局部优化

任一项目建筑的设计都具备层次性及复杂性两方面的特点。以层次性看来,其一般包含建筑的设计体系、结构体系及安装设计体系等,每一个体系内又囊括了多个下属体系。进行房屋建筑设计时,设计人员应对各个下属系统进行优化,将各个布局间的横向关联冲破,叠加工程;以复杂性看来,其一般包含建筑原料选取、零部件选取、结构类型选取等内容。所以,对于任一房屋建筑来讲,就应从整体进行优化,方可真正实现设计优化。

3.2寿命优化和分阶段优化

每一个项目工程在限定的使用期限中,每一环节都有多种设计方案供以挑选,也就是每个阶段都可以进行方案优化。房屋设计人员应该依据各个阶段的性质对优化方法进行确定,从而对整体工程的寿命进行优化,保证建筑的施工质量,增加企业经济收益。

3.3桩基础优化

桩基础可以划分为灌注桩及预制桩两种桩型。因为灌注桩在施工时质量较难控制,并且操作复杂,时间较长。所以,如果在沉降符合相关标准的基础上,应利用预制桩进行施工。另外,因为在普通状况下,伴随着桩基的不断深入,土壤对桩身的作用及摩擦也随之增大,所以,应尽量选取长度较大的预制桩。

3.4对上部结构进行优化

想要对房屋建筑上部结构进行模型建立及优化,首先应合理布设剪力墙。保证剪力墙的质量均匀,使对称楼层的平面刚度中心点同楼层的结构重心相重合,从而削减地震、风力等外部荷载作用的扭转影响。假如房屋类型允许,尽可能应用大开间的剪力墙构造,同时增加剪力墙的墙肢长,这样,不但可以缩减墙肢的数量,同时还能够在保证刚度符合标准的基础上降低混凝土使用数量。另外,因为剪力墙中的暗柱一般应用钢筋建材,如果应用大开间的剪力墙构造能够缩减钢筋的使用该数量。然而,假如建筑所在地区的地质情况较差,而建筑对抗震性能的要求较高,那么,就不应采用大开间的剪力墙构造。

3.5结构同建筑的协调优化

在进行设计时,应尽可能保证建筑的结构同整体平面的配合紧密,从而实现造型美观、结构合理的效果。在进行建筑柱及墙的布设时,应同房建平面的功能需求相一致,每个房间的进深、开间都应保持统一。建筑系统尽可能简洁,墙与柱不可以出现错位情况,每一层的高度及截面面积应相同。进行楼体或电梯的设计时,其应力集中或受力方向较多的转角区域,承重构件应尽可能选取高强建材,从而降低自重,而非承重的构建应选用质量较轻的建材。整体建筑在布局方面应保证重心、刚心及质心交叠,预防出现扭转情况。

3.6结构同排水的协调优化

因为建筑中的给排水专用房间包含了大量的机械设备,其荷载强度也较普通的房屋较大。所以,尽可能将水泵房设置在地下室区域中。给排水房间中的管道较多,粗细不一,所以,应保证预留的孔径尺寸及预埋的深度符合标准,并且对楼板的穿孔位置进行加固。另外,尽可能降低水平方向的管线贯穿柱、梁等结构出现的几率。如果管道贯穿房屋建筑的承重墙,应进行加固维护。尽可能确保结构的布设同管网体系相协调,预防管道绕柱或梁的情况。

3.7结构同电气的协调优化

如果电气的管线是以导线的形式在金属管的外部或墙体、楼板处安装,那么,就可能对预制结构的施工造成困难。所以,如果管线贯穿建筑梁,则应在梁预制时事先留下孔洞,同时确保梁的宽度同墙体的厚度相同。如果不能相同,则要保证墙体的一侧平面同梁的侧平面相齐,从而保证管线不裸漏在墙体外面。房屋建筑中,电梯房包含很多的空洞,所预埋的构件也较多,所以,应单独对电梯房的强度进行计算,从而保证设计合理,确保施工质量安全。

4结束语

总而言之,利用对建筑的结构进行设计优化,可以保证建筑自身的功能,并且对工程资金投入进行控制。另外,建筑企业及开发商不应过于重视结构设计优化的经济效益,利用缩减建材、降低质量标准、削弱技术性能等方法来追求利益,并且也不可以一味的关注技术而忽视经济效益。房屋结构的设计优化其最终的目的在于保证建筑的功能、提高建筑的质量、提升环保性能,增加企业收益。为了完成这一任务,设计人员应不断提高自身水平,紧跟时代步伐,勇于开拓创新,为人民的居住及生活提供安全保障。因此,对建筑结构设计优化方法在房屋结构设计中的应用进行谈论是值得相关工作人员深入思考的事情。

参考文献:

[1]万年春.浅论建筑结构设计优化方法在房屋结构设计中的应用[J].城市建设理论研究,2013(05).

结构优化方法篇(6)

一、问题的提出

某区块进入特高含水期开发阶段,综合含水已达92.7%。随着逐年提液,高含水井数逐年上升,不同井网间含水差异缩小。目前含水大于93%的井数比例为43.8%,产液比例为61.3%,其中含水大于95%的高含水井数比例高达24.5%,产液比例达41.2%。

针对高含水,高注采比情况,以往依靠各套井网的含水差异进行结构调整控制含水上升的余地越来越小,针对这种矛盾,为了更好的优化产液、注水结构,最大限度地减少低效注入水、无效循环,控制产液量增长,进而达到控制水驱含水上升和产量递减的目的,把注水、产液结构由井网间优化转变为井网内不同含水井、不同含水层之间的优化。

(一)优化注水结构调整方法

水驱注水方案调整过程中,首先对开发不同层系的井网油井按含水、沉没度进行等同时分析分层系、分区块不同含水级别的井近年的含水变化情况,对不同含水级别的井,采用不同的原则和方法进行调整,重点开展三方面工作:

一是加大层间调整。主要是加强细分调整力度,封堵高渗透、高含水层,控制或停注该层注水,减少无效、低效注采循环。多级段细分调整后减少渗透率级差、减缓层间矛盾,但仍存在层段间矛盾,细分后一些薄差油层层段仍不动用,通过措施改造,见到明显效果。二是不同井区间调整。根据井区含水级别的不同进行提控,对含水小于91%的井区,结合压裂、酸化等措施提高含水低、产液低井层的注水量;对于含水大于91%的井区,结合注水井深、浅调剖等措施控制含水高、产液高井层的注水量。三是重点以合理恢复地层压力为主,搞好套损区的注采结构调整,根据注采情况控制套损井层的相应注水量,同时对低压区以控制压力下降速度为主,对高压区以控制压力回升速度为主,逐步调整区域间压力差异,提高油井地层压力合理率。

(二)优化产液结构调整方法

在注水结构优化的基础上,针对优化井层水驱控制的主要油井进行相应的产液结构优化, 采液结构相适应。针对不同含水的井层,采用不同的措施进行优化。

1.含水低于91%井产液结构优化的方法这部分井层以提液为主,提液时对不同沉没度的井区别对待。

2.含水高于91%井产液结构优化的方法

对于这部分井主要以控液为主,通过实施高关、堵水措施,相应水井“停、控”高含水层段,同时通过实施周期性恢复注水、浅调剖等,合理调整注采结构,有效控制注水、产液量增长,最大限度地减少注入水的无效循环,对地层压力较高、含水高于区块平均含水地区通过周期注水,达到降低地层压力、控制注水无效循环。

三、注采结合调整及效果分析

根据注水结构优化原则要求,优化出注水结构调整工作量,调整注水方案69井次,日配注下降165m3。主要针对以下原因进行调整:一是针对“两低”井区及措施培养与保护,注水井上调水量22口,日配注增加140 m3;二是对“三高”井区及保护管控制注水,注水井下调水量41口,日配注下降355 m3;三是停注时间较长的较低含水层周期性恢复注水6口,日配注增加50 m3。

结构优化方法篇(7)

关键词:混凝土结构;设计;原则;问题;优化措施

中图分类号:TU37文献标识码: A

一、混凝土结构设计原则与要求

1、混凝土结构设计中的设计原则

当前,在建筑设计过程中,建筑设计人员在实施混凝土结构设计主要是按照使用性、合理性与耐久性等设计原则进行的,一方面可以提高建筑设计的质量,另一方面能够使其性能更加优越,从而更好地降低施工造价,而且可以有效确保结构上的各种功能,确保其与施工设计的要求相符合。

2、混凝土结构设计中的设计要求

首先是对延展性方面的设计要求,确保建筑结构具有柔韧性,并且需要针对建筑的要求,有效防止因为地震所引起的倾斜、倒塌等状况,那么就应该合理选择建筑的结构形式。其次是建筑的倾斜力要求,在结构设计方面,可以针对结构的内在作用力和外形变化等状况,主要针对地震等水平力作用以及在自然环境中的风速风向等因素的影响。在混凝土的结构设计方面需要综合外界不同方向力的作用,确保结构设计的合理性。

二、建筑工程混凝土结构设计方法存在的问题

1、计算与分析阶段的问题

建筑施工前对于建筑结构的计算和分析,明确如何按照规范要求对工程和建筑进行结构地准确科学设计,是一个工程设计质量的关键因素。因此,工程设计人员要对设计和分析阶段比较常见的问题有一个清晰明确的认识【1】。在这一阶段,工程施工图纸和建筑结构的设计都是通过计算机软件来实现的,而由于模型的差异,每个软件对于工程人员期待的回应都是有所不同的,也许极其微量的差异就会对设计的标准产生巨大影响。如果选择软件时只考虑模型特点而忽视实际工程的结构类型,或者一味依靠经验而忽视软件的分析结果,必将造成设计阶段的纰漏。

2、技术标准和安全系数存在着差距过大的问题

在建筑工程混凝土结构设计方法中存在技术标准的偏差,技术标准不明确并且偏差过大。在建筑设计中没有制定相应的技术标准。同时又存在着安全系数的问题。根据国内现行混凝土结构设计规范要求,结构安全可靠度是“规定”荷载作用下的强度保证率。设计规范结构可靠度只是对结构构件来说的,其安全性主要取决与荷载取值,安全系数设置与荷载系数取值之间存在着较大的关系。据调查资料显示,国内规范动荷载安全系数要比美国、英国低 14%~21%,比欧洲低 7%;强度安全系数比欧美国家低大约 15%,钢材强度安全系数低 6%。比如,根据国内规范设计的柱子若动、静载之比为 1:2,因荷载、材料影响承载力较英美国家规范设计承载力大约低 35%,而较欧洲国家也低 28%。由此可见,技术标准和安全系数存在着差距过大的问题,需要解决【2】。

3、设计方法的安全检测不够

在混凝土设计方法中缺乏相应的安全检测。在设计中各步骤的安全是设计进行的关键。在每个步骤都完成后要跟进安全检测,但在设计方法中很多设计师缺乏对设计的安全检测。相关的政府也对其不够重视,出现了质量问题,为建筑带来了问题。很多设计者没有对设计仪器进行购置,设计仪器出现了不合格的现象,在根源上得不到重视让设计方法出现了问题。政府没有进行设计的安全监管和监督,使设计中安全检测出现了问题,安全监管要出台防范措施,这也是对设计方法的严格要求,防范方法做不好会导致不安全问题出现,让设计得不到安全保证,使设计变成失败,无法真正投入到运营和工作中,使设计偏离了真正的应用。

4、墙体产生裂缝

混凝土结构出现裂缝的原因是比较多的,一般混凝土的浇筑工作是一步到位的,但是由于内部和外部的温差过大,相互之间的作用力就会使得墙体出现裂缝,初期比较细小,但是如果没有及时的发现和处理的话,这个裂缝就会逐渐的变大,进而破坏了混凝土结构。

5、建筑的整体抗震性能差

我国的大部分的建筑是采用混凝土结构的,但是我国部分地区是处在地震带上,因此这种现象是极为不利的,因为地震突发时会出现剧烈的晃动、下沉、开裂等现象,这些对于混凝土结构的建筑破坏性是极大的,所以有效的提升建筑物的抗震性能是非常重要的。

三、优化混凝土结构设计的具体措施

1、在设计中尽量优化混凝土与钢筋使用比例

建筑建设需要耗费较多的混凝土、钢等材料,若混凝土和钢的强度过大,势必会造成建筑材料总造价过高,同时加大其它构件的造价,从而降低建筑建设的经济效益。因此,混凝土的结构设计人员应当对高强度的混凝土与钢筋的使用进行合理的优化控制。

2、提高技术标准,加强安全系数

在建筑设计方法中要提高技术标准和安全系数,在设计前首先要对技术标准进行相关计划,紧跟技术标准走,技术标准的设计不要过大,也不可过小。跟着规范走,才能使设计不偏离实际同时要加强安全系数。安全系数不过关会使其他一切都为零,在设计中要突出安全的设计。要达到安全的效果可以聘请相关的设计专家制定符合标准的技术,并根据设计的技术标准制定相应的安全系数。要根据相关的产业的要求对建筑的防治自然灾害和人为的灾害进行相应的预防,有的建筑需要防水,在建筑过程中要加强对水的防范,还要加强防震的要求,建筑一定要通过地震检测,真正意义上做到安全系数第一位、技术水平过硬的原则,为建筑服务。

3、合理设计混凝土框架柱

考虑到各种内力和外力组合作用这一因素,工业建筑混凝土结构的框架柱应当满足高强度的要求,尤其是在配筋计算过程中,应当采取最为不利的方向来进行框架计算,或是在两个方向分别进行计算,然后确定出较大方向的配筋数之后,再采取对称配筋的设计方法进行另一个方向的配筋设计。此外,为使工业建筑底部的整体性有所增强,并进一步减少位移发生的几率,可以在框架柱附近设置连系梁,在采取这种方法进行设计时,可将连系梁以下的部分当做底基层,框架柱本身的高度值则可以按照基础顶面和连系梁顶面来进行确定。同时可将实际建筑结构的底层当做第二层,底层柱配筋则应当选取基础顶面或是连系梁顶面最大的内力进行计算,这样能够进一步确保计算结果的可行性和合理性【3】。

4、加强结构设计中耐久性

首先要确保混凝土材料的质量。设计人员需要在确保混凝土材料的质量与基本性能的前提下,主要从结构的稳定性、抗侵入性、抗裂性等几个方面入手,所选的骨料需要具有坚固、耐久、洁净的特征,含碱量和水化热反应较低的水泥,减少对于硅酸盐水泥与用水量的应用,并将矿物掺合料适当地加入到材料中。其次要优化结构设计。建筑中混凝土结构主要包括多个构件,每一个构件所处的环境都具有差异性,这就决定了不同构件具备的耐久性寿命也会有所不同,所以,设计人员需要按照实际环境,明确建筑中不同结构构件的使用界限和注意事项。比如是屋面、阳台和女儿墙的设计,这些部位的梁柱构件,耐久性寿命要比室内低,需要确定这些部件维修设定的合理性或更换的时间。再者要结构构造形式进行合理设计。设计人员需要按照建筑的具体侵蚀环境和设计使用年限,设计厚度在20m m ~70m m 之间的混凝土保护层,并通过协调构件的截面积与表面积,避免侵蚀性物质集中停留区域的形成,同时注意高侵蚀度的环境中,混凝土墙板的通风效果,并注意配筋间距的合理设计,以减少钢筋锈蚀、保护层剥离等问题的出现。

5、加强抗震设计

首先,平面布置要遵循对称、规则以及简单的原则,防止偏心现象的出现,并将各种不利因素都要充分考虑在内。其次,一定要确保质量中心、刚度中心的重和。再者,在结构单元边缘处不能够布置重量大的框架梁柱,需要把框架梁柱布置在与刚度中心部位相近的地方。最后还要防止大悬挑结构设计。

结束语

总之,混凝土结构设计是关系着整个建筑发展的关键,只有不断优化混凝土结构设计,才能更好的保障建筑质量,促进其更好地发展和进步。

参考文献: