期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 化学反应工程的研究方法

化学反应工程的研究方法精品(七篇)

时间:2023-09-11 17:25:31

化学反应工程的研究方法

化学反应工程的研究方法篇(1)

复杂的“表面”

物质的两相之间密切接触的过渡区称为界面,若其中一相为气体,这种界面通常称为表面。在相界面上所发生的一切物理化学现象统称为界面现象或表面现象,而研究在表面上所发生化学反应过程的科学称为表面化学。

表面并不简单,实际上,发生在固体表面的反应非常难以研究。对于相对简单的气相反应体系,往往只涉及到反应分子之间的碰撞和相互作用。但是,在对固体表面发生的化学反应进行描述时,人们还必须同时对反应分子与固体表面的相互作用,以及固体表面结构的影响进行深入了解。

早在19世纪末,以朗缪尔为代表的物理化学家已经充分认识到固体表面的结构对诸如吸附、催化和电化学反应过程的重要影响,并陆续提出了一些重要的理论和假设。但是,由于表面研究的特殊性和复杂性,在精确的实验和系统的理论方面一直没有出现重大突破。

20世纪60年代,由半导体工业发展出的真空技术促成了现代表面化学的诞生。埃特尔是最早洞察到真空技术巨大潜力的科学家之一。由于物质表面的化学活性很强,在普通状态中很难研究某个独特的变化。借助超高真空实验设备,就可以观察金属表面原子和分子是如何运作的。而在此之前,对于表面化学的认识仅停留在分子层次以上。

自上世纪60年代以来,埃特尔逐步建立了研究固体表面化学过程的方法学,通过利用多种研究技术的组合,在原子分子层次提供了一个表面化学反应的完整图像,为固体表面化学研究奠定了科学基础。他发展的方法学不仅应用于化学过程的研究,对相应工业过程也具有重要的指导意义,如化工催化剂的研发、半导体元件的加工、金属表面的防腐、燃料电池的研究等等。

科学界公认,合成氨反应过程的催化机理的认识和表面非线性反应动力学理论的建立是埃特尔教授对固体表面化学过程研究的两个最典型的重要贡献。

合成氨机理的研究

哈伯-博施(Haber-Bosch)合成氨过程是最重要的多相催化反应之一,在这个过程中,空气中的氮气被分离并转化为生产化肥所需要的氨。上世纪初,合成氨催化剂的发现不仅启动了现代化学工业,也宣告了现代农业的到来。德国科学家弗里茨・哈伯由于发明了合成氨的铁基催化剂而获得了1918年诺贝尔化学奖。卡尔・博施由于开发合成氨高压催化工艺而分享1931年诺贝尔化学奖。

由于哈伯-博施合成氨反应的重要性,其反应机理被广泛研究。这个过程是以精细的铁粉作为催化剂,让氮气与氢气同时被吸附到铁粉表面,然后进行反应生成氨。那么,在这一反应过程中,哪个步骤是速控步,也就是对提高整个过程的速度起到至关重要作用的那一步?还有,氮分子是以分子还是原子的形式与氢反应?50年来科学研究给出的最肯定的结论是合成氨反应的速控步是氮气的化学吸附,而表面吸附氮物种是氮分子还是氮原子则没有定论。

埃特尔设计了一个理想系统:在真空中铺上一层清洁和光滑的铁粉,再控制性地输入不同的气体。他发现,当氮气分子到达铁粉表面时,它首先是以分子的形式吸附,完全吸附后,氮分子中两个氮原子之间的键断裂,以氮原子的形式与铁离子吸附。埃特尔使用不同的方法测量分子在铁表面停留的时间,发现氮分子分裂成氮原子这一过程是催化反应的速控步,氮原子一旦分裂出来就立刻与周围的氢原子结合生成氨。如果要提高整个反应的速度,就必须加快氮气分裂成氮原子的速度。

为了搞清氮是以分子还是原子的形式与氢反应,埃特尔在增加氢气的同时测量了铁粉表面氮原子的浓度,发现氮增加得越多,铁表面氮原子的浓度就越低,这表明氮是以原子而不是分子的形式与氢反应。

测量铁表面氮原子的浓度并不是一件容易的事。埃特尔用光谱分析方法来区分氮原子和氮分子,同时,他又用另一种方法来测量氮的浓度,即研究铁粉表面的形状,因为当氮吸附在铁粉表面时,表面的形状会有微小变化,他用电子轰击铁粉表面,电子不同的散射模式揭示了表面的不同。

之所以要同时使用不同的方法,是因为研究这种类型的表面,极有可能眼见非实,因为系统中任何微小的杂质都会立即吸附到表面。所以,这种表面必须用尽可能多的不同方法来研究,以确保所获得的图像没有因污染而扭曲。

埃特尔利用多种现代表面科学研究技术系统研究了哈伯-博施合成氨过程的模型催化体系,并利用多种谱学技术鉴定了反应过程中全部的反应中间物种,并给出了反应的势能图。埃特尔同时发现高压反应条件下的变化关系与低压反应条件下模型催化体系测得的变化关系一致,从而证实了在这个催化反应体系中,模型催化体系表面化学研究结果可以推广到工业催化体系。埃特尔教授对哈伯-博施合成氨反应机理的研究,已经成为如何合理利用多种现代表面科学研究手段的组合来研究并理解复杂催化反应相关的表面化学过程的教科书般的典范。

非线性反应动力学的研究

埃特尔还对铂等贵金属催化荆在一氧化碳氧化反应中的作用进行了深入的研究,这是发生在净化汽车尾气的催化转化器中的一个重要反应。通过对这个催化反应的模型体系的研究,开创了固体表面化学之非线性反应动力学研究领域。

早在1982年,埃特尔的研究小组便报道了铂单晶表面催化的一氧化碳氧化反应表现出非线性反应动力学行为,即二氧化碳的生成速率随反应时间发生振荡。这在当时是表现非线性反应动力学的唯一实际催化反应。在随后的一系列开创性的工作中,埃特尔研究了一氧化碳氧化反应速率与铂表面反应物种浓度、铂单晶表面结构之间的关系,提出了铂单晶表面催化一氧化碳氧化反应非线性反应动力学的微观模型:反应过程中,取决于一氧化碳表面浓度;铂单晶表面存在两种表面结构,两者对一氧化碳氧化反应的催化活性相差较大,从而表现出反应速率的振荡;在振荡反应体系中,体系变量还依赖于其在体系内的空间位置,因此振荡反应会表现出时空斑图。为观察铂单晶表面上的时空斑图,埃特尔研究组发展了光发射电子显微镜(PEEM),能够原位动态

观察表面吸附物种的浓度变化。观察到振荡反应过程中吸附一氧化碳物种和吸附氧物种在铂单晶表面形成的丰富的时空斑图,从螺旋波到混沌。这些研究结果无论是从深度,还是广度都极大加深了我们对固体表面反应动力学的理解。

埃特尔的研究是完全基础性的研究,但他对表面分子反应动力学过程的研究,对以固体催化剂为基础的多相催化过程的研究,基本上是化学领域最具有支撑作用的核心技术。目前,现代大型化工生产过程中,催化过程达80%以上,并已渗透到精细化学品的合成、药物中间体的合成及环境保护等领域。新催化剂的开发已由技艺水平向分子设计方向发展。新催化剂和新催化工艺的出现,已成为现代化学工业发展的增长点。除了在化工领域已取得的实际应用之外,埃特尔的研究还对包括煤炭、天然气以及太阳能等新能源在内的能源利用有着深远的影响,并推动表面化学向纳米科学、生物科学等诸多学科渗透。

表面科学在中国的发展

催化和表面化学研究在中国的开展,可以追溯到上世纪30年代。1933年,张大煜先生在获得了德国德累斯顿工业大学博士学位以后,便回国开创和发展胶体化学和表面化学的研究。从50年代初期开始,他致力于工业上广泛使用的催化剂担体研究,结合水煤气合成石油的钴催化剂和合成氨催化剂的催化性能研究,逐步建立了物理吸附、化学吸附等一系列研究方法,提出了表面键理论的设想,并以此为指导,研制成功了合成氨新流程3个催化剂,在当时达到了国际先进水平。

在表面化学研究方面特别值得一提还有郭燮贤和邓景发两位院士的工作。前者在基础研究方面先后提出了表面“空位”对吸附和催化反应作用的概念;氢和一氧化碳活化吸附方面的“易位吸附”和“协同机理”的新概念等;后者自行设计、组装了多种近代能谱仪,在国内较早建成了一个从分子水平研究表面吸附和催化过程的表面催化实验室,系统开展了银系列催化剂的基础理论研究。

作为表面科学和技术研究领域的杰出代表,埃特尔教授也为中国表面化学和催化研究发展做出了重要的贡献。他分别从1997年和2000年开始担任中科院大连化学物理研究所《催化学报》顾问和催化基础国家重点实验室国际顾问,先后在他的研究室长期工作的中国学者超过了10位。其中大连化物所的包信和研究员从1989至1995年一直在埃特尔教授的指导下研究高压条件下氧与银表面的相互作用以及甲醇催化选择氧化机理。

由于年事已高,埃特尔很遗憾自己不能将模型催化的研究拓展到纳米和生物领域。当包信和提出回国后希望拓展模型催化剂的基础研究,进一步将催化表面化学的研究与纳米技术相结合,从纳米尺度上深入理解催化反应过程时,埃特尔表示极大支持,并将他们自行研制的一台光发射电子显微镜(PEEM)赠送给包信和。他还积极推动大连化物所与弗里茨一哈伯研究所共同成立了中科院和马普学会“催化纳米技术”伙伴小组,并亲自担任专家组组长,利用表面科学的表征、制备手段,研究催化反应的纳米作用基础。

相关链接:

格哈德・埃特尔小传

化学反应工程的研究方法篇(2)

关键词:原位反应自生法 复合材料 材料科学与工程专业 实验教学 研究 应用

一、前言

在材料科学与工程专业的本科教学工作中,本科学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过原位反应自生法制备复合材料。原位反应自生法是制备金属基复合材料,金属陶瓷复合材料,以及金属间化合物/陶瓷基复合材料的主要方法。原位反应自生法是在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。这种方法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。原位反应自生法制备复合材料由于具有可以达到净近尺寸成形的优势,所以能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过原位反应合成技术。此外还可以将原位反应自生法制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解原位反应自生法制备复合材料的工艺过程。所以原位反应自生法制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文首先讲述原位反应自生法制备复合材料的原理和制备工艺过程,并讲述原位反应自生法制备复合材料在材料科学与工程专业教学实践中的研究和讨论。并对原位反应自生法制备复合材料的未来发展趋势进行分析和预测。

二、原位反应自生法制备复合材料的原理和制备工艺过程

为了克服传统方法制备的复合材料存在增强体颗粒尺寸粗大,热力学不稳定以及界面结合强度低等缺点,出现了原位合成技术,即在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。原位自生法是通过原料粉末中的某些化学反应生成所需要的反应产物并通过热压烧结工艺制备出复合材料试样。原位反应自生法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。目前报道的原位合成技术主要有原位反应热压烧结技术,原位复合技术,定向氧化技术,熔体浸渍技术,反应结合技术及自蔓延高温合成技术等。定向氧化合成技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。原位自生法是通过反应物之间的反应生成所需要的反应产物并通过热压烧结工艺实现致密化。原位合成法是利用化学反应在原位生成补强组元-晶须或长径比较大的晶粒来补强基体材料的制备工艺。原位合成法主要具有如下优点:简化工艺,降低材料成本,实现特殊显微结构设计和获得特殊材料性能,具有很好的热力学稳定性。金属间化合物/陶瓷基复合材料的制备方法主要有原位复合技术和定向氧化技术以及原位反应热压烧结工艺。可以采用原位反应热压烧结工艺制备金属间化合物/陶瓷基复合材料。原位复合技术是由于金属间化合物反应的形成热相对较低,因而采用自蔓延燃烧时系统不易达到较高的绝热温度,故一般采用原位复合技术制备和合成复合材料。原位复合技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。传统的方法是将粉末压坯在恒定速率下加热到可使反应自发的产生并在整个混合物中处处发生反应。定向氧化技术是定向金属氧化工艺可用于制备金属基复合材料。原位反应热压烧结工艺是将原位反应和热压烧结工艺相结合制备致密的复合材料。

三、原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用

原位反应自生法主要用于制备金属陶瓷,金属间化合物,金属间化合物/陶瓷复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过原位反应自生法。原位反应自生法同粉末冶金技术和液相烧结技术一样都是材料制备技术。原位反应自生法同样是热加工工艺,原位反应自生法涉及到反应物高温化学反应制备产物的过程。在材料科学与工程专业课程的课堂教学中,在有些专业课程中原位反应自生法只是作为了解,对于原位反应自生法制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的实践教学课程中增加一些关于原位反应自生法制备复合材料的实验课程。通过原位反应自生法制备复合材料的实践教学活动可以使学生认识和了解原位反应自生法制备复合材料的原理,制备工艺过程以及对经过原位反应自生工艺后得到的金属基复合材料烧结制品的物相组成,显微结构和性能进行研究,使学生通过对复合材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排采用原位反应自生工艺制备金属基复合材料和金属陶瓷复合材料的教学内容。例如采用原位反应自生工艺可以制备金属陶瓷复合材料,先将金属陶瓷粉末通过压力成型工艺制成坯体,并通过原位反应自生工艺和高温烧结工艺制备金属陶瓷复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。采用原位反应合成工艺可以制备金属间化合物/陶瓷基复合材料,通常先将金属间化合物粉末和陶瓷粉末通过压力成型过程在一定压力下压制成具有一定形状和致密度的预制件,通过原位反应自生法和高温烧结工艺形成金属间化合物/陶瓷基复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。有时将原位反应自生法和热压烧结工艺相结合制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到原位反应自生法制备金属陶瓷复合材料的制备工艺过程,提高学生对专业课程学习的认识和了解。使学生通过实验教学认识和了解了原位反应自生工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对得到产物的物相组成和显微结构进行分析和测试。原位自生法可以制备金属基复合材料,金属陶瓷复合材料等。采用原位反应自生法可以制备颗粒增强的金属基或陶瓷基复合材料。

原位反应自生工艺制备复合材料涉及到反应物在高温下发生化学反应生成反应产物的过程,原位反应合成技术操作过程比较简单,对设备要求较低,只需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的实验课程教学内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对原位反应自生法得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助。为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、原位反应自生法制备复合材料的未来发展趋势和应用

原位反应自生法制备复合材料在材料科学与工程领域有着广泛的研究和应用。原位反应自生技术由于制备工艺简单,成本较低,对设备要求较低,只需要高温烧结炉,所以被广泛的应用到金属基复合材料,金属陶瓷复合材料,金属间化合物/陶瓷基复合材料等的合成与制备中。利用原位反应自生法可以开发新型的金属基复合材料和金属陶瓷复合材料以及金属间化合物/陶瓷基复合材料。采用原位反应自生技术可以开发出很多种类型的金属基复合材料和金属陶瓷复合材料。所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。原位反应自生技术在材料科学与工程专业教学与实践中也得到广泛的推广和应用,原位合成技术已经成为材料科学与工程专业实践教学课程进行的实验内容。所以本文作者认为应该在材料科学与工程专业的教学实践中增加一些采用原位反应自生技术制备复合材料的实验课程。

五、结论

本文主要讲述原位反应自生法制备复合材料的原理和制备工艺过程,并详细讲述原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用。原位反应自生法广泛应用在制备金属基复合材料,金属陶瓷复合材料等领域中。本文作者认为原位反应自生法制备复合材料可以应用在材料科学与工程专业的教学实践中,应该增加一些原位反应自生法制备复合材料的实验课程,扩大学生学习的知识面,提高学生的认识了解能力,从而提高实践教学质量。通过原位自生法制备复合材料的实验教学过程提高学生的知识水平和认识能力。

参考文献

[1]张国军,金忠哲,岳雪峰.材料的原位合成技术[J].材料导报,1997(11):1-4

[2]陶春虎,王守凯.制备金属间化合物的XD法[J].航空制造过程,1994(2):35-36

[3]黄世民.粉末冶金技术的应用与发展[J].航空工艺技术,1999(4):36-38

[4]杨晓光.粉末冶金技术的现状与发展趋势[J].机械工程师,1996(增刊):63-64

[5]何慧,张晓花,杨渭.金属间化合物的机械合金化制备[J].山东冶金,2004,26(5):45-50

[6]李青虹,晋芳伟.机械专业实验课程教学改革的研究[J].机电技术,2011(1):149-151

化学反应工程的研究方法篇(3)

    1.1核心课程体系构建的原则

    钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。

    1.2核心课程体系的内容与相互关系

    所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

    分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

    2核心课程体系的优化

    为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

    2.1加强数理基础教学力度,适度拓展

    新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到Matlab在科学和工程计算领域的突出作用,建议开设Matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的MATLAB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

    2.2整合化工专业实验

    为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。

化学反应工程的研究方法篇(4)

[关键词]化学反应;工程教学;知识框架;方法衔接

[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2016)08-0121-03

化学反应工程是化学工程的一个重要分支和组成部分,以化学反应过程和反应器为研究对象,旨在进行化工反应技术的开发、反应过程的优化和反应器的设计与优化,属于化学工程与工艺专业的核心课程。[1]本课程涉及物理化学、化工热力学、化工传递过程、优化与控制以及数学、物理等多领域的知识,是集综合性、工程性和理论性于一体的交叉性很强的一门学科。学生在学习本课程时,普遍感到理论抽象、数学推导繁琐、工程问题多,不少学生认为化学反应工程是大学中最难学习的课程之一。[2]甚至,很多学生在学完本课程之后,其思维仍停留在繁琐的计算公式中,不甚清楚所学知识的内在联系和具体应用。尽管已有很多关于化学反应工程的教学、教改论文,在教学内容、教学方法以及考核方法等方面提出很多有益的建议和措施,但是仍有必要进一步的对化学反应工程的内容进行一个系统的梳理,构建一个明确、系统的知识体系框架,对一些容易混淆的概念、知识点予以廓清,并针对部分知识难点的教学提出一些建设性处理方法。鉴于上述原因,笔者经过多年的教学实践,结合学生的反馈,获得一些体会,希望能与同仁们进行交流,提升本门课程的教学效果。

一、构建课程知识体系框架

由于化学反应工程具有内容多、公式多、计算繁琐的特点,很多大学生在学完本门课程后,留下的印象大多是大量、复杂的公式推导和计算,他们仍十分迷惑从这门课程中究竟学到了什么知识,所学知识有什么用?因此,在课堂教学时要力求避免纯粹的繁琐数学描述,着重进行基本概念、基本理论和工程观点的阐述。这就有必要构建一个清晰、明确的化学反应工程的知识体系,让学生清楚课程的核心目标以及不同章节知识点间的内在联系,并不过多的纠结于复杂的数学计算,方能化繁为简,更好的掌握本课程的知识。

图1画出了化学反应工程课程的知识体系框图,涵盖了课程的核心目标、研究对象及其间相互关系和主要章节内容。学习本课程的核心目标是能对化学反应过程进行正确分析,设计和优化反应器。基于此,还可开发新技术和设备,指导和解决反应过程开发中的放大问题,发展和完善反应工程学的理论和方法。工业化学反应总是在一定的反应器中进行,化学反应的特性(化学过程)和反应器的传递特性(物理过程)共同作用,影响到最终的反应结果。为了便于学习和研究,将反应特性和反应器传递特性分开来进行研究和阐述,在分别研究清楚之后,再进行综合。这就需要研究清楚两方面的内容:(1)化学反应特性,主要研究不考虑传递过程的本征动力学,属于每一个化学反应的个性,是影响反应结果的内因,不同的化学反应体系具有不同的动力学表达式。按照参加反应的物相划分,化学反应可分为均相反应和非均相反应。其中,均相反应的反应速率主要受催化剂、温度、浓度(压力)和溶剂特性的影响,在反应体系确定的情况下,其反应速率则可表示为温度(T)和浓度(C)的函数关系,即:-ri=f(T,C)。而非均相反应总是发生在相界面上,其本征化学反应过程涉及多个界面过程(如:气-固相催化反应包含表面吸附、表面反应和表面脱附三个串联过程),其反应速率除受上述因素影响外,还受到反应界面大小的影响,在催化剂确定的情况下,仍可表示为-ri=f(T,C)。本部分内容主要涉及均相反应动力学基础和非均相反应(多相催化催化)动力学基础两个章节。(2)反应器传递特性,主要是指反应器的热量、质量传递(在压力变化不大的情况下,一般不考虑动量传递)和返混特性,属于反应器的共性问题,是影响反应结果的工程因素――通过影响反应器内温度与浓度分布而改变反应结果。反应器按操作方式可以分为间歇式操作、连续操作和半连续操作。其中间隙式操作的所有流体质点具有同样的停留时间,而不存在返混问题;而连续操作的反应器根据返混的大小程度则可以分为完全不返混的平推流反应器(PFR)、完全返混的全混流反应器(CSTR)以及介于二者之间的实际反应器。PFR和CSTR中的流体流动状态是两种理想的极端情况,称为理想流动;而偏离上述两种理想情况的流体流动(不管是否由返混造成)则为非理想流动,对于非理想流动通常通过停留时间分布函数和停留时间分布密度函数,并借助于一定的流动模型来描述其流动特征。本部分内容主要分为理想流动(部分书也称之为均相反应过程)和非理想流动两个章节。

反应器的传递特性与其中发生何种反应无关,故可以通过冷模实验来研究大型反应器中的传递特征;而化学反应的本征反应动力学特性与反应器的尺寸、形式无关,则可以构建小型热态实验研究反应特性。这样就可以比较容易的分别研究清楚反应器的传递特性和化学反应特性。鉴于反应器的传递特性会改变反应器的温度场、浓度场,从而影响反应器内各质点的反应速率,进而又改变反应器内的温度、浓度分布,二者相互作用、相互影响,影响最终的反应结果。因此,需要综合考虑化学反应特性和反应器传递特性,通过数学模型法,联立物料衡算式、热量衡算式、动力学方程、动量衡算式和参数计算式,进行反应过程的分析(包括反应器的热稳定性),从而设计新的反应器或对现有反应器进行优化。本部分内容主要涉及均相反应器(含反应器热稳定性分析)和非均相反应器(主要包括固定床反应器、流化床反应器及多相流反应器)各章节。考虑到我校的化学反应工程教学课时为48学时,关于多流体相反应过程、聚合反应过程以及生化反应过程等章节的内容则不做课堂教学要求,感兴趣的同学可以自学。

二、注重方法

关于教学方法在很多教学论文[3] [4] [5]中已有较好的阐述,在这里主要针对本门课程一些难点抛砖引玉的介绍几个处理方法,希望有助于大学生学习和掌握相关内容,学会将所学知识进行移植、融会贯通。

(三)在化学反应工程中常常会涉及很多优化问题的求解问题

化学反应工程常常涉及串联反应中间产物为目标产物时的优化操作时间,循环反应器的最优循环比,CSTR串联反应器的优化组合,以及CSTR反应器的热稳定性等问题。优化问题求解实际上就是求解极值,惯用的手段就是推导出关键函数与关联操作变量的函数关系式,通过求导并令导数等于零即可求出最优操作条件。这是纯粹的数学问题,学生往往觉得抽象、难以理解,并容易因抽象的数学公式而产生厌学情绪。这时,将关键函数与关联操作变量在图上示意出其变化趋势,再结合关键函数的数学求导进行讲解就很容易被学生理解、接受了。

三、知识的衔接与应用

化学反应工程是一门集理论知识和工程应用于一身的课程,贯穿化学工程专业的大学三年级及其以后的整个大学生涯。在化工专业的课程设置和能力培养上必须注重知识的衔接和应用。我校的化学反应工程课程安排在大学第六学期,同步开设了化工专业实验,其中与本课程紧密相关的实验主要涉及反应器停留时间分布的测定(包括管式反应器流动特性测定、多釜串联返混性能测定)、多孔物质(催化剂)孔径分布及比表面积的测定、甲基丙烯酸甲酯的本体聚合及其聚合反应速度的测定、活性炭吸附法脱除气体中的有机溶剂蒸汽、煤炭反应性的测定、固体流态化实验(含流化床干燥实验)、超细粉体(碳酸钙)的制备等(上述部分实验属于设计性的选做实验)。通过实验强化学生对非理想流动特征、反应器停留时间分布特征及其测定方法、反应速率测定方法、多孔介质上气体吸附特征及其应用、实际反应器等的认识和理解,并能初步创造性的运用所学理论知识进行反应器的操控和数据的处理。第六学期期末即进行为期3周的化工生产实习,其中2周主要在燕山石化的炼油厂和化工厂进行,现场重温各类实际化工反应器及其操控;1周在校内进行,可在新建的化工仿真实验室进行石油常减压蒸馏和催化裂化工段的仿真实习,熟悉各装置的操控、调节和事故分析、处理,增强工程分析和解决工程问题的能力。每年举办的全国大学生化工设计竞赛(自2007年开始举办,时间为每年的5月-8月)为化工类大学生提供了一个很好的培养和锻炼创新思维、工程设计与实践等多方面技能的实战平台。近五年来,我校化工专业学生均组队参赛,参赛人数比例逐年递增,今年的参赛人数达整个化工专业学生总人数(指化工专业三年级大学生,个别二年级优秀学生参与体验但不组队参赛)的65%。从2014开始,我校开始尝试将本年度的化工设计竞赛题目作为化工专业的专业综合设计题目,一改使用多年设计题目的陈旧感,紧追化工领域的当前热点,师生普遍反映效果良好。在化工设计竞赛中的一大核心即是反应器的设计和模拟,有助于夯实化学反应工程学科相关知识,并学以致用。课堂教学――专业实验――设计竞赛――专业综合设计这一系列教学实践活动保证了化学反应工程知识的强化、吸收和从学到用的衔接。

四、结束语

综上所述,对化学反应工程的教学除了常规的教学方法的改进外,尚需要从课程本身的特点出发,从第一堂课开始即要构建一个清晰、明确的课程知识体系,避免过多的纠结于复杂的数学计算过程。并且,在教和学的过程中巧妙的利用一些处理方法解决知识难点,起到融会贯通的作用。此外,教学院系在化工专业培养体系和课程设置上要适当注意专业知识内容的衔接和运用,力争做到学以致用,学以会用。

[ 注 释 ]

[1] 李宝霞.《化学反应工程》教学改革模式探讨[J].高教研究与实践,2012(4):33-35.

[2] 苟建霞,解胜利,贾冬梅.化学反应工程教学与改革[J].广西大学学报(自然科学版),2008(S1):264-266.

[3] 尹先清,李赓.化学反应工程教学方法探讨[J].长江大学学报(社会科学版),2010(5):32-33.

化学反应工程的研究方法篇(5)

关键词:化学工程基础;课程改革;人才培养

中图分类号:G642.0?摇 文献标识码:A 文章编号:1674-9324(2012)05-0027-02

“化学工程基础”是理科院校化学专业的专业基础课程,主要内容为化学工程的基本原理和化工生产的各种单元操作,包括化工过程的动力学原理、热力学原理、能量守恒与转换原理、质量传递原理以及相应过程的控制机理、操作方法、影响因素、设备结构和工艺过程等,具有与生产实践紧密联系的特点,应用性很强,是理科化学类专业唯一的一门工程技术课程。

一、人才培养的要求

当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。

二、教学内容与教学方法的优化

以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。

1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。

2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。

3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。

三、教学团队与课程体系的建设

以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。

1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。

2.构建工程教育、创新教育的课程体系。夯实基础,将理科化学知识和工程知识有机结合。理科化学基础课程、化工过程开发、化学工程基础及多门专业课程的开设,可将学生所学知识形成知识链。重视对学生业余科研和毕业论文的指导,吸引对化学工程有兴趣的同学来实验室和博士研究生、硕士研究生一起进行科学研究,培养学生的创新意识和对科学研究的兴趣。通过毕业论文阶段的培养,加强了学生对知识的掌握和运用,特别是对“应用”和“工程”概念的强化。近年来,来我们化工实验室进行业余科研和毕业论文的学生每届都在十人以上,占理科化学专业学生的5%作用。

3.将科研成果向教学实践转化,形成教学促进科研、科研反哺教学的良性循环。构建应用学科人才培养、现代科技发展相适应的“基础性、综合性、工程性、创新性”体系。我们承担了国家和企业的一些化工类科研项目,特别是在水与废水处理、化工分离和国防化学等方面取得了一些科研成果,我们注意将教师的科研成果和科研实践融入课堂教学。从事课堂教学的主讲教师与实验课指导老师一起合作,将“渗透汽化膜分离”编入了实验教材和开展了教学实验,受到学生的欢迎。

化学是实验性很强的学科,化学工程作为一个共性的工程学科,我们应充分利用科学技术发展和教学改革带来的机遇,加强化学与化学工程的结合,为国家培养更多复合型创新人才。

参考文献:

[1]严世强.化学工程基础课程教学改革的认识与实践[J].大学化学,2003,18,(1):29-31.

化学反应工程的研究方法篇(6)

“化学工程http://基础”是理科院校化学专业的专业基础课程,主要内容为化学工程的基本原理和化工生产的各种单元操作,包括化工过程的动力学原理、热力学原理、能量守恒与转换原理、质量传递原理以及相应过程的控制机理、操作方法、影响因素、设备结构和工艺过程等,具有与生产实践紧密联系的特点,应用性很强,是理科化学类专业唯一的一门工程技术课程。

一、人才培养的要求

当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。

二、教学内容与教学方法的优化

以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。

1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。

2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。

3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学

转贴于 http://

科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。

三、教学团队与课程体系的建设

以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。

1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。

2.构建工程教育、创新教育的课程体系。夯实基础,将理科化学知识和工程知识有机结合。理科化学基础课程、化工过程开发、化学工程基础及多门专业课程的开设,可将学生所学知识形成知识链。重视对学生业余科研和毕业论文的指导,吸引对化学工程有兴趣的同学来实验室和博士研究生、硕士研究生一起进行科学研究,培养学生的创新意识和对科学研究的兴趣。通过毕业论文阶段的培养,加强了学生对知识的掌握和运用,特别是对“应用”和“工程”概念的强化。近年来,来我们化工实验室进行业余科研和毕业http://论文的学生每届都在十人以上,占理科化学专业学生的5%作用。

化学反应工程的研究方法篇(7)

大会开幕式由中国化工学会农药专业委员会副主任委员、中化化工集团公司科技部王龙根主任主持,中国化工学会农药专业委员会主任委员、沈阳化工研究院副院长康卓教授致开幕词,温州市和乐清市有关领导、乐斯化学有限公司总裁陈呈新先生到会讲话。 全国从事农药研究、开发和生产的专家、学者150多人到会。

中化化工科技研究总院副院长兼总工程师李钟华博士向大会报告了国家“十二五”攻关农药项目的初步想法。“十二五”科技创新主题为“绿色、生态”,将绿色、生态的理念贯穿研发、生产、使用的全过程。 总体思路是依托技术创新联盟,提升自主创新能力;应对重大病虫草害,倡导绿色生态和谐;突破关键技术瓶颈,实现农药强国转变。 通过农药创制品种和技术的研究、关键品种与中间体的清洁生产工艺和环境友好型助剂的开发,解决农业生产中重大和疑难病虫草害的防治难题,减少农药生产和使用对生态环境的影响,为农业生产提供安全环保的绿色农药,为农药产业结构调整和节能减排提供技术支撑,提高我国农药行业的技术创新能力和水平。

石油和化学工业规划院副总工程师杨光亮在发言中指出:近年来中国农药工业产业集中度有所下降。2011年的21家农药上市企业的销售总额为208亿元,占全国农药企业销售额的10.6%,与2005年14.4%相比,下降了3.8%。中国农药企业应进一步加大兼并重组的力度,组建和形成大型企业集团,这不仅仅是企业生存和发展的需要,也是中国农药工业参与国际分工和全球资源分配的前提,只有组建大型企业集团,才有实力进行农药创制,才能在与国外公司进行高层次合作中拥有更多的话语权。

国家农业部农药检定所顾宝根副所长介绍了国内外农药管理动态,指出要着力构建和完善符合中国国情和世界趋势的农药登记管理制度,完善农药管理体制机制。 要大力推进登记审批改革,强化安全管理、高毒农药管理,促进生物农药登记管理促进生物农药发展,加大国际合作内容。 全面推行农药田间试验网上审批;华东6省市实现农药登记电子审批试点,申请、初审、受理、部所评审、部批准全程电子化。 推动农药安全性评价数据的国际互认,参与全球联合评审。

会议期间,代表们就关于我国农药研究的新思维、新品种、新方法等,合成技术研究、生产工艺改进、三废治理及分析方法等绿色化研究,农药加工工艺、助剂应用及剂型研究,生物技术在农药研究中的应用,农药应用技术研究,安全评价性研究,农药生产用新设备、新器械研究等,农药在环境中的代谢与残留等几方面的内容进行了充分研讨和交流。

中国科学院上海有机化学研究所吕龙副所长介绍了含氟中间体和含氟农药的创制;沈阳农业大学纪明山教授介绍了基于代谢组学的杀菌剂作用机理研究。

沈阳科创化学品有限公司程春生总工程师介绍了化工安全生产与反应风险评估,我国精细化学品的生产由于欠缺完整的安全性信息,在化工生产过程中存在未知隐患,常常潜在风险,并引发安全性事故发生。 反应风险研究和工艺风险评估在我国处于起步或空白阶段,沈阳科创化学品有限公司以国际技术合作为契机,在中国中化集团公司的大力支持下,开展反应风险研究和工艺风险评估体系建设,建立研究方法和评估标准,目前,沈阳科创化学品有限公司技术中心是具备开展化工反应风险研究的专业实验室。

上海农药研究所张一宾总工程师对农药与医药品种的双向开发介绍了一些案例,谈了自己的理解;华东理工大学药物化工研究所李忠所长介绍了顺硝烯新烟碱杀虫剂结构衍生与作用机制;沈阳化工研究院刘长令副总工程师就农药新品种开发与知识产权的关系及应该注意的问题进行了分析。

中国科学院上海有机化学研究所姚建华研究员介绍了农用化学品的毒性计算机预测技术及其应用,利用从数据库中获取已经收录的信息,采用数据挖掘技术,分析数据库中的数据,并建立知识库,采用量化计算方法研究分子的性质,应用知识库实现预测功能。

广州市化学工业研究所成家壮研究员介绍了植物病害化学防治的新思路;深圳朗钛生物科技有限公司张荣胜总经理介绍了二元复配型水分散粒剂配方研究;华中师范大学贺红武教授介绍了以丙酮酸脱氢酶为靶标的新型杀菌剂的合理设计与研究;中国农业大学张建军教授介绍了糖及其衍生物作为绿色农药的分子设计与研究;中国农业大学凌云教授介绍了生物活性天然产物瑞香酮类似物的设计、合成及生物活性;沈阳化工研究院李淼博士就新型含吡唑的二氯丙烯醚衍生物的设计、合成与杀虫活性作了报告;沈阳化工研究院吕亮博士就苯并杂环醚类化合物的设计、合成及杀虫活性研究作了报告;南开大学汪清民教授介绍了牛心朴子草中抗植物病毒活性成份的分离鉴定、合成方法、结构优化、生物活性研究和高效的植物源植物病毒病防治药剂NK-007的创制;贵州大学徐维明博士介绍了缓释性控制农药新剂型开发与应用;沈阳化工研究院陈亮博士介绍了植物根围细菌生物农药筛选;沈阳化工研究院段明郁博士介绍了农药在环境中的代谢产物研究的意义、现状;华中师范大学彭浩博士介绍了新型含磷杂环结构的膦酸酯衍生物的设计、合成与除草活性;南开大学元素所徐效华教授介绍了基于化感物质设计合成生态农药分子;山东省农药研究所冯义志介绍了吡嘧磺隆在水稻土壤、田水、糙米、稻秆和稻壳中残留分析方法;沈阳化工研究院王丽颖介绍了沈阳院的新型杀菌剂唑菌酯新制剂及生物活性;沈阳农业大学陈立杰教授就植物线虫病害生物防治研究及生物农药创制作了报告;贵州大学吴剑博士介绍了新型含杂环和酰腙结构的吡唑酰胺衍生物的设计合成及杀虫活性;沈阳化工研究院李新介绍了熏蒸剂主要品种市场概况及应用;沈阳化工研究院张敏恒教授介绍了世界农药市场。

南开大学汪清民教授的“牛心朴子草中抗植物病毒活性成分的分离鉴定、合成方法、结构优化、生物活性研究和高效的植物源植物病毒病防治药剂NK-007的创制”等9篇论文被大会评为优秀论文。 沈阳科创化学品有限公司程春生总工程师的“化工安全生产与反应风险评估”被评为本届年会特别奖。

通过这次学术会议,专家和代表就当前新形势下农药行业的一些政策性、学术性问题及其他热点问题进行了讨论。 代表们一致认为这是一次成功、高水平的农药行业盛会,通过会议交流,代表们收获颇多,达到学者、代表相互学习、交流、提高的预期目的。 会议的举办为国内农药领域的学术交流建立了一个良好的平台。

年会期间,中国化工学会农药专业委员会主任委员、沈阳化工研究院副院长康卓教授主持召开了中国化工学会农药专业委员会工作会议,副秘书长张敏恒教授汇报了近2年学会秘书处工作,秘书长刘长令教授通报了大会优秀论文的评审工作。 会议增选魏优昌、黄文耀、姚再男等3位同志为新委员,会议还商讨了中国化工学会农药专业委员会其他各项事宜。

(中国化工学会农药专业委员会)

由中国化工学会农药专业委员会主办,沈阳化工研究院有限公司、全国农药信息总站承办,江苏省激素研究所股份有限公司协办,乐斯化学有限公司、深圳朗钛生物科技有限公司支持的中国化工学会农药专业委员会第十五届年会于2012年5月10日至12日在浙江乐清成功召开。

大会开幕式由中国化工学会农药专业委员会副主任委员、中化化工集团公司科技部王龙根主任主持,中国化工学会农药专业委员会主任委员、沈阳化工研究院副院长康卓教授致开幕词,温州市和乐清市有关领导、乐斯化学有限公司总裁陈呈新先生到会讲话。 全国从事农药研究、开发和生产的专家、学者150多人到会。

中化化工科技研究总院副院长兼总工程师李钟华博士向大会报告了国家“十二五”攻关农药项目的初步想法。“十二五”科技创新主题为“绿色、生态”,将绿色、生态的理念贯穿研发、生产、使用的全过程。 总体思路是依托技术创新联盟,提升自主创新能力;应对重大病虫草害,倡导绿色生态和谐;突破关键技术瓶颈,实现农药强国转变。 通过农药创制品种和技术的研究、关键品种与中间体的清洁生产工艺和环境友好型助剂的开发,解决农业生产中重大和疑难病虫草害的防治难题,减少农药生产和使用对生态环境的影响,为农业生产提供安全环保的绿色农药,为农药产业结构调整和节能减排提供技术支撑,提高我国农药行业的技术创新能力和水平。

石油和化学工业规划院副总工程师杨光亮在发言中指出:近年来中国农药工业产业集中度有所下降。2011年的21家农药上市企业的销售总额为208亿元,占全国农药企业销售额的10.6%,与2005年14.4%相比,下降了3.8%。中国农药企业应进一步加大兼并重组的力度,组建和形成大型企业集团,这不仅仅是企业生存和发展的需要,也是中国农药工业参与国际分工和全球资源分配的前提,只有组建大型企业集团,才有实力进行农药创制,才能在与国外公司进行高层次合作中拥有更多的话语权。

国家农业部农药检定所顾宝根副所长介绍了国内外农药管理动态,指出要着力构建和完善符合中国国情和世界趋势的农药登记管理制度,完善农药管理体制机制。 要大力推进登记审批改革,强化安全管理、高毒农药管理,促进生物农药登记管理促进生物农药发展,加大国际合作内容。 全面推行农药田间试验网上审批;华东6省市实现农药登记电子审批试点,申请、初审、受理、部所评审、部批准全程电子化。 推动农药安全性评价数据的国际互认,参与全球联合评审。

会议期间,代表们就关于我国农药研究的新思维、新品种、新方法等,合成技术研究、生产工艺改进、三废治理及分析方法等绿色化研究,农药加工工艺、助剂应用及剂型研究,生物技术在农药研究中的应用,农药应用技术研究,安全评价性研究,农药生产用新设备、新器械研究等,农药在环境中的代谢与残留等几方面的内容进行了充分研讨和交流。

中国科学院上海有机化学研究所吕龙副所长介绍了含氟中间体和含氟农药的创制;沈阳农业大学纪明山教授介绍了基于代谢组学的杀菌剂作用机理研究。

沈阳科创化学品有限公司程春生总工程师介绍了化工安全生产与反应风险评估,我国精细化学品的生产由于欠缺完整的安全性信息,在化工生产过程中存在未知隐患,常常潜在风险,并引发安全性事故发生。 反应风险研究和工艺风险评估在我国处于起步或空白阶段,沈阳科创化学品有限公司以国际技术合作为契机,在中国中化集团公司的大力支持下,开展反应风险研究和工艺风险评估体系建设,建立研究方法和评估标准,目前,沈阳科创化学品有限公司技术中心是具备开展化工反应风险研究的专业实验室。

上海农药研究所张一宾总工程师对农药与医药品种的双向开发介绍了一些案例,谈了自己的理解;华东理工大学药物化工研究所李忠所长介绍了顺硝烯新烟碱杀虫剂结构衍生与作用机制;沈阳化工研究院刘长令副总工程师就农药新品种开发与知识产权的关系及应该注意的问题进行了分析。

中国科学院上海有机化学研究所姚建华研究员介绍了农用化学品的毒性计算机预测技术及其应用,利用从数据库中获取已经收录的信息,采用数据挖掘技术,分析数据库中的数据,并建立知识库,采用量化计算方法研究分子的性质,应用知识库实现预测功能。

广州市化学工业研究所成家壮研究员介绍了植物病害化学防治的新思路;深圳朗钛生物科技有限公司张荣胜总经理介绍了二元复配型水分散粒剂配方研究;华中师范大学贺红武教授介绍了以丙酮酸脱氢酶为靶标的新型杀菌剂的合理设计与研究;中国农业大学张建军教授介绍了糖及其衍生物作为绿色农药的分子设计与研究;中国农业大学凌云教授介绍了生物活性天然产物瑞香酮类似物的设计、合成及生物活性;沈阳化工研究院李淼博士就新型含吡唑的二氯丙烯醚衍生物的设计、合成与杀虫活性作了报告;沈阳化工研究院吕亮博士就苯并杂环醚类化合物的设计、合成及杀虫活性研究作了报告;南开大学汪清民教授介绍了牛心朴子草中抗植物病毒活性成份的分离鉴定、合成方法、结构优化、生物活性研究和高效的植物源植物病毒病防治药剂NK-007的创制;贵州大学徐维明博士介绍了缓释性控制农药新剂型开发与应用;沈阳化工研究院陈亮博士介绍了植物根围细菌生物农药筛选;沈阳化工研究院段明郁博士介绍了农药在环境中的代谢产物研究的意义、现状;华中师范大学彭浩博士介绍了新型含磷杂环结构的膦酸酯衍生物的设计、合成与除草活性;南开大学元素所徐效华教授介绍了基于化感物质设计合成生态农药分子;山东省农药研究所冯义志介绍了吡嘧磺隆在水稻土壤、田水、糙米、稻秆和稻壳中残留分析方法;沈阳化工研究院王丽颖介绍了沈阳院的新型杀菌剂唑菌酯新制剂及生物活性;沈阳农业大学陈立杰教授就植物线虫病害生物防治研究及生物农药创制作了报告;贵州大学吴剑博士介绍了新型含杂环和酰腙结构的吡唑酰胺衍生物的设计合成及杀虫活性;沈阳化工研究院李新介绍了熏蒸剂主要品种市场概况及应用;沈阳化工研究院张敏恒教授介绍了世界农药市场。

南开大学汪清民教授的“牛心朴子草中抗植物病毒活性成分的分离鉴定、合成方法、结构优化、生物活性研究和高效的植物源植物病毒病防治药剂NK-007的创制”等9篇论文被大会评为优秀论文。 沈阳科创化学品有限公司程春生总工程师的“化工安全生产与反应风险评估”被评为本届年会特别奖。

通过这次学术会议,专家和代表就当前新形势下农药行业的一些政策性、学术性问题及其他热点问题进行了讨论。 代表们一致认为这是一次成功、高水平的农药行业盛会,通过会议交流,代表们收获颇多,达到学者、代表相互学习、交流、提高的预期目的。 会议的举办为国内农药领域的学术交流建立了一个良好的平台。

年会期间,中国化工学会农药专业委员会主任委员、沈阳化工研究院副院长康卓教授主持召开了中国化工学会农药专业委员会工作会议,副秘书长张敏恒教授汇报了近2年学会秘书处工作,秘书长刘长令教授通报了大会优秀论文的评审工作。 会议增选魏优昌、黄文耀、姚再男等3位同志为新委员,会议还商讨了中国化工学会农药专业委员会其他各项事宜。

友情链接