期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 化学材料科学与工程

化学材料科学与工程精品(七篇)

时间:2023-11-10 11:04:59

化学材料科学与工程

化学材料科学与工程篇(1)

【关键词】化工原理实验 实验教学 教学改革

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2016)04-0170-02

一、材料科学与工程专业化工原理实验教学目的与要求

1.化工原理实验教学目的

该实验课程主要讲述化工原理中单元操作所涉及的各种设备,以巩固学生加深对化工实际生产的理解,由实验数据和实验现象得出结论并提出自己的见解,增强创新意识,同时,对学生的科学研究能力、创新能力的培养也起着十分重要的作用[1-5]。

2.化工原理实验教学要求

通过实际操作使学生验证有关化工单元操作的理论,熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,培养学生从事实验研究的能力,其中包括:分析和观察实验现象的能力、正确选择和使用测量仪表的能力、利用实验的原始数据进行数据处理以获得实验结果的能力、运用文字表达技术报告的能力[4-5]。

二、化工原理实验中存在的不足

1.人数较多,仪器装置较少,学生动手能力受到限制,由于连年的扩招,每个班的学生人数基本都是35人以上,而实验仪器的台套数并没有增加, 7-8个学生用一台装置的现象非常普遍,个别学生根本没有机会动手操作仪器。

2.学生被动的做实验,完全按照实验书上的照搬照抄,“照单抓药”式的教学,学生花大量的时间写预习报告,来到实验室也不知道到底为什么做实验,怎么做实验。

3.学生工程实践性意识淡薄,不知道化工原理实验的重要性,只是为了学分被动的做实验,达不到理论联系实践的作用。

三、化工原理实验的教学改革与思考

1.化工原理实验教学模式的改革与思考

针对“僧多粥少”的问题的教学模式,材料科学与工程专业化工原理实验充分打破以往“大水漫灌”、“放羊”式的教学模式,分小班、小组教学,每一个小组为3-4人,每一位同学在实验中都有不同的分工, 比如过滤实验(恒压过滤),一个学生要负责压力阀、料浆阀、料液阀的畅通,一个学生负责记时,一个学生要看滤液量和记录,大家还要共同清洗滤布,倾倒滤渣,每组学生只有默契合作,才能将实验做完,这样就充分调动了学生的积极性、参与性和团队合作意识,老师再根据实验操作和小组合作进行现场打分,教学效果明显提高。

2.化工原理实验教学方式的改革和思考

每次课授课之前,给学时留20-30min的时间熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,正式讲课时,以分组提问的方式让学生自己讲解工艺流程和操作步骤,以引导的方式把理论课本上讲解的内容和实际操作中遇到的问题相结合,比如传热实验(强化管传热),改变原来只做实验、测数据的单一教学手段,通过强化管的强化方法,引申到化工中常见的传热设备的改进方法,讨论如何从材料的角度降低成本,从传热的角度提高传热速率等,学生积极参与发言,各抒己见,当实验中出现的现象和理论不符时,引导学生从实验的源头到实验过程中分析误差,充分解决“照单抓药”式的教学模式。

3.化工原理实验教学内容的改革与思考

充分联系课本理论知识,让学生感觉化工原理实验非常实用。比如传热实验,告诉学生热电偶温度计的测温原理,温度计冷端温度补偿的含义,用电脑记录数据的方法,通过数据处理,双对数作图、线性回归等方法,了解计算机技术在化工原理实验中的重要性,实验结束后,学生要对实验数据进行处理,还要总结和分析,分析实验数据误差产生的原因等,根据实验报告上的数据处理为依据,数据处理主要以电脑处理为主,可以锻炼学生应用Word、Excel、Origin等办公软件的能力。

以上教学内容和教学方法的改革充分调动了学生的实验积极性,增强了工程观念,充分做到了理论联系实际。

参考文献:

[1]焦纬洲,刘有智,袁志国,祁贵生,高Z.基于工程实践能力培养的化工原理实验教学模式的研究与探索[J].实验技术与管理,2014,31(3):166-168.

[2]戴益民,李浔,张跃飞.基于创新与实践能力培养的化工原理实验研究性教学模式的探索与实践[J]. 化工高等教育, 2012,6:31-34.

[3]胡秀英,郑纯智.开放式化工原理实验教学模式研究实验科学与技术[J].实验科学与技术,2011,2(9):111-113.

化学材料科学与工程篇(2)

摘要:本文主要讲述原位反应自生法制备复合材料的原理和制备工艺过程,并详细讲述原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用,以及原位反应自生法的研究发展趋势。原位反应自生法广泛应用在制备金属基复合材料、金属陶瓷复合材料等方面。本文作者认为原位反应自生法制备复合材料可以应用在材料科学与工程专业的教学实践中,应该增加一些原位反应自生法制备复合材料的实验课程,从而提高实践教学质量。

http://

关键词 :原位反应自生法 复合材料 材料科学与工程专业

实验教学 研究 应用

一、前言

在材料科学与工程专业的本科教学工作中,本科学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过原位反应自生法制备复合材料。原位反应自生法是制备金属基复合材料,金属陶瓷复合材料,以及金属间化合物/陶瓷基复合材料的主要方法。原位反应自生法是在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。这种方法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。原位反应自生法制备复合材料由于具有可以达到净近尺寸成形的优势,所以能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过原位反应合成技术。此外还可以将原位反应自生法制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解原位反应自生法制备复合材料的工艺过程。所以原位反应自生法制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文首先讲述原位反应自生法制备复合材料的原理和制备工艺过程,并讲述原位反应自生法制备复合材料在材料科学与工程专业教学实践中的研究和讨论。并对原位反应自生法制备复合材料的未来发展趋势进行分析和预测。

二、原位反应自生法制备复合材料的原理和制备工艺过程

为了克服传统方法制备的复合材料存在增强体颗粒尺寸粗大,热力学不稳定以及界面结合强度低等缺点,出现了原位合成技术,即在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。原位自生法是通过原料粉末中的某些化学反应生成所需要的反应产物并通过热压烧结工艺制备出复合材料试样。原位反应自生法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。目前报道的原位合成技术主要有原位反应热压烧结技术,原位复合技术,定向氧化技术,熔体浸渍技术,反应结合技术及自蔓延高温合成技术等。定向氧化合成技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。原位自生法是通过反应物之间的反应生成所需要的反应产物并通过热压烧结工艺实现致密化。原位合成法是利用化学反应在原位生成补强组元-晶须或长径比较大的晶粒来补强基体材料的制备工艺。原位合成法主要具有如下优点:简化工艺,降低材料成本,实现特殊显微结构设计和获得特殊材料性能,具有很好的热力学稳定性。金属间化合物/陶瓷基复合材料的制备方法主要有原位复合技术和定向氧化技术以及原位反应热压烧结工艺。可以采用原位反应热压烧结工艺制备金属间化合物/陶瓷基复合材料。原位复合技术是由于金属间化合物反应的形成热相对较低,因而采用自蔓延燃烧时系统不易达到较高的绝热温度,故一般采用原位复合技术制备和合成复合材料。原位复合技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。传统的方法是将粉末压坯在恒定速率下加热到可使反应自发的产生并在整个混合物中处处发生反应。定向氧化技术是定向金属氧化工艺可用于制备金属基复合材料。原位反应热压烧结工艺是将原位反应和热压烧结工艺相结合制备致密的复合材料。

三、原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用

原位反应自生法主要用于制备金属陶瓷,金属间化合物,金属间化合物/陶瓷复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过原位反应自生法。原位反应自生法同粉末冶金技术和液相烧结技术一样都是材料制备技术。原位反应自生法同样是热加工工艺,原位反应自生法涉及到反应物高温化学反应制备产物的过程。在材料科学与工程专业课程的课堂教学中,在有些专业课程中原位反应自生法只是作为了解,对于原位反应自生法制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的实践教学课程中增加一些关于原位反应自生法制备复合材料的实验课程。通过原位反应自生法制备复合材料的实践教学活动可以使学生认识和了解原位反应自生法制备复合材料的原理,制备工艺过程以及对经过原位反应自生工艺后得到的金属基复合材料烧结制品的物相组成,显微结构和性能进行研究,使学生通过对复合材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排采用原位反应自生工艺制备金属基复合材料和金属陶瓷复合材料的教学内容。例如采用原位反应自生工艺可以制备金属陶瓷复合材料,先将金属陶瓷粉末通过压力成型工艺制成坯体,并通过原位反应自生工艺和高温烧结工艺制备金属陶瓷复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。采用原位反应合成工艺可以制备金属间化合物/陶瓷基复合材料,通常先将金属间化合物粉末和陶瓷粉末通过压力成型过程在一定压力下压制成具有一定形状和致密度的预制件,通过原位反应自生法和高温烧结工艺形成金属间化合物/陶瓷基复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。有时将原位反应自生法和热压烧结工艺相结合制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到原位反应自生法制备金属陶瓷复合材料的制备工艺过程,提高学生对专业课程学习的认识和了解。使学生通过实验教学认识和了解了原位反应自生工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对得到产物的物相组成和显微结构进行分析和测试。原位自生法可以制备金属基复合材料,金属陶瓷复合材料等。采用原位反应自生法可以制备颗粒增强的金属基或陶瓷基复合材料。

原位反应自生工艺制备复合材料涉及到反应物在高温下发生化学反应生成反应产物的过程,原位反应合成技术操作过程比较简单,对设备要求较低,只需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的实验课程教学内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对原位反应自生法得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助。为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、原位反应自生法制备复合材料的未来发展趋势和应用

原位反应自生法制备复合材料在材料科学与工程领域有着广泛的研究和应用。原位反应自生技术由于制备工艺简单,成本较低,对设备要求较低,只需要高温烧结炉,所以被广泛的应用到金属基复合材料,金属陶瓷复合材料,金属间化合物/陶瓷基复合材料等的合成与制备中。利用原位反应自生法可以开发新型的金属基复合材料和金属陶瓷复合材料以及金属间化合物/陶瓷基复合材料。采用原位反应自生技术可以开发出很多种类型的金属基复合材料和金属陶瓷复合材料。所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。原位反应自生技术在材料科学与工程专业教学与实践中也得到广泛的推广和应用,原位合成技术已经成为材料科学与工程专业实践教学课程进行的实验内容。所以本文作者认为应该在材料科学与工程专业的教学实践中增加一些采用原位反应自生技术制备复合材料的实验课程。

五、结论

本文主要讲述原位反应自生法制备复合材料的原理和制备工艺过程,并详细讲述原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用。原位反应自生法广泛应用在制备金属基复合材料,金属陶瓷复合材料等领域中。本文作者认为原位反应自生法制备复合材料可以应用在材料科学与工程专业的教学实践中,应该增加一些原位反应自生法制备复合材料的实验课程,扩大学生学习的知识面,提高学生的认识了解能力,从而提高实践教学质量。通过原位自生法制备复合材料的实验教学过程提高学生的知识水平和认识能力。

http://

参考文献

[1]张国军,金忠哲,岳雪峰.材料的原位合成技术[J].材料导报,1997(11):1-4

[ 2 ] 陶春虎, 王守凯.制备金属间化合物的X D 法[ J ] . 航空制造过程,1994(2):35-36

[3]黄世民.粉末冶金技术的应用与发展[J].航空工艺技术,1999(4):36-38

[4]杨晓光.粉末冶金技术的现状与发展趋势[J].机械工程师,19 9 6(增刊):63-64

[ 5 ]何慧,张晓花,杨渭.金属间化合物的机械合金化制备[ J ] .山东冶金,2004,26(5):45-50

[ 6 ] 李青虹,晋芳伟. 机械专业实验课程教学改革的研究[ J ] . 机电技术,2011(1):149-151

化学材料科学与工程篇(3)

在材料科学与工程专业的本科教学工作中,本科学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过原位反应自生法制备复合材料。原位反应自生法是制备金属基复合材料,金属陶瓷复合材料,以及金属间化合物/陶瓷基复合材料的主要方法。原位反应自生法是在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。这种方法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。原位反应自生法制备复合材料由于具有可以达到净近尺寸成形的优势,所以能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过原位反应合成技术。此外还可以将原位反应自生法制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解原位反应自生法制备复合材料的工艺过程。所以原位反应自生法制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文首先讲述原位反应自生法制备复合材料的原理和制备工艺过程,并讲述原位反应自生法制备复合材料在材料科学与工程专业教学实践中的研究和讨论。并对原位反应自生法制备复合材料的未来发展趋势进行分析和预测。

二、原位反应自生法制备复合材料的原理和制备工艺过程

为了克服传统方法制备的复合材料存在增强体颗粒尺寸粗大,热力学不稳定以及界面结合强度低等缺点,出现了原位合成技术,即在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。原位自生法是通过原料粉末中的某些化学反应生成所需要的反应产物并通过热压烧结工艺制备出复合材料试样。原位反应自生法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。目前报道的原位合成技术主要有原位反应热压烧结技术,原位复合技术,定向氧化技术,熔体浸渍技术,反应结合技术及自蔓延高温合成技术等。定向氧化合成技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。原位自生法是通过反应物之间的反应生成所需要的反应产物并通过热压烧结工艺实现致密化。原位合成法是利用化学反应在原位生成补强组元-晶须或长径比较大的晶粒来补强基体材料的制备工艺。原位合成法主要具有如下优点:简化工艺,降低材料成本,实现特殊显微结构设计和获得特殊材料性能,具有很好的热力学稳定性。金属间化合物/陶瓷基复合材料的制备方法主要有原位复合技术和定向氧化技术以及原位反应热压烧结工艺。可以采用原位反应热压烧结工艺制备金属间化合物/陶瓷基复合材料。原位复合技术是由于金属间化合物反应的形成热相对较低,因而采用自蔓延燃烧时系统不易达到较高的绝热温度,故一般采用原位复合技术制备和合成复合材料。原位复合技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。传统的方法是将粉末压坯在恒定速率下加热到可使反应自发的产生并在整个混合物中处处发生反应。定向氧化技术是定向金属氧化工艺可用于制备金属基复合材料。原位反应热压烧结工艺是将原位反应和热压烧结工艺相结合制备致密的复合材料。

三、原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用

原位反应自生法主要用于制备金属陶瓷,金属间化合物,金属间化合物/陶瓷复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过原位反应自生法。原位反应自生法同粉末冶金技术和液相烧结技术一样都是材料制备技术。原位反应自生法同样是热加工工艺,原位反应自生法涉及到反应物高温化学反应制备产物的过程。在材料科学与工程专业课程的课堂教学中,在有些专业课程中原位反应自生法只是作为了解,对于原位反应自生法制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的实践教学课程中增加一些关于原位反应自生法制备复合材料的实验课程。通过原位反应自生法制备复合材料的实践教学活动可以使学生认识和了解原位反应自生法制备复合材料的原理,制备工艺过程以及对经过原位反应自生工艺后得到的金属基复合材料烧结制品的物相组成,显微结构和性能进行研究,使学生通过对复合材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排采用原位反应自生工艺制备金属基复合材料和金属陶瓷复合材料的教学内容。例如采用原位反应自生工艺可以制备金属陶瓷复合材料,先将金属陶瓷粉末通过压力成型工艺制成坯体,并通过原位反应自生工艺和高温烧结工艺制备金属陶瓷复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。采用原位反应合成工艺可以制备金属间化合物/陶瓷基复合材料,通常先将金属间化合物粉末和陶瓷粉末通过压力成型过程在一定压力下压制成具有一定形状和致密度的预制件,通过原位反应自生法和高温烧结工艺形成金属间化合物/陶瓷基复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。有时将原位反应自生法和热压烧结工艺相结合制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到原位反应自生法制备金属陶瓷复合材料的制备工艺过程,提高学生对专业课程学习的认识和了解。使学生通过实验教学认识和了解了原位反应自生工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对得到产物的物相组成和显微结构进行分析和测试。原位自生法可以制备金属基复合材料,金属陶瓷复合材料等。采用原位反应自生法可以制备颗粒增强的金属基或陶瓷基复合材料。

原位反应自生工艺制备复合材料涉及到反应物在高温下发生化学反应生成反应产物的过程,原位反应合成技术操作过程比较简单,对设备要求较低,只需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的实验课程教学内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对原位反应自生法得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助。为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、原位反应自生法制备复合材料的未来发展趋势和应用

原位反应自生法制备复合材料在材料科学与工程领域有着广泛的研究和应用。原位反应自生技术由于制备工艺简单,成本较低,对设备要求较低,只需要高温烧结炉,所以被广泛的应用到金属基复合材料,金属陶瓷复合材料,金属间化合物/陶瓷基复合材料等的合成与制备中。利用原位反应自生法可以开发新型的金属基复合材料和金属陶瓷复合材料以及金属间化合物/陶瓷基复合材料。采用原位反应自生技术可以开发出很多种类型的金属基复合材料和金属陶瓷复合材料。所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。原位反应自生技术在材料科学与工程专业教学与实践中也得到广泛的推广和应用,原位合成技术已经成为材料科学与工程专业实践教学课程进行的实验内容。所以本文作者认为应该在材料科学与工程专业的教学实践中增加一些采用原位反应自生技术制备复合材料的实验课程。

化学材料科学与工程篇(4)

人们通常把材料、信息和能源 人们通常把材料、信息和能源并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

化学材料科学与工程篇(5)

基金项目:本文系吉林省教育科学规划项目(项目编号:GB13268)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)15-0013-02

现代焊接技术是一门多学科交叉融合的应用性先进技术,是制造业重要的关键技术,[1]机械制造和金属结构制造行业急需大量的焊接工程高级专门人才。目前,国内对该类人才的培养基本由材料成型及控制工程(以下简称“材料成型”)和焊接技术与工程(以下简称“焊接”)两个专业承担,开设以上两个专业的本科院校上百所。随着高等工程教育改革的深入,高等本科院校根据自身的办学定位和优势对这两个专业不断地进行改革尝试。为了更好地促进专业改革,本文研究了国内院校“焊接”和“材料成型”专业人才培养的基本情况,通过梳理总结指出目前存在的问题,剖析了“焊接”与“材料成型”专业人才培养目标的差异性,以明晰两个专业的未来发展走向,使培养的专业人才更加适应国家经济建设和社会发展的客观需要。

一、存在的问题[2-5]

根据资料统计,国内多数学校的“材料成型”专业由热加工领域的1~3个原有专业整合形成。整合主要体现在专业基础课方面,而在专业课方面出现了两种培养模式:一是设置专业平台课按专业方向模块培养,主要专业提供论文写作和写作论文的服务,欢迎光临dylw.net依托自身优势设置了铸造、模具和焊接等其中的一到三个;二是实行通才教育。还有一些院校由原机械类专业合并,涵盖热加工领域知识后形成。而目前开设“焊接”专业的院校已达16所,它是继国家保留哈尔滨工业大学焊接工艺及设备专业,并整合为焊接技术与工程专业之后,国内其他高校逐渐从“材料成型”专业分离出来形成的。

通过对众多高校人才培养方案的研究发现:对于“材料成型”专业,虽然拓宽了基础,但仍存在专业方向模块培养过窄的弊端以及实施通才式教育的缺陷。对于“焊接”专业,因承袭了原有焊接工艺及设备专业的培养思路,知识能力结构培养过窄、过深的弊病更加明显。究其原因在于没有从铸、锻、焊、模具和冲压等技术进步,以及行业未来发展趋势对人才需求变化的高度去准确理解这两个专业各自的内涵和外延,缺乏对“焊接”和“材料成型”专业人才培养目标进行深度解析,导致人才培养目标不够明确,出现了两个专业知识能力体系偏窄、不系统、不完善等现象。对于“材料成型”专业学生来说,戴上了知识大帽子,却成为了能力单一的专才,或能力弱的庸才,或无能力的偏才;而对于“焊接”专业学生来说,则戴上了知识专一的帽子,成为了能力单一、适应性差的窄才。

二、专业依托的学科发展趋势及行业需求分析

材料是国民经济的支柱,是社会进步的物质基础和先导。[6]随着社会和科技的进步,对材料的力、光、电、磁、声及热等特殊性能及其耦合效应的要求,对材料的高强、高韧、耐热、耐磨和耐腐蚀等性能的要求,以及对材料与环境协调性的要求都在日益提高。通过在微结构不同层次上的材料设计以及在此基础上的新材料开发,复合化、低维化、智能化和结构功能一体化的新材料在生物、信息、能源和生态环境等领域不断涌现。

材料是以一定使用性能和经济价值进入社会应用领域。材料通过加工制成结构件、设备及装备,在冶金、机械、化工、建筑、信息、能源和航天航空等工业领域得到了广泛应用。因此,现代社会大量的需要掌握材料加工技术的人才。

材料加工的范围包括金属材料、无机非金属材料、高分子材料和复合材料等。大量的新材料的涌现推动了材料加工过程向智能化、自动化、集成化和超精密化技术方向迈进。现代材料加工已超越传统冷、热加工的范畴,与材料学、材料物理与化学、力学、机械学、电学、控制学和计算机科学,以及新型高性能材料的研发有着相互依存和彼此促进的密切联系,并成为再制造工程的关键技术支撑之一。因此,只有掌握多学科交叉知识,并具有综合应用能力和创新能力的高级工程人才,才能满足现代材料加工行业对人才的需要。

材料加工工程学科主要研究材料的外部形状和内部组织与结构形成规律和控制技术。[6]当代材料加工技术和相关工专业提供论文写作和写作论文的服务,欢迎光临dylw.net程问题包括:材料的表面工程、材料的循环利用、材料加工过程模拟及虚拟生产、加工过程及装备的自动智能集成化、材料加工过程的在线检测与质量控制、材料加工的模具和关键设备的设计与改进以及再制造快速成形理论与技术等。

材料加工工程学科的发展方向是:液态凝固成型、固态塑性成型、粉末成型、材料的净或近净成型等精密成型与处理、维纳加工、多场协同作用下的加工、表面工程、特种和异种材料连接、加工过程的模拟与智能化控制、材料循环再生利用技术,以及针对体积损伤零件及新品零件的三维快速成型技术等。[6]

教育部在20世纪末从铸、锻、焊、模具和冲压等技术发展进步,以及行业未来发展趋势对人才需求变化的高度,为适应21世纪国家经济建设和社会发展需要,在材料类专业中设置了“焊接”专业,而在机械类专业中设置了“材料成型”专业。[7]

三、两个专业人才培养目标的差异性分析

了解两个专业的学科门类、专业类以及专业依托的基本学科,准确理解基本学科内涵、专业名称内涵、相关学科以及学科间的联系,对于研究专业人才的培养极为重要。

1.“焊接”专业人才培养目标分析

“焊接”专业属于材料类专业,材料类专业的共同特征是以材料科学与工程为基本学科。该学科研究各类材料的组成及结构、制备合成及加工、物理及化学特性、使役性能及安全、环境影响及保护、再制造特性及方法等要素及其相互关系和制约规律,并研究材料与构件的生产过程及其技术,制成具有一定使用性能和经济价值的材料及构件的学科。[6]“焊接”专业人才培养应体现材料学科与工程学科的基本内涵,并侧重研究焊接结 构件的生产过程及其技术。

焊接技术工程追求优良的宏观性能,但是工程结构的宏观性能与结构材料的微观组织之间存在必然的联系,宏观性能的优劣取决于材料微观组织的状况。从材料连接的微观角度考虑,焊接机理复杂,加热热源、材料成分、母材的组织与性能、焊接应力与变形等因素对焊接质量影响极大,须以实验科学为基础,既重视具体细节问题,又考虑众多影响因素,通过改变材料微观组织来获取优异宏观性能。“焊接”专业是以连接技术为手段、以材料结构为加工对象、以过程控制为质量保证措施、以实现产品制造为目的的工科专业。

因此,“焊接”专业的人才培养目标应为:培养具备材料科学、力科学、机械科学、电科学、控制科学和计算机科学等基础知识和应用能力,能够在焊接工艺及设备、焊接生产、焊接质量控制与检测、焊接过程自动化控制等领域从事科学研究、技术开发、设计制造、生产组织与管理等工作,具有实践能力和创新意识的高级科技人才。

2.“材料成型”专业人才培养目标分析

“材料成型”专业属于机械类专业,机械类专业的共同特征是以机械工程为基本学科,该学科主要围绕各种机械产品与装备,开展设计、制造、运行、服务的理论和技术研究。[6]“材料成型”专业人才培养应体现机械工专业提供论文写作和写作论文的服务,欢迎光临dylw.net程学科的基本内涵,侧重研究机械产品及装备的材料成型及控制工程技术。

材料成型及控制工程技术是指“材料”成型,而非“构件”成型。它通过控制外部形状和内部组织结构,使材料变成满足使用功能和服役寿命预期要求的各种零部件及成品。材料成型方法采用液态凝固成型、固态塑性成型、粉末成型、材料的净或近净成型等精密成型与处理、材料连接以及三维快速成型技术等。它不仅指成型工艺,而且还要对成型过程实施在线检测与质量控制。“材料成型”专业包含材料的成型设计、成型工艺和成型质量控制。对于设备的电控设计研究则不包含在本专业。

因此,“材料成型”专业的人才培养目标应为:培养具备机械科学、材料科学、力科学、电科学、控制科学和计算机科学等基础知识和应用能力,能够在材料加工理论、成型工艺及装备、材料成型过程自动控制和先进材料工程等领域从事科学研究、技术开发、设计制造、生产组织与管理,具有实践能力和创新意识的高级科技人才。

3.两个专业人才培养目标的辨析

“焊接”和“材料成型”专业分别属于两个不同专业类,应以充分体现各自专业类的鲜明特征作为确立各自人才培养目标的基石。通过分析“焊接”和“材料成型”专业的人才培养目标,可以得出如下结论:第一,专业依托的基本学科不同。前者依托材料科学;后者依托机械科学。第二,对相关学科重要性的排序不同。前者相关学科的排序为力科学、机械科学、电科学、控制科学和计算机科学;后者相关学科的排序为材料科学、力科学、电科学、控制科学和计算机科学。第三,二者研究的知识领域不同。前者研究焊接工艺及设备、焊接生产、焊接质量控制与检测、焊接过程自动化控制等领域;后者研究材料加工理论、成型工艺及装备、材料成型过程自动控制和先进材料工程等领域。第四,研究的对象不同。前者研究构件;后者研究机械产品及装备。

虽然两个专业都属于材料加工工程学科范畴,材料成型及控制工程技术涵盖材料连接技术,但是根据对“材料成型”专业人才培养目标的分析可以看出,“材料成型”专业从机械工程学科的角度出发,侧重培养掌握专业提供论文写作和写作论文的服务,欢迎光临dylw.net材料成型及控制工程技术的人才,而“焊接”专业从材料科学与工程学科的角度出发,侧重培养掌握焊接技术与工程的人才。需要指出的是,“材料成型”专业的知识体系应包含焊接核心知识,能力体系应包含焊接应用能力。两个专业对焊接知识能力要求的范围广度和内容深度存在较大差异。由此可见,“焊接”和“材料成型”专业的人才培养目标存在重大差异。

四、人才培养目标的专业特色分析

高等本科院校在确立这两个专业的人才培养目标时,应在符合高等工程教育基本要求的前提下,充分体现专业类的明显特征,根据自身在全国高校同专业中所处的位置确定专业办学定位,即确定人才培养目标为科学研究精英型、科学研究和工程技术复合型,还是工程技术应用型。同时还应根据办学历史形成的专业办学优势,例如依托的行业等,并结合地方经济建设需要,使人才培养目标体现出明显的办学特色。

参考文献:

[1]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中华人民共和国学科分类与代码国家标准(GB/T 13745-2009)[M].北京:中国标准出版社,2009:31-40.

[2]邹家生,朱松,郭甜.以特色专业建设为契机全面提高我国高校人才培养质量——以江苏科技大学焊接技术与工程专业为例[J].江苏科技大学学报(社会科学版),2011,11(1):102-107.

[3]孙凤勤.“材料成型及控制工程专业”人才培养规格[J].华北航天工业学院学报,2001,11(2):21-24.

[4]常庆明.材料成形及控制工程专业人才培养模式的探讨[J].科技信息,2012,(5):402-407.

[5]陈拂晓,张柯柯,郭俊卿,等.普通工科院校材料成型及控制工程专业人才培养方案构建与实践[J].科技咨询,2008,(6):116-117.

[6]国务院学位委员会第六届学科评议组.学位授予和人才培养一级学科简介[M].北京:高等教育出版社,2013:120-137.

化学材料科学与工程篇(6)

关键词:实验中心;材料学科;平台建设;实验教学

中图分类号:G640 文献标志码:A 文章编号:1674-9324(2013)39-0276-03

对开设材料学科的高等院校来说,培养大批适应材料产业和技术飞速发展的宽口径材料科学与工程专业人才已成为人们的共识[1]。但对于材料科学与工程这种实践性强、投入大的学科,大部分地方高等院校的材料学科都面临着投入不足、实验平台建设相对滞后、实验教学队伍编制少等问题,严重制约了材料学科人才的培养质量。特别是材料学科研究所需的一些大型仪器和设备在培养学生科学素养和创新能力、提高其综合素质方面扮演着十分重要的角色[2]。我院根据实际情况和专业特点,通过整合院内资源,成立了材料科学与工程实验教学中心,同时,与企业共建省级工程中心,实现资源共享,并进行了实践,为划转地方院校材料类实验中心的建设积累了一些经验供借鉴。

一、设立材料科学与工程实验中心背景

我校的材料科学与工程是从1986年设立的焊接专业逐渐发展起来的一个学科。2003年成立材料科学与工程系,2006年成立材料科学与工程学院,目前有焊接技术与工程、材料成型及控制工程、材料物理和金属材料工程四个本科专业。在实验室建设初期,借鉴同类型高校实验室建设的成果和经验,分别设立了材料基础实验室和材料加工工程、材料物理和金属材料工程三个专业实验室。它们共同承担材料类的实验教学、学生毕业设计、学生课外科技活动、教师科研工作等任务。但由于各专业成立的时间、实验室规模及招生的数量不同,不同专业实验室之间在设备数量、总值、人均工作量等方面的矛盾突出,严重影响到实验教师工作的积极性。同时,随着各专业的快速发展,各类实验设备和仪器随之增加,使设备使用、管理与实验人员数量不足的矛盾也开始变得突出[3]。资金上,一方面由于实验室建设经费不足,材料研究的高端的仪器设备缺乏,影响到人才的培养质量和学科的发展。另一方面,不同专业实验室建设往往力求“小而全”,常有仪器设备、工具等重复购置,造成有限资金的浪费。为了解决上述问题,2007年我院成立了材料科学与工程实验教学中心,并提出了院级统一管理、教师参与、校企共建、资源共享的实验室建设与管理模式。

二、实验中心的建设思路和措施

材料科学与工程实验中心所需实验设备不但涉及面广,而且大多设备价格昂贵,可以说是一个“贵族”学科。对于大部分实验经费不足的划转地方院校,找准办学定位,设立合理的实验教学体系,优化实验室结构,多方筹措经费,完善、提高实验平台建设和管理水平应是现阶段实验中心建设的重点之一。

1.设立“大材料”的实验教学体系。我校材料科学与工程实验教学中心依托现有的材料科学与工程一级学科硕士点、材料加工工程省级重点学科和陕西省焊接钢管工程技术研究中心(与宝鸡石油钢管有限责任公司共建),由学院统一管理组建材料科学与工程实验教学中心。实验教学体系的建立基于“材料制备及热处理”、“材料成型加工”、“材料性能测试”、“材料组织结构表征”四个实验平台,分成五个层次进行建设。实验教学体系框架见图1。

材料基础实验主要包括材料科学与工程学院公共基础课的知识以及各专业方向课中的共性知识,目的是加强共性和基础性知识的教育。专业方向特色实验的设置是针对每个专业学生所需的专门知识,如管线全位置焊接实验、管线钢组织性能测定实验等。在此基础上将逐渐开设《石油工程材料热处理工艺-组织-性能分析》、《石油工程材料焊接工艺-组织-性能评定》等专业方向综合实验。综合型实验是知识体系的综合、实验技能的综合和实验设计的综合。增加综合性实验所占的比例,进一步减小验证性实验,可以使学生充分发挥主观能动性,避免以往为实验而实验、为检测而检测的呆板性和单一性,使材料各个学科专业之间能够相互交叉与融合。本科毕业设计是一个实践性非常强的教学环节,它不同于课堂讲授,又有别于科研工作。在组织学生毕业设计时指导教师在重视每名学生共性发展时,还特别注重每个学生的个性发展与提高,通过开放实验室,鼓励学生参与教师的科研项目或自己设计、自己动手做实验,使特别优秀的学生脱颖而出[4,5]。同时,也充分调动基础较差学生的积极性,使其获得自信心。科研与研究生创新实验是提高学生创新意识和分析问题、解决问题的能力,为培养具有宽材料基础的复合型人才奠定基础。

2.整合资源,优化实验室结构。划转地方院校的材料科学与工程大体是通过冶金与机械或金属、非金属、高分子三大类材料所依存的专业而建立的学科,侧重于从具体应用的角度来探求新材料的性能评价与使用。这种类型的学科大都有原先专业发展残留的痕迹,学科方向发展不均衡,如果一味追踪材料科技前沿的基础,往往会失去原有的特色。我院材料科学与工程实验教学中心充分利用原先专业发展的基础,通过资源整合,优化实验室结构,建立“材料制备及热处理”、“材料成型加工”、“材料性能测试”、“材料组织结构表征”四个实验平台。在整合实验室的基础上,对实验教学的内容也进行了调整。从各专业能力培养的目标出发,调整相关学科的知识配套,使实验教学内容能随学科发展、国家和地方经济建设的需要不断更新,使一些先进的科技成果及时转化到实验教学中。通过对全院的实验资源进行整合,建立开放、共享的实验平台,并能通过网络进行仪器设备使用的预约,从而实现学院内实验资源的优化配置,避免实验室不必要的重复建设,减少资金及人力资源的浪费。

3.充分利用中省共建资金,完善实验教学平台。中省共建资金是财政部于2000年针对划转地方院校设立的“中央和地方共建高等学校专项资金”。我院根据学科及实验教学平台建设需要,通过认真组织、积极申报,截至2010年共获得800万元中省共建资金的资助。这些资金在相当程度上缓解了学生规模不断扩大与基础设施严重不足的矛盾。2008年,利用中省共建资金,通过购买万能试验机、示波冲击试验机、疲劳试验机完善材料性能测试实验平台;通过购买扫描电镜、XRD衍射分析仪等提高材料组织性能表征实验平台,使我院材料科学与工程实验中心的平台建设上升到一个新的台阶。2010年通过中央与地方共建实验室资金建成的“国际焊接工程师实训基地”,将理论教育与实践相结合、专业教育与工程教育相结合,将国际焊接工程师培训课程纳入专业课程教学模块,对在校生开展“学历学位教育+职业资格认证”教学模式的探索与实践,使在校生可以提前获得从业资质,不仅提高自身专业能力和素质,而且拓宽就业渠道,增加就业机会,培养国际化焊接技术专门人才,满足石油石化行业和陕西地方经济建设对国际资质焊接技术人才的需求。2010年和2011年共有80余名本科生参加了国际焊接工程师培训班,64名学生一次通过考核,并获得由IIW颁发的国际焊接工程师资格证书,受到了哈尔滨培训中心的好评。我院材料科学与工程实验中心通过近几年中省共建资金的扶持,较好地完善了实验教学平台。目前,实验中心可为企业、其他高校或研究机构提供力学性能测试、金相组织分析、X射线衍射分析等技术服务。

4.开展校企合作,提高实验平台建设水平。校企合作的目的是要实现高校资源、企业在市场经济条件下的合理配置和有效运行[6]。共建实践教学平台是校企合作办学的重要方面。我院与宝鸡石油钢管有限责任公司焊接钢管研究院签订了校企合作协议。双方本着资产明晰、资源共享、联合研究、成果共有的原则,共同建设“焊接钢管工程技术研究中心”,建立校企合作技术创新体系,构建技术研究、开发平台,为学校教育质量的提高和企业技术发展提供服务。焊接钢管工程技术研究中心组建后,学院既可以利用宝鸡石油钢管有限责任公司钢管研究院的产品中试生产线,又可以利用其在材料组织性能检测分析方面的高端实验设备和仪器,为教师和学生提供科技创新的实践平台;宝鸡石油钢管有限责任公司钢管研究院可以借鉴西安石油大学在焊接钢管领域的理论研究成果,充分发挥高校教师科研攻关的优势,合作承担国家和中国石油天然气集团公司在焊接钢管研究方面的科研项目和企业的产品开发任务,为企业的生产及产品研发提供服务。通过建立研究中心这一科技平台,校企双方通过优势互补和资源共享,不但增强企业的竞争力,创造经济效益;同时又提高了实验平台建设水平,增强了高校的科研实力,扩展了双方在彼此领域的影响。2007年“焊接钢管工程技术研究中心”被评为陕西省钢管工程技术研究中心,校企合作实现了“双赢”。

5.加强队伍建设,完善实验室管理体系。针对实验教学中心专职实验队伍编制少的问题,为了保证实验教学质量和科研服务水平,中心采取以专职实验队伍为主体,与兼职实验教师相结合的互补互助建设方针。专职实验教师队伍将建设成为一支具有现代教育理念,掌握先进实验教学方法和管理方法,动手能力强,结构合理的队伍。兼职实验队伍采取聘用高水平的学术带头人、青年博士为兼职实验教师,充实实验教师队伍。同时,派遣实验技术人员到同行科研院所和高等院校学习、交流,鼓励实验教师到知名大学进修等一系列行之有效的措施,来加强实验教师队伍建设。与此同时,进一步完善实验中心管理体系,规范仪器设备操作规程,尤其是大型设备的管理和使用,并重点加强了危害性大、涉及面广的危险化学品类管理制度建设,保证了实验室高效、安全地运行。

通过对实验室进行整合、重组、优化,成立了材料科学与工程实验教学中心,采用院一级管理体制,搭建了满足实验教学和科研工作的共享平台,并与企业共建,资源共享,实现了人力、物力、社会资源的优化利用。随着实验中心的进一步建设和在实践中的不断完善,实验中心在学生培养和服务社会方面必将发挥更大作用。

参考文献:

[1]张钧林.材料科学与工程的学科发展、现状及人才培养J].甘肃科技,2008,24(15):165-168.

[2]刘红星,陈福北,黄初升.高校大型仪器培养学生科研创新能力探讨[J].广西师范学院学报(自然科学版),2008,25(1):105-108.

[3]梅建平,王仕勤,庞超明,等.材料实验中心开放管理模式研究与实践[J].2011,28(6):288-291.

[4]雅菁,刘志锋,辛颖,等.材料类专业实验中心建设与实验教学改革的探索与实践[J].实验室科学,2009,(1):27-30.

[5]汪应玲,齐西伟,罗绍华,等.材料学科实验室建设与管理的探索[J].实验技术与管理,2011,28(6):300-302.

[6]傅利斌,陈爱华,郑旭.校企合作共建科技创新平台[J].航海教育研究,2006,(2):24-25.

化学材料科学与工程篇(7)

关键词:材料化学专业;人才培养模式

材料化学是近年来随着材料科学的快速发展与社会需求的日益增加新开设的一个专业,它是一门新兴的交叉学科,是工程、信息、新能源等高科技产业和技术发展的重要基础。随着环境问题的突出和人口的增长,各种功能材料在农业上的应用日益广泛,新材料的不断开发应用,对加速农业发展,推动农业产业化结构起到了重要作用。但目前我国农业领域从事新材料技术开发和应用的专门人才还相当匮乏,远不能满足农业高速发展的需要,与现代新农村建设的需求存在很大的差距。因此,在我国高等农业院校设置材料化学专业对我国农业的产业化发展具有重要的意义。

一、确定合理的材料化学专业培养目标

坚持“结合材料科学发展的大方向和工科院校在材料领域的人才需要对材料化学专业人才培养进行定位”的原则,材料化学专业人才培养的基本目标是:培养适应社会主义现代化建设需要的、德智美体等全面发展的,掌握化学及材料学科的基本知识和基本理论,具备材料设计、开发、检验等基本技能,能在材料、化工及相关的领域从事新型材料研制、质量检验、产品开发、教学及技术管理等工作的基础扎实、知识面宽、实践能力强、综合素质高、具有创新意识的应用型、研究型人才。

在材料化学专业培养计划中,借鉴其他重点大学材料化学相关专业的成功经验,以材料化学技术为主线,以材料工程为背景,通过教育和行业、高校和企业的密切合作,探索适合材料化学专业产业创新人才计划的新的培养方案和课程体系。根据材料化学专业的需要,优化重组本专业的课程体系,使学生具备材料化学相关的基本知识和基本技能,具有对材料改性及加工过程进行技术、经济分析和初步的管理能力;能在材料化学及其相关领域从事材料研究、材料的成型和加工、新材料的设计和开发及相关管理工作。在教学实践中不断积累并形成具有自身特色和优势的专业特色。学校作为价值核心实现的支撑,从宏观上进行调控。

二、完善课程体系,优化课程设置

2.1 完善课程体系

材料化学专业的主干学科是化学和材料科学,在构建材料化学专业课程体系时,根据教学环节的科学性、系统性、综合性和连续性的要求,将所有教育环节分为通识教育、基础教育、专业教育、实践教学和创新创业教育五个部分设置,为了淡化专业界限,全校统一设置通识课平台。在2009年修订的材料化学专业教学计划中,课内总学时为2384学时,学生毕业应取得总学分为173学分,其中通识教育课程5l学分,基础教育课程40.5学分,专业教育课程32.5学分,实验实践43学分,就业与创业教育6学分。其中,通识课和基础课与本系应用化学类其他专业一致;后三类课程体系与应用化学专业有区别的开设,突显出了材料的特色。

2.2 优化课程设置

首先课程体系设置充分考虑到知识结构的系统性、授课时间和内容的衔接性,在充分调研的基础上,慎重优化课程设置,根据提出的指导意见和建议,进行相应补充和完善。一方面,通过科研同行、同学、校友等多渠道了解农业、化工、材料、能源等相关行业对材料化学专业人才的具体需求,根据学校的总体发展目标和学科优势,结合系里的研究背景以及最新成果,有针对地设置适合时代

发展需求并具有华南农业特色特色的特色课程。例如:我们开设《材料化学》、《材料物理》、《无机功能材料》、《高分子化学与物理》等专业核心课程;在广泛征集老师授课意向的基础上设置了一些特色选修课:《生物质能源与材料》、《新能源材料》、《功能高分子材料》;还开设了《材料近代测试技术》、《化工制图》、《聚合物加工及应用》等实用性课程;为了激发学生对材料化学的学习兴趣,以讲座形式在大一、大二开设了《材料化学前沿》。

三、加强师资队伍建设

师资是专业建设和人才培养的基本保证,由于我院的材料化学专业刚刚成立,本专业的师资队伍正处在一个起步的阶段,目前仅十余人,随着学生招生人数的增加,将不断加强师资队伍的建设,建立合理的教学梯队。由于材料化学专业是一个新型的交叉专业,对于高学历的本专业的人才相对单独的材料和化学专业比较少,因此对于高学历的人才我们将遵循本科是化学类专业、研究生是材料类专业或者本科是材料类专业、研究生是化学类专业的人才进行引进的原则,并尽量挑选一些研究方向与我院的专业特色相吻合的人才,以保证专业课和实验环节的顺利开展。另外,为了提高教学质量实现人才培养目标,发挥教师的主导作用,我们要求每位教师都必须明确培养目标,参与教研教改工作,参与课程体系建设,参与教学大纲的制定和修订。在加强学习的同时,通过教研教改活动,把握专业的发展,提高自身的素质,有的放矢地指导教学,统一协调地工作,确保教学质量的提高。

四、结语

总之,材料化学专业作为一个新型的专业,它的发展需要经过一个不断探索、不断发展和完善的过程。但可以预见的是,在科学、可持续发展的高等教育管理制度下以及学院注重软、硬件建设的情况下,而且随着西部的开发和经济的发展,材料化学专业将会培养出“厚基础、宽专业、强技能、重应用、能创新、高素质”的人才,并为西部的高等教育质量和经济发展做出应有的贡献。总而言之,每位教师都必须明确培养目标,参与教研教改工作,参与课程体系建设,参与教学大纲的制定和修订。在加强学习的同时,以专业建设为依托,以课程建设为切入点,以教学质量为生命线,以材料化学与农学和生物学相结合为特色,以品牌专业建设为目标,使材料化学专业达到全省同类专业的先进水平。

参考文献:

友情链接