期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 植物论文

植物论文精品(七篇)

时间:2023-03-21 17:09:23

植物论文

植物论文篇(1)

【论文摘要】园林植物与园林建筑的配置是自然美与人工美的结合,处理得当,二者关系可求得和谐一致。园林建筑属于园林中以人工美取胜的硬质景观,是景观功能和实用功能的结合体,是园林构景中的主体。园林建筑与植物一起配置时,搭配得当,可将人工美与自然美融为一体,形成巧夺天工的奇异效果。

1园林建筑与植物配置的相互作用

1.1园林建筑对植物配置的作用园林建筑除了在自身形象的轮廓、线条、色彩与自然环境主动协调外,对于园林植物的配置,必须用花草树木来加以搭配,使之不孤立。

1.1.1园建筑的为植物种植提供基址通过建筑的遮、挡、围的作用,能够为各种植物提供适宜的环境条件。建筑的外环境为植物提供基址。

1.1.2园林建筑对植物能起到背景、夹景、框景的作用私家园林以墙为纸、以植物绘,使建筑和植物组成优美的构图。

1.1.3园林建筑源于自然而高于自然隐建筑物于山水之中,将自然美提升到更高的境界。

1.2植物配置对园林建筑的作用

1.2.1植物配置使园林建筑的主题和意境更加突出依据建筑的主题、意境、特色进行植物配置,使植物对园林建筑起到突出和强调的作用。园林中某些景点是以植物为命题,而以建筑为标志。例如杭州西湖十景之一的“柳浪闻莺”,首先要体现主题思想“柳浪闻莺”,柳树以一定的数量配置于主要位置,构成“柳浪”景观。

1.2.2植物配置协调园林建筑与周边环境建筑造型、色彩等原因与周围环境不相称时,可以用食物缓和或消除矛盾。园林植物能使建筑突出的体量与生硬的轮廓“软化”在绿树环绕的自然环境之中。植物的枝条呈现一种自然的曲线,园林中往往利用它的质感及自然曲线,来衬托人工硬质材料构成的规则式建筑形体,这种对比更加突出两种材料的质感。一般体型较大、立面庄严、视线开阔的建筑物附近,要选干高枝粗、树冠开展的树种,在结构细致玲珑的建筑物四周,选栽叶小枝纤、树冠茂密的树种。如园林中厕所旁边常植浓密的珊瑚树等植物,使其尽量不夺游人的视线。

1.2.3植物配置丰富园林建筑的艺术构图建筑物的线条一般多平直,而植物枝干多弯曲,植物培植得当,可以使建筑物旁的景色取得一种动态均衡的效果。如青岛的天主教堂前的枝干虬曲的古树配置于圆尖的建筑前,显得既有对比又和谐。树叶的绿色,是掉和建筑物各种色彩的中间色。如白色的香花衬托于灰色的墙前,尤为醒目。墙面上爬山虎更突出了这种色彩的对比。

1.2.4使园林建筑环境具有意境和生命力植物配置充满诗情画意的意境,在景点命题上体现植物与建筑的巧妙结合,在不同的区域栽植不同的植物或突出地方植物特点为主,形成区域景观的特征,增加园林的丰富性。

1.2.5丰富园林建筑空间层次,增加景深植物的枝、干、叶交织成网络,可形成一种界面,利用它可以起到限定空间的作用,使园种植物疏密相间,虚实呼应,高下相称,与建筑相互配合,呈现一种和谐美。

2各种园林中的建筑与植物配置

2.1皇家园林的植物配置中国古典园林的一个特点是园林建筑美与自然美的完美融合,而这种融合的美与环境气氛的创造,在很大的程度上以来于植物配置及配置得体,体现自然美和人工美的结合。皇家园林其特点是规模宏大,真山真水较多,园中建筑色彩富丽堂皇,、雕梁画栋、色彩浓重、金碧辉煌、布局规则严整、等级分明,建筑体型高大,为反应帝王的至高无上的权利,宫殿建筑特点的特点。一般选择姿态苍劲、意境深远的中国传统树种,如圆柏、海棠、银杏、国槐、玉兰等。

2.2私家园林建筑的植物配置以苏州园林为首的江南古典私家园林建筑其特点是规模较小,所以常用假山假水,建筑小巧玲珑,表现其淡雅素净的色彩,以“咫尺之地”进“城市山林”植物配置重视主题和意境,多于墙基、角落处种植松、竹、梅象征古代君子的植物,体现文人具有象竹子一样高风亮节,象梅一样孤傲不惧。

2.3寺观、陵园等园林的建筑与植物配置寺观、陵墓等园林比较庄重严肃,所以主要体现庄严肃穆气氛,一般多用银杏、油松、圆柏、白皮松等植物。

2.4现代园林的建筑与植物配置现在建筑样式多样灵活,因此可以选择多种树种,应根据具体的环境条件、功能和景观要求选择适当的树种,如白皮松、榆叶梅、圆柏、海棠、玉兰、银杏、国槐、法国梧桐、合欢、龙柏等植物,栽植方式也是多种多样的。

无论是在古典园林,还是在现代化的园林;无论是在街头绿地,居民区的小游园,还是在大规模的综合性公园,各种各样,多姿多彩的园林建筑和植物配置都会引起游人兴趣,给人们留下深刻的印象,形式各异的各类建筑却为观赏和营造文化品味而设,植物配合着山水自由布置,达到一种自然环境、审美情趣与美的理想水融的境界。因此,园林建筑和植物配置的协调统一是表达景观效果的必要前提,成为园林中不可缺少的组成部分。

参考文献

植物论文篇(2)

通过对园区的现状条件、发展潜力及存在问题进行系统分析,综合考虑其旅游资源条件、区域位置、客源市场前景和社会发展背景等因素,确定园区的性质定位为:以良好的自然生态环境为基础,以突出的乡土珍稀植物景观为主体,将环境保护、生态旅游、生态文明教育、经济利益与珍稀植物保护相融合,既能保护珍稀植物资源,为植物研究工作者提供科研基地,又能给人们提供一处风景秀丽的游览胜地,创造效益,达到保护和利用珍稀植物资源,实现珍稀植物资源可持续利用。

2规划原则

2.1适地适树,体现地方特色的原则

不同植物的生长,对光照、土壤、水分、温度等环境因子都有不同的要求。应选择适合园区立地条件的植物种类,才能使其正常生长,充分发挥景观效果。乡土树种具有适应性、抗逆性强和生长旺盛的特点,而且最能体现出地方特色和风格,应着重考虑。

2.2因地制宜、比例适当、自然式布局的原则

植物园内的绿化美化应充分考虑现状条件,依山就势,尽量不破坏原生植被,减少开山挖湖,注重因地制宜,做到宜树则树、宜草则草、宜荒则荒。其次是要规划好植物群落的合理结构,包括水平方向上合理的种植密度(即种植点的配置)和垂直方向上搭配(即结构的层次性)。群落配植以自然式种植为主,构筑回归自然的人工森林群落系统。

2.3短期措施与长期目标结合的原则

由于植物处于不断生长的状态,植物景观的形成是一个长期的过程。因此需要根据各类植物的生物学特性,以及园区的景观功能需要,有计划、分阶段地进行植物景观营造,采用速生与慢生树种相结合,常绿与落叶树种相结合,合理兼顾景观的当前效果与长远效果。

3基于功能定位的规划构思

以生态优先,结合观赏和游憩需要,运用植物生态学理论,结合园林艺术和植物造景手法,通过对现有植被的抚育或改造、风景林营造、珍稀植物栽植以及道路、景区景点绿化美化,形成乔灌草一体的立体空间和错落有致的复层森林群落,用障景、漏景和框景等手法勾勒出特色鲜明、色彩丰富、疏密有间的森林植被景观和植物景观,以优美的生态环境促进旅游者的身心健康,为游人创造舒适的休闲环境。

4基于规划构思的景观结构布局

规划根据贺州市枫木坪珍稀植物园的总体定位、地形特点和功能布局,按功能、按用途对园区进行统一规划设计、合理布局,将整个规划结构划分为“两轴、五区”的空间结构格局。

4.1“两轴”———生态景观廊道

生态景观廊道是指园区的绿色生态廊道和彩色花带廊道,规划沿着园区车行道和游览步道两侧建设。根据地形和周围环境,利用乔、灌、草相结合,配植高低错落、层次鲜明、色彩和谐、富有季相变化的行道树和风景林带,达到步移景换,体现空间序列变化的节奏感,引人入胜。同时,这些地段是该园区生态破坏较严重的区域,在绿化美化的同时应特别关注水土保持,植物选择及配植时充分考虑审美和生态防护两大功能。

4.1.1绿色生态廊道。绿色生态廊道是指在车行道两侧的景观绿化带,利用道路旁现有的植物群落,结合地形,在适当的路段配置高低错落、富有季相变化的规则式或自然式风景林带,形成层次分明的绿带,使游客在各景区穿行时沿途有景可赏,达到步移景异,游兴渐增的效果。规划在道路两旁上层列植冠大浓荫和树形优美的行道树,如白兰、香梓楠、柚木、小叶榕等,在行道树下种植色彩丰富的花灌木,如杜鹃、大花美人蕉、红花檵木、含笑、栀子、九里香等,地被植物如沿阶草、麦冬、韭兰、文殊兰等。分段种植,形成一种强烈的导向氛围,从而引导车辆和行人进入景区景点。

4.1.2彩色花带廊道。彩色花带廊道是指游览步道两侧的花带,建设时要有意识地保留或保护好两旁植被,在路旁现有的地被植物和乔灌花的基础上增加大量的开花植物,如木棉、凤凰木、无忧花、大花紫薇、红花羊蹄甲、红花檵木、黄花夹竹桃、黄蝉、三角梅等,根据不同的地形地势自由搭配,形成色彩艳丽的花带。

4.2“五区”———综合管理服务区、四季花木观光区、百花飘香观赏区、农业种植示范区、珍稀植物栽植区

4.2.1综合管理服务区。该区位于园区南面,现状主要为水田。此处的植物配置规划应当较为细腻,通过不同的特色植物来增强广场及游客服务中心的可识别性。植物选择以假苹婆、木棉、樟树、铁力木、小叶榕、黄槐、凤凰木、肖黄栌、白兰、大花紫薇、红花羊蹄甲、含笑、三角梅等为主。在停车场周围种植树形高大、冠大浓荫、抗性强的植物,如广玉兰、铁冬青、女贞、苦楝等,利于庇荫、消除噪音和减少尘埃。场内点缀大花美人蕉、杜鹃、琴叶珊瑚、黄花夹竹桃、黄蝉等小丛灌木花草,配以地面嵌草砖铺装,塑造绿荫、生态停车环境。游客服务中心则采用庭院式园林绿化布局,建筑周边绿化以乔、灌、花、草相结合,做到四季有花,终年常绿的效果,并多应用香花植物,以清馨的空气,使人心旷神怡。

4.2.2四季花木观光区。该区位于园区东南面,现状主要为水田。该区特色即为四季可观、开花不断,故植物配置应重点选择花期长、花色艳丽的种类。其中乔木采用木棉、大花紫薇、小花红木荷、无忧花、白兰、黄槐、枫香、圆柏、鸡爪槭以及竹类;灌木用山茶花、红杏、杜鹃、红花檵木、黄金榕、米兰、含笑、绣球、海芋、炮仗花、绿萝、金银花等;地被植物采用白蝴蝶、文殊兰、蚌花、沿阶草、大叶油草、麦冬、鸢尾、葱兰、天门冬、萱草、紫鸭趾草、红花酢浆草等。

4.2.3百花飘香观赏区。该区位于园区东面,现状主要为水田和旱地,东西两侧原有植被为板栗林。规划选用既美化又有保健作用的花木,采用庭院园林布置手法,合理布局所植花木,再按中医五行学说规划设计出对五脏六腑有益的人工植物群落,使其形成多层次、多品味的山庄绿化体系,以新的生机与活力供人们休闲度假享用。植物选择如具有较强抗菌、杀菌能力的罗汉松、龙柏、洒金柏、栾树、紫藤、金银花、珍珠梅、木槿等。同时依据中医“芳香开窍”理论,利用芳香植物含有的酯、酮、醛、醇等挥发性芳香物质的药用功能,活跃孩子的思维、启发想象力,改善中老年人心脑血管循环状况,调节人的心绪。芳香性乔木可选择如白兰、黄兰、广玉兰、紫檀、樟树、阴香等;芳香灌木如桅子、含笑、丁香、茉莉、九里香、米兰等。

4.2.4农业种植示范区。该区位于园区的西北面,现状主要为水田。选用南方红豆杉、银木荷、白辛树、杜鹃、银鹊树、紫花泡桐等当地野生观赏植物进行绿化美化,并搭配杧果、阳桃、橄榄、木菠萝、洋蒲桃、龙眼等营造一个硕果累累、引人入胜的生态科普教育展示园。

4.2.5珍稀植物栽植区。该区位于园区的北部和西南部,是整个园区植物景观的核心区域,现状植被以马尾松林和板栗林为主。选用有乡土特色的珍稀植物,并结合搭配观赏性强的乡土植物和栽培植物,群落配置以自然式种植为主。广西地处热带亚热带地区,地形地貌复杂,气候、土壤类型多样,为植物的生存繁衍提供了有利条件。现知广西的野生维管束植物有8562种,隶属于297科1820属,居全国第三位。贺州市枫木坪珍稀植物园所处的大环境植被与植物资源丰富,为了成功引种珍稀名贵的树种,建设适合基址环境的珍稀植物群落,在选择珍稀植物时,依据德国迈依尔提出的“气候相似论”的观点,遵循以下原则:一是首选基址内及周围珍稀濒危植物;二是优选该地区可循踪迹的珍稀濒危植物;三是补充与场所气候相似地区或生境相似的珍稀植物。因此在广西珍稀名贵植物资源中选择以下植物:红锥、西南桦、香椿、银杏、秃杉、降香黄檀、土沉香、苏木、观光木、顶果木、马褂木、香梓楠、柚木、格木、南方红豆杉、榉木、蚬木、望天树、紫荆木、印度紫檀等珍稀名贵树种。并搭配珍珠罗汉松、华南五针松、火棘、九里香、六月雪、小叶榕、紫薇、黄杨、三角梅等盆景植物;珍稀兰科花卉、多浆植物、岩生花卉、奇异花卉,以及时令花卉等丰富植物景观,达到错落有致的园林景观效果。

5结语

植物论文篇(3)

植物具有生命,不同的园林植物具有不同的生态和形态特征。进行植物配置时,要因地制宜,因时制宜,使植物正常生长,充分发挥其观赏特性。

首先,我们要根据当地的气候环境条件配植的树种,特别是在经济和技术条件比较薄弱的地区,尤显重要。以地处亚热带地区为例,最新推荐使用的优良落叶树种,乔木类有无患子、栾树等。耐寒常绿树种,乔木类有山杜英等。

其次,要根据当地的土壤环境条件配植的树种。例如,杜鹃、茶花、红花继木等喜酸性土树种,适于PH值5.5至6.5含铁铝成分较多的土质。而黄杨、棕榈、桃叶珊瑚、夹竹桃、枸杞等喜碱性土树种,适于PH植7.5至8.5、含钙质较多的土质。

第三,要根据树种对太阳光照的需求强度,合理安排配植的用地及绿化使用场所。

第四,要根据环保的要求进行配植的树种。在众多的树木之中,有许多不光具有一般绿化、美化环境的作用,而且还具有防风、固沙、防火、杀菌、隔音、吸滞粉尘、阻截有害气体和抗污染等保护和改善环境的作用。因此,在城市园林、绿地、工矿区、居民区配置林木时,我们应该根据各个地区环境保护的实际需要,配置适宜的树木。例如,在柳州市工业污染比较大的城市中,在粉尘较多的工厂附近、道路两旁和人口稠密的居民区,应该多配置一些侧柏、桧柏、龙柏,悬铃木等易于吸带粉尘的树木;在排放有害气体的工业区特别是化工区,应该尽量多栽植一些能够吸收或抵抗有害气体能力较强的树木,如广玉兰、海桐、棕榈等树木。

第五,要根据绿地性质进行配置。各街道绿地、庭园绿化中,根据绿地性质,规划设计时选择适当树种。如设计烈士陵园绿化,树木选择常绿树和柏类树,表示烈士英雄“坚强不屈”高尚品德。在幼儿园绿化设计,选择低矮和色彩丰富的树木,红花继木、金叶女贞、十大功劳由红、黄、绿三色组成,带来活泼气氛。还要考虑不能选择有刺、有毒的树木。如夹竹桃、构骨等树木。

2植物配置方式

2.1自然式的树木配置方法,多选树形或树体部分美观或奇特的品种,以不规则的株行距配置成各种形式。

(1)孤植。单株树孤立种植,孤植树在园林中,一是作为园林中独立的庇荫树,也作观赏用。二是单纯为了构图艺术上需要。主要显示树木的个体美,常作为园林空间的主景。常用于大片草坪上、花坛中心、小庭院的一角与山石相互成景之处。

(2)丛植。一个树丛由三五株同种或异种树木至八九株树木不等距离的种植在一起成一整体,是园林中普遍应用的方式,可用作主景或配景用作背景或隔离措施。配置宜自然,符合艺术构图规律,求得既能表现植物的群体美,也能表现树种的个体美(3)群植。一两种乔木为主体,与数种乔木和灌木搭配,组成较大面积的树木群体。树木的数量较多,以表现群体为主,具有“成林”。

(4)带植。林带组合原则与树群一样,以带状形式栽种数量很多的各种乔木、灌木。多应用于街道、公路的两旁。如用作园林景物的背景或隔离措施,一般宜密植,形成树屏。

2.2规则式配植

(1)行植:在规则式道路、广场上或围墙边沿,呈单行或多行的,株距与行距相等的种植方法,叫作行植。

(2)正方形栽植:按方格网在交叉点种植树木,株行距相等。

(3)三角形种植:株行距按等边或等腰三角形排列。

(4)长方形栽植:正方形栽植的一种变型,其特点为行距大于株距。

(5)环植:按一定株距把树木栽为圆环的一种方式,可有1个圆环、半个圆环或多重圆环。

(6)带状种植:用多行树木种植或带状,构成防护林带。一般采用大乔木与中、小乔木和灌木作带状配置。

3植物配置的艺术手法

3.1对比和衬托利用植物不同的形态特征,运用高低、姿态、叶形叶色、花形花色的对比手法,表现一定的艺术构思,衬托出美的植物景观。在树丛组合时,要特别注意相互间的协调,不宜将形态姿色差异很大的树种组合在一起。运用水平与垂直对比法、体形大小对比法和色彩与明暗对比法三种方法比较适合。

3.2动势和均衡各种植物姿态不同,有的比较规整,如杜英;有的有一种动势,如松树。配置时,要讲求植物相互之间或植物与环境中其他要素之间的和谐协调;同时还要考虑植物在不同的生长阶段和季节的变化,不要因此产生不平衡的状况。

3.3起伏和韵律韵律有两种,一种是“严格韵律”;另一种是“自由韵律”。道路两旁和狭长形地带的植物配置最容易体现出韵律感,但要注意纵向的立体轮廓线和空间变换,做到高低搭配,有起有伏,这样才产生节奏韵律感,尽量避免布局呆板。

3.4层次和背景为克服景观的单调,宜以乔木、灌木、花卉、地被植物进行多层的配置。不同花色花期的植物相间分层配置,可以使植物景观丰富多彩。背景树一般宜高于前景树,栽植密度宜大,最好形成绿色屏障,色调加深,或与前景有较大的色调和色度上的差异,以加强衬托。

4配置中应注意问题

4.1关于植物群落。每一种植物群落应有一定的规模和面积、并具有一定的层次,来表现群落的种类组成,规范群落的水平结构和垂直结构,保证群落的发育和稳定状态,群落中组合不是简单的乔、灌、藤本、地被的组合,应从自然界或城市原有的,较稳定的植物群落中去寻找生长健康、稳定的组合,在此基础上结合生态学和园林美学原理建立适合城市生态系统的人工植物群落。

4.2遵从“互惠共生”原理,协调植物之间的关系。指两个物种长期共同生活在一起,彼此相互依存,双方获利。例如:兰科植物、云杉、桦木、雪松、核桃、桑等植物与菌根具有共生关系;一些植物种的分泌物对另一些植物的生长发育是有利的,如黑接骨木对云杉根的分布有利,皂荚、白蜡等在一起生长时,互相都有显著的促进作用;但另一些植物的分泌物则对其他植物的生长不利,如苹果、松树与云杉、白桦与松树等都不宜种在一起;可见在配置植物种类时,也必须考虑到这一因素。4.3植物配置应突出地方特色。由于我们所处的各个城市规模都不一样,经济发展也不平衡,自然条件、自然资源、历史文脉、地域文化差异很大,城市绿化应因地制宜,实事求是,我们要结合当地的自然资源、人文资源,融合地方文化特色。只有把握历史文脉,体现地域文化特色,体现地方风格才能提高园林绿化的品位。城市中空气污染、土壤理化性能差等因素不利于园林植物的生长,所以在选择植物时应以适应性较强的乡土树种为主,大量的乡土树种不仅能较快的产生生态效益,而且能体现地方特色。

园林本身就是一门交叉的学科,涉及许多自然科学与社会科学。因此,我们做园林设计时要与农业、林业、水产养殖等行业互相依存、共同发展。生态园林不能是绿色植物的堆积,不能是简单的返璞归真,而是各生态群落在审美基础上的艺术配置,是园林艺术的进一步的发展和提高。因此,我们还要继续认真学习研究中国园林的精髓,继承和发扬中国园林的艺术手法,把生态学理论与园林景观艺术相结合在一起,创造一个生态协调稳定、景观优美的游憩地,极大地改善、丰富、调节人们的精神生活。

植物论文篇(4)

论文摘要:从植物病虫害标本的采集常用的检疫检验方法、检疫对象识别及检疫对象封锁控制措施等方面对植物检疫技术进行了概述。

随着农业生产的迅速发展和国际国内贸易往来的日益频繁,各地调运的种子种苗及农产品日益增多,大大增加了植物病、虫、杂草人为传播的可能性,有害生物入侵发生危害的频率也越来越高,因此,掌握植物检疫识别技术、做好植物检疫工作显得愈加重要。

1植物病虫害标本的采集

植物病虫害标本是植物病虫害及其分布的实物性记载。标本的存在,即可在田间调查的基础上进一步在室内进行鉴定。

1.1采集标本的要求

1.1.1症状典型。具有不同阶段的症状。

1.1.2带有病征。病部带有病原物的子实体。

1.1.3病害单纯。l个标本只能具有l种病害。

1.1.4记载详细。有寄主名称、发病情况、环境条件、采集地点、采集日期、采集人等。

1.2采集病害标本的注意事项①对于不认识的寄主植物,注意采集枝条、叶片、花果等部分,以便鉴定植物名称;②适合压制的叶片标本,应随采随压于标本夹中,否则叶片失水卷缩无法展平;③腐烂的果实标本应先以标本纸分别包裹后再置于标本箱中,防止污染和挤坏标本;④黑粉菌类标本由于病菌抱子极多,容易散落,所以应用纸袋分装,以免混杂;⑤每种标本的采集应具有一定的复份,一般要求5份以上,以便鉴定、保存和交换。

2常用的检疫检验方法

检疫检验主要对现场检疫取回的代表样品和病、虫、杂草籽粒样本,在实验室作进一步检验鉴定。检验方法因不同病、虫、杂草的种类和不同的植物、植物产品而异。

2.1害虫常用的检验方法过筛检查、比重检查、染色检查、解剖检查、灯光透视检查等。

2.2真菌病害常用的检验方法洗涤检验、漏斗分离检查、直接检查、切片检查、保湿萌芽检查、分离培养检查等。

2.3细菌病容常用的检验方法分离培养检验、噬菌体检验、血清学方法与单克隆抗体技术等。

2.4病毒病害常用的检验方法染色法、指示植物接种检验、血清学方法以及PCR、探针等分子生物学方法。

2.5病原线虫常用的检验方法直接分离法、漏斗分离法、浅盘分离法、离心分离法、漂浮分离法、直接解剖分离法等。

3检疫对象识别

植物检疫对象是专指那些经国家及有关检疫部门科学审定,并明文规定要采取检疫措施禁止传人的植物病、虫、杂草等。

3.1水稻细菌性条斑病

3.1.1田间症状。苗期、成株期均可发病,主要危害叶片。叶面初生暗绿色水渍状半透明小点,后沿叶脉扩展形成淡黄色狭条斑。病斑表面常分泌有大量橘黄色露珠状菌脓,干悴后成鱼籽状胶粒,粘在病叶上。严重时,多个病斑可连成大斑,病叶呈橘红色,并迅速枯死。条斑也可发生在叶鞘上。

3.1.2调查及检验方法。①田间调查:在水稻生育中、后期进行,根据病斑颜色和形态认定。②室内检验:将病组织切断后,菌脓从切口溢出;也可进行镜检观察。

3.2小麦矮腥黑稼病

3.2.1田间症状。病株显著矮化,株高仅为健株的l/3-1/2,分孽增多,病穗外观比健穗肥大,小穗、小花增多,芒短而弯,向外开张,病穗上各小穗均受害成为黑褐色菌痪,坚硬不易压破。

3.2.2调查及检验方法。①田间调查:在小麦分萦及灌浆后期调查。重点调查田块的四周近田埂处。病菌能刺激小麦产生较多的分孽,感病植株分孽每株多达30一40个,而健株一般不超过20个;在小麦灌浆后期,感病植株病粒外壳均呈暗褐色,而健株麦粒外壳则呈浅绿色,稍带透明。②室内检验:现行检验方法主要用冬抱子形态特征与萌发特性区分矮腥黑穗病菌与网腥黑穗病菌。小麦矮腥黑穗病菌冬抱子网脊高度通常为2一3um,胶鞘厚度通常为2一4um,网目径通常为3一6um,抱子直径幅度16.8一32um,多数为18一24um。

小麦矮腥黑穗病菌冬抱子在17℃无光照的条件下,1周后不能萌发,而只能在5℃、有光照条件下经20一90d才能萌发,网腥黑穗病菌冬抱子以上2种条件下1周后都可萌发;矮腥冬抱子萌芽后的先菌丝有分枝现象,且能产生数量多达50一60个小抱子,而网腥先菌丝较少有分枝现象,小抱子数量只有4一16个。

3.3玉米箱.病

3.3.1田间症状。玉米霜霉病为系统侵染,病叶色泽苍白,形成初黄白色,后颜色变深的条纹,潮湿时长出白色霜霉状物。有时病菌在坏死组织里产生卵抱子。病株生长缓慢、矮化、不结果穗或穗小粒瘪。

3.3.2检验方法。①检查来自疫区的高梁、玉米包袋材料,将其保湿1周,或埋在灭菌土壤中1周,使组织腐烂分解,然后制片镜检卵抱子;②用洗涤检验法,检验种子外部是否附着卵抱子;③将种子播于灭菌土壤中,观察幼苗系统症状,直到出苗后5周以后。

3.4马铃.瘩肿病

3.4.1田间症状。症状主要表现在马铃薯的地下部分(根系除外),其块茎、甸甸茎受害后形成较大的甚至包围整个茎基部的癌瘤,酷似花椰菜的花球。幼薯受害则整个成畸形。较大薯块则多在芽眼处形成畸形的癌瘤。高感品种在腋芽和茎间形成小癌瘤。癌肿初为白色,见光后渐为绿色,最后变褐至黑色,腐烂。

3.4.2室内检验。产地检疫时间可在马铃薯生育的中、后期或收获期。室内检验主要是检查块茎上有无癌瘤。尤其是芽眼周围有无小的癌瘤,对可疑为癌肿瘤的组织,应作徒手切片镜检,检查有无休眠抱子囊或夏抱子堆及夏抱子囊。

3.5大豆疫病

3.5.1田间症状。大豆生育期的各阶段均可发生,引起根腐、茎腐、植株矮化、枯萎和死亡。田间播种后可引起种腐,幼苗出土后碎倒,主根变褐、变软,枯萎死亡。真叶期受害,幼苗茎基部呈水浸状不失绿,感病重时叶片发黄,枯萎而死。成株期受害茎基部出现黑褐色凹陷病斑,并向上下不同部位扩展,叶柄基部叶片下垂呈八字形,叶片不脱落,整个植株逐渐变黄枯死。较老植株豆英受害,往往茎部、侧枝及主根形成坚硬的边缘不清的病痕。

3.5.2调查及检验方法。①田间调查:主要采取踏查法,分两个阶段进行。一是苗期,幼苗出土前后及真叶期各调查l次,观察有无特征性病症出现;二是在生育中期。②室内检验:检验种子表面带菌.可用常规的洗涤检验;种皮里带菌,可将豆粒放在10%KOH水溶液中处理后剥下种皮,制片,然后镜检;疫霉菌的分离培养,可采用PARP选择性培养基(即在马铃薯葡萄糖琼脂培养基中加人匹马霉素10mg/kg、安比西林250mg/kg、利福霉素10mg/kg、五抓硝基苯100mg/kg、恶霉灵50mg/kg)。

3.6柑福演疡病

3.6.1田间症状。危害枝梢、叶片、果实和曹片,形成木栓化隆起的病斑。①叶片症状:病斑初时在叶背面出现黄色、针头大的油演状斑点,后逐渐扩大、隆起,表皮破裂,呈海绵状,灰白色,以后木栓化,表面粗糙,呈灰褐色火山口状开裂。病斑多近圆形,周围有黄色或黄绿色的晕圈,靠近晕圈处常有褐色釉光边缘,但老叶上病斑的黄晕圈有时不明显。②枝梢症状:在嫩梢上的病斑比叶片上的更隆起、木栓化,呈火山口状开裂,病斑圆形、椭圆形或多个一起呈不规则形,浅黄色或黄褐色,并有暗褐色狭细釉光边缘。③果实症状:与叶片相似,但木栓化程度更高,开裂更显著,无黄色晕圈,有些有釉光边缘。病部只限于果皮上,不深至果肉,果实生育前期发生的病斑多隆起,中、后期发生的较扁平,病果易脱落。

3.6.2调查及检验方法。①田间调查:在苗木夏梢转绿后、秋梢转绿后、出苗前和果实采摘前l个月进行产地检验。果园、苗圃按品种在全面目测检查的基础上,随机取10个样点,果树查5%一10%;苗木l万株以下查全部,l万一10万株查30%,10万株以上查巧%。仔细检查叶片、枝梢、果实上有无溃疡病斑。②室内检验:可先用一般检查细菌滋脓的方法,确诊其为细菌病害后,再作分离培养。

3.7烟草环斑病毒病

3.7.1田间症状。发病叶片上出现环纹状褪绿斑和坏死斑,散生、2层或3层,并常沿叶脉发展。叶上环斑数量l一2个或数个不等。重病株矮化、叶片变小,量轻质劣。病茎和叶柄上产生褐色条斑。该病毒常使花期不育,减少种子产量。

3.7.2调查及检验方法。①田间调查:在平均气温达20℃时,到田间调查。②室内检验:一般采用鉴别寄主、血清学、电镜、分子生物技术等方法。鉴别寄主是常用的方法,当接种鉴别寄主的症状陆续明显时观察叶片上的病斑:可豆出现褐色小枯斑;黄瓜子叶出现淡黄圆斑,新生真叶出现系统不规则淡黄色斑,老叶变成褐色枯斑,新叶扭曲;烟草叶先出现同心环纹,逐渐变成系统花叶;千日红叶出现褪绿小环斑;菜豆、觅色黎、昆诺黎叶出现枯斑。

3.8番茄溃疡病

3.8.1田间症状。该病是细菌性维管束病害,幼苗期至结果期均可发病。幼苗发病,由叶缘开始向上逐渐萎蔫,有的在胚轴或叶柄处生溃疡状凹陷条斑,病株矮化或枯死。番茄插架时最易看到早期症状,起初下部叶片凋萎下垂、卷缩,似缺水状,病叶叶柄上有长条揭斑,最后全叶枯死;后期茎秆上出现狭长的条斑,扩展、下陷或开裂,病茎增粗,常生大量气生根。髓部褐色,茎中空,多雨或湿度大时病叶、病茎常滋出菌脓,干燥后成白色污状物。果实受害时幼果皱缩、畸形,果内种子很小、黑色、不成熟;青果上病斑为圆形,外圈白色,中心粗糙褐色,俗称“鸟眼斑”,这是溃疡病特有的症状。

3.8.2调查检验方法。①田间调查:番茄开花至采摘期,均可随机调查,但座果期症状明显,易诊断。②室内检验:植株检验是选取病株茎秆,清水洗净,晾干后用75%酒精涂布茎秆表面,过火焰。维管束的病健交界处切取小块组织,切碎悬浮于0.1%陈水中,充分振荡,静置30min,用接种环茹取细菌悬浮液至523晾脂平板上画线分离,28℃培养96h,挑取均匀一致的小菌落,再纯化3次,反复观察其特征,并留作致病性测定。如果出现番茄溃疡病形态特征即可确诊。

3.9稻水象甲

3.9.1形态特征。①成虫:体长2.8一3.2mm,黑色,密被灰绿色鳞片,嚎短阔,端部环绕灰白色刚毛。前胸背板肩突明显,从背板中区至鞘翅末端1乃处的背部鳞片黑色,成明显的广口瓶状的黑色大斑。鞘翅有6条纵纹。3对足基节基部鳞片黄色。雌虫后足胫节具前锐突,背板后缘呈深的凹陷。②卵:珍珠白色,一侧略内弯,多产于水面下的叶鞘组织内。③幼虫:白色、无足,头部褐色,共4龄,腹节背面2一7节各有l对钩状呼吸管,气门位于管中,4龄虫体长约8mm。④蛹:居于灰褐色土茧中,近椭圆形,直径约5mm,猫附于根上。白色,复眼红褐色,形似成虫。

3.9.2调查及检验方法。①田间调查:可分为越冬场所成虫数量调查和秧田越冬代成虫数量调查。②室内检验:依据该虫生物学特性,分别查验成虫、幼虫及蛹,确定是否为稻水象甲的各虫态。

3.10小麦黑森彼蚊

3.10.1形态特征。①成虫:雌成虫体长2.5一4.0mm,初羽化时体浅褐色,以后色泽变暗。头部前端扁平,复眼大。触角位于额的中间,鞭节具环丝,16一18节,约为体长的1/3,小盾片上生有黑毛。足细长,被黑色鳞片,跄节5节。翅长卵形,翅面有黑短毛。腹部肥大,8节,淡褐色。雄成虫体长2一3mm,初羽化时粉红色,后色泽变暗。与雌虫的区别是体较细瘦,触角为体长的2乃,小盾片上有白毛,腹部纤细,几乎为黑色,第10节演变成上、下生殖板。②卵:长圆柱形,两端尖,长0.4一0.6rnm。初产时透明,有红色斑点,后为红褐色有光泽。常2一巧粒首尾相接地产于叶正面的脉沟内,密集成行,状如小麦条锈病病斑。③幼虫:初孵时红褐色,取食蜕皮后变为乳白色或浅绿色,13节。呈不对称纺锤形,幼虫在前胸腹面后缘有l个瘦蚊科大多数幼虫特有的Y形胸叉(剑骨片)。④蛹:为围蛹,栗褐色,略扁形似亚麻籽,长4.0一5.9mm,前端小而钝圆,后端大而具有凹缘。

3.10.2调查及检验方法。①田间调查:根据小麦黑森痪蚊的形态特征及为害状,田间调查时多用行长法取样。每点取长25cm、50cm或100cm均可,视虫量而定。②室内检验:将采集来的疑似感虫的麦类作物,着重将根部及近根各节叶鞘剥开,观察叶鞘内侧是否有幼虫及围蛹,检查麦粒内是否混有围蛹,将可疑的虫体在室内进行鉴定。

3.11苹果盘蛾

3.11.1形态特征。①成虫:体长8mm,翅展19一20mm,全体黑褐色、带紫色光泽。前翅翅面颜色可分为3区:臀角的椭圆形大斑深褐色,有3条青铜色条纹;翅基部褐色,外缘突出略成三角形,杂有斜形波状纹;翅中部淡褐色,杂有褐色斜纹。雌、雄蛾前翅腹面有很大区别,雄虫沿中室后缘有1条黑色的鳞片。雌虫翅绪4根,雄虫仅1根。②卵:略带椭圆形,长1.1一1.2mm,宽0.9一1mm,极扁平,中央部分略隆起。③幼虫:老熟幼虫体长14一18mm。初孵幼虫体淡黄白色,稍大变淡红色,成长后呈红色。前胸盾呈淡黄色并有较规则的褐色斑点,有刚毛,臀板颜色较浅,有淡褐色斑点,腹足趾钩单序缺环(外缺)。④蛹:体长7一10mm,黄褐色,雌、雄蛹两侧各有2根钩状刺,末端6根刺。

3.11.2调查及检验方法。①田间调查:可在生长季节成虫发生盛期进行,采取苹果蠢蛾性诱剂监测,或根据其为害状及形态特征进行初步鉴别;②室内检验:根据成虫、幼虫、蛹及卵的特征镜检。

3.12假高梁

3.12.1形态特征。多年生草本,茎秆直立,具甸甸根状茎。叶阔线状披针形,基部被有白色绢状疏柔毛,中脉白色且厚,边缘粗糙,分枝轮生。小穗多数,成对着生,其中1枚有柄者多为雄性或退化不育,另1枚无柄小穗两性,能结实。在顶端的l节上3枚共生。结实小穗呈卵圆状披针形,颖硬革质,黄褐色至紫黑色。颖果椭圆形,暗红褐色,无光泽,顶端钝圆,具宿存花柱。脐圆形,深紫褐色。胚椭圆形,大而明显。

3.12.2调查及检验方法。①田间调查:在进口粮加工厂区rokm内的村庄、田地及铁路专用线周围进行详细调查;②室内检验:可采取一般解剖法检验。先将种子浸泡在温水中,膨胀变软后,横向或纵向切开种子。置于双目解剖镜下观察其内部形态、结构颜色,胚乳有无及质地,胚的形状大小、位置、子叶数目等,和假高粱形态特征比较鉴别,或采取显微切片法鉴定。

4检疫对象封锁控制措施

(l)从国外引进(含携带、邮寄)种子、苗木必须经检疫部门审批后方可人境,并在指定的地点进行1一2年的隔离试种。

(2)严禁从疫区调入种子、苗木及其他繁殖材料和应施检疫的植物和植物产品,特殊情况必须引进的濡经审批。

(3)从病区引进种子、苗木和其他繁殖材料、应严格进行产地检疫和调运检疫,产地检疫部门出具检疫合格证,调人地要进行复查必要时应进行复验,如发现有检疫对象和应检病、虫、草时,根据实际情况可选择消毒、控制使用或销毁等措施进行处理。

(4)在无检疫对象分布地区建立无检疫病虫种苗寮育基地,在作物生长季中进行产地检疫。

(5)消灭零星病田。对发生少量检疫对象的田块,采取挖净、消毒土壤、深埋或烧掉的办法,彻底清除危险性有害生物。

(6)对有害生物发生较为普遍的田块,应采取农业、物理、化学和生物防治等综合防治措施,加以控制,以延缓其扩散蔓延速度和减少危害的程度。

参考文献

[1]刘明熙,韦永保,胡长安,等.县级农业植物检疫工作存在的问题及对策以安徽省广德县为例[J].安徽农业科学,2007,35(3);770,784

[2]赵京芬.浅议森林植物检疫工作存在的问题及对策[J].绿化与生活,2008(5);31-32

[3]马士能,王岗.关于加强植物检疫工作的思考[J].现代农业科技2008(16);158-160

[4]王学江,田锡珍,李文晋.植物检疫现状及对策[J].安徽农业科学.2006,34(5);942,1026

[5]石志坤,吴志军.吉首市森林植物检疫的现状与对策[J].湖南林业科技2008,35(5);93-94

植物论文篇(5)

TALE只在β-和γ-变形细菌中被发现,大部分已知的TALE集中分布在植物病原细菌的黄单胞菌属Xantomonasspp.中,每个细菌中含有1至多个TALE不等()。AvrBs3和AvrBs4两侧分布反向重复序列,推测它们是基因水平转移获得(Bonasetal.,1993)。另外,水稻白叶枯黄单胞菌(X.oryzaepv.oryzae,Xoo)中利用AvrBs3作为探针鉴定了一系列TALE的T3SEs,如avrXa5、avrXa和avrXa10(Hopkinsetal.,1992)。其它菌属中也发现了同源的TALE,如茄科雷尔氏菌R.solanacearum中也有TALE(RipTALs)的报道,Brg11较黄单胞菌属中的TAL有偏好的RVDS,激活寄主含有EBE(effector-bindingelement)的基因转录促进致病(deLangeetal.,2013;deLangeetal.,2014)。伯克霍尔德菌属(Burkholderiarhizoxinica)中同源效应物(bats)E5A-W45、E5AV36被报道含有T3S分泌信号,但是缺少可识别的NLSS和转录激活区,它们的重复区和黄单胞菌属中的TALEs有差异(Schornacketal.,2013;Bochetal.,2014)。黄单胞菌属(Xanthomonas)亦称黄单胞杆菌属,是由W.J.Dowson于1939年建立的模式病原细菌,代表种有:(1)十字花科黑腐病菌(X.campestrispv.campestris,Xcc),维管束寄生菌,引起十字花科植物的黑腐病(blackrot),叶缘叶脉变黑,相邻的叶肉组织枯死,呈黄褐色“V”型坏死;(2)水稻白叶枯黄单胞菌(X.oryzaepv.oryzae,Xoo),叶肉寄生菌,引起水稻白叶枯病(bacterialleafblight);(3)辣椒斑点致病变种(X.campestrispv.vesicatoria,Xcv),叶肉寄生菌,引起辣椒斑点病(bacterialspeckofpepper)。已报道的10大植物病原菌排行版上,黄单胞菌黑腐病致病变种占据3大席位(Mansfieldetal.,2012),分别为:(1)丁香假单胞菌(Pseudomonassyringaepathovars);(2)茄科罗尔斯通氏菌(Ralstoniasolanacearum);(3)根癌农杆菌(Agrobac-teriumtumefaciens);(4)黄单胞菌水稻白叶枯致病变种(Xanthomonasoryzaepv.oryzae);(5)黄单胞菌十字花科黑腐病致病变种(Xanthomonascampestrispathovars);(6)黄单胞菌地毯草致病变种(Xanthomonasaxonopodispathovars);(7)解淀粉欧文氏菌(Erwiniaamylovora);(8)苛养木杆菌(Xylellafastidiosa);(9)马铃薯黑胫病菌Dickeya(dadantiiandsolani);(10)果胶杆菌胡萝卜软腐病(Pectobacteriumcarotovorum)/黑胫病菌(Pecto-bacteriumatrosepticum)。

2.寄主抗性识别机制及TALE致病性

2.1寄主和病原菌相互作用

寄主和病原菌相互作用被认为是从PAMPs/M-AMPs(pathogenormicrobe-associatedmolecularpatt-erns)的识别开始的。病原菌的PAMPs/MAMPs相当保守,不同的PAMPs/MAMPs被定位在寄主细胞膜上的形态识别受体PRRs(patternrecognitionrecep-tors)特异性识别从而激活寄主的基础防御反应,这对植物免疫致病菌或非致病菌相当重要(JonesandDa-ngl,2006)。研究比较清楚的PAMPs包括微生物的鞭毛组分Flg22、Harpins、冷休克蛋白、脂多糖、肽聚糖和延伸因子Tu(EF-Tu)等(Kunzeetal.,2004;Nürnbe-rgeretal.,2004;Zipfeletal.,2004)。PAMPs被PRRs识别触发一个叫做PTI(PAMP-triggeredimmunity)的基础防御反应,该基础防御反应参与诱导MAPK信号通路、钙通量、产生一氧化氮和活性氧分子和激活WRKY转录因子(Nürnbergeretal.,2004;Heetal.,2006)。PTI介导的基础免疫有效地限制了绝大多数潜在的病原体的生长,是在大多数植物中广泛存在的基础防御反应(JonesandDangl,2006)。随着寄主PTI的加强,病原细菌相应地进化出了效应物激活的寄主感病性ETS(effector-triggeredsusceptibility),即利用T3SEs抑制寄主的PTI信号达到致病的目的(JonesandDangl,2006)。与病原细菌ETS(effector-triggeredsusceptibility)相对应地,寄主则又进化出了特异识别T3SEs的抗性(resistance)基因激活免疫反应,效应物激活的寄主免疫反应称为ETI(effector-triggeredimmunity)(JonesandDangl,2006)。效应物作用和修改寄主蛋白或效应物自身被寄主抗性R蛋白(resistanceprotein)识别即诱导ETI,ETI是植物的第二级防御策略,通过胼胝质沉积加厚细胞壁、阻断维管束的运输、抗病相关蛋白的表达、氧自由基的释放和细胞程序性死亡等。植物通过不断进化的R基因响应植物致病菌的挑战,提供了监测植物病原效应物的又一途径(Chisholmetal.,2006;MaandGuttman,2008)。由于R基因的存在,ETI改变相互作用的结果从感病回到抗病。总之,病原菌和寄主互作概括起来就是三种情况:(1)微生物引发植物的PTI,植物启动防御系统,激活抗病基因的表达,如转录调控因子WRKY表达激活下游抗病基因表达,微生物不能引起致病,植物表现为抗性寄主;(2)微生物引发植物的PTI,但是微生物利用Ⅲ型效应物抑制寄主的PTI引起致病,植物表现为感病寄主;(3)微生物引发植物的PTI,微生物利用Ⅲ型效应物抑制寄主的PTI,寄主进化出一系列的监守R基因抑制效应物的作用,植物表现为抗性寄主(Chisholmetal.,2006;MaandGuttman,2008)。

2.2植物富含LRR结构域蛋白

植物的抗性R蛋白因含有核酸结合区和富含亮氨酸重复区常归为NB-LRR(nucleotidebinding-leuc-inerichrepeat)蛋白家族。这些特别的免疫蛋白介导不同的抗性蛋白-效应物蛋白识别过程和激活寄主潜在的防御反应NB-LRRs呈现多功能域结构,每个功能域依据NB-LRR信号行使不同的功能。NB-LRR的功能和相关信号的复杂度是和植物-微生物互作相对应的(Elmoreetal.,2011)。亮氨酸重复区LRRs广泛存在于真白质中,参与蛋白-蛋白互作。一般情况下,LRR功能域包括20~29个氨基酸,其保守的11个残基片段序列为LxxLxLxxN/cxL(x代表任意一个氨基酸,L代表缬氨酸,异亮氨酸或苯丙氨酸)(KobeandKajava,2001)。如拟南芥PRRs鞭毛识别蛋白FLS2,延伸因子识别蛋白EFR,及水稻中的R蛋白Xa21都分别包含一个胞外28LRRs、21LRRs和23LRRs的结构域(Songetal.,1995;Gómez-GómezandBoller,2000;Zipfeletal.,2006)。LRR蛋白的保守的β折叠和邻近的松散区域是一个11个残基的片段,其序列为LxxLxLxxN/CxL,剩下的区域可能高度不同,目前的分子模型认为20个或30个残基长的LRR区域其核心的LxxLxL序列足以构成马蹄形结构的蛋白质。目前,包括LRRs的蛋白至少有7个不同亚族,在许多重要的生理过程提供了形成蛋白质相互作用的一个通用的结构框架(KobeandKajava,2001)。PRRs激活的寄主免疫反应在植物和微生物的互作中发挥了重要的作用。随着对PRRs研究的深入,值得一提的是,关于动物免疫相关的形态识别受体PRRs的发现赢得了2011年诺贝尔奖。许多植物抗性R蛋白及形态识别受体PRRs富含LRR(KobeandKajava,2001;Elmoreetal.,2011)。PRRs富含亮氨酸重复区LRRs(leucine-richrepeats)或细胞溶酶结构域(lysin-motif,LysM)。PRRs包含受体类激酶(re-ceptor-likekinases,RLKs)和受体类蛋白(receptor-likeproteins,RLPs),通常RLKs为跨膜蛋白,包含胞质外受体域LRRs和胞质内激酶域2部分,RLPs没有胞质内激酶域(Albrechtetal.,2012)。效应物的识别被认为是改变了NB-LRRs的构象,因而NB-LRR蛋白被释放激活下游的免疫反应的信号(TakkenandTameling,2009)。研究表明,一些核定位的NBS-LRRs的积累和激活对于植物免疫反应是必需的,如大麦(Barley)的CC-NB-LRRMLA10、拟南芥(Arabidopsis)的TIR(toll-interleukin1recep-tor)-NB-LRRs/RRS1-R、RPS4和SNC1蛋白的累积和激活都是免疫反应所必需的(Deslandesetal.,2003;Burch-Smithetal.,2007;Wirthmuelleretal.,2007;Chengetal.,2009)。

2.3TALE与R基因识别

在植物-病原菌互作过程中,存在基因-基因的识别现象,当植物中有抗性(Resistance,R)基因与病原菌无毒(Avirulence,Avr)基因相对应识别时,植物表现出非亲和互作的抗性;反之,植物-病原菌缺乏这种基因-基因识别时,寄主表现出感病症状。病原菌的致病性和无毒性取决于Avr蛋白的这种两性分子(bi-functionaleffector)的特征。许多报道表明,抗性寄主利用R基因监测TALE至少有3种策略(Schornacketal.,2013):(1)R基因编码蛋白作为诱饵陷阱直接与TALE结合,寄主产生过敏反应,如AvrBs3与Bs3之间的识别;(2)突变TALE靶基因需要的通用转录因子,阻止转录,如水稻中含有xa5隐性基因的抗性机制(Schornacketal.,2006);(3)突变TALE靶基因的启动子区阻止TALE的结合;(4)监控TALE基因启动子区模仿TALE靶基因的EBE序列,激活监控基因,启动植物抗性。植物监控病原菌的效应物主要通过富含核苷酸结合位点的亮氨酸重复区(NBS-LRR)的蛋白来识别。然而对于TALE的识别机制较少,目前仅有关于番茄中的富含NBS-LRR的Bs4蛋白是通过该机制来识别AvrBs4。由于Bs4蛋白N端含有TIR结构域,还能识别Hax3和Hax4这类的TALE(Kayetal.,2005)。Bs4蛋白识别的具体机制还不清楚,但有研究发现,在植物体内过量表达AvrBs3也能激发Bs4蛋白依赖的过敏反应(Schornacketal.,2005)。另一个识别TALE的例子是水稻抗白叶枯病菌Xoo基因xa13,xa13编码一个蔗糖转运家族蛋白(SWEET),其抗性表现在启动子区一个小区域的多态性,导致TALEPthXo1不能与其启动子区结合,进而影响水稻白叶枯病菌Xoo生长所需碳源(Chenetal.,2010)和铜的再分配(Yuanetal.,2010)。水稻Xa27编码113个氨基酸的蛋白,启动子区有TALE结合位点,赋予水稻对具有AvrXa27水稻白叶枯病菌Xoo及非维管束致病菌水稻细菌性条斑病菌Xanthomonasoryzaepv.oryzicola(Xoc)的抗性(Hummeletal.,2012)。最近有报道称,Xoc中的TALEsTAL6和TAL11a可抑制水稻R基因Xa7对Xoo中TALEAvrXa7的识别,这是首次关于TALEs可作为植物防御反应的抑制子,而缺失C端则无抑制作用,表明TAL6和TAL11a的转录激活寄主基因需要抑制作用(Jietal.,2014)。另一个TALE靶标是植物转录因子。在Xcv85-10感染辣椒后研究依赖AvrBs3的转录谱时发现超过20个靶基因,命名为UPA(upregulatedbyAvrBs3)。upa20其编码产物是一个bHLH(basichelix-loop-he-lix)家族的转录激活子,该转录激活子是AvrBs3诱导的植物细胞过度生长的关键调控蛋白。AvrBs3导致叶肉细胞的肥大,在感染后期阶段也可能会支持细菌释放到植物表面(Maroisetal.,2002;Kayetal.,2007)。在柑橘溃疡病X.citri中也有类似报道,溃疡是由几个各异的XcTALEs诱导转录因子CsLOB1形成(Huetal.,2014)。Xoc中首次发现TALETal2g诱导寄主水稻中一个硫酸盐转运子(Cernadasetal.,2014),硫酸盐是否限制Xoc的生长或是其它机制仍不清楚。该研究还指出,Tal2g诱导多个寄主基因表达,但是对病原菌致病关键的基因只有1个直接的S基因,其它被诱导的基因可能是附带的效应(Cer-nadasetal.,2014)。有趣的是,Xoo和Xoc中的TALEs寄主靶标没有重合的,Xoo中多个TALEs靶标都是SWEET家族基因,而Xoc中26个TALEs没有一个靶标是SWEET家族基因(Cernadasetal.,2014)。

3.TAL在植物抗病上的生物工程应用

鉴于以上的植物识别TALEs的机制,及TALE的生物学特性,科学家们开始设计新的植物抗性策略,从各方面击破病原菌的攻击,赋予植物新的抗性。TALE通过启动子模块识别激活R或者S基因,启动下游基因,引起非寄主过敏反应或促进病原菌致病。启动子的模块易于被基因工程所利用,目的在于使植物获得新的抗性。

3.1改造抗性R基因监控

TALEs富含亮氨酸重复区的抗性蛋白Bs4能识别多个TALEs,可以通过特异性高表达Bs4等抗性基因,增强植物的抗性。另外,研究表明体外突变抗性基因Rx的LRR区,会增强植物对效应物的识别特异性(FarnhamandBaulcombe,2006)。利用这一特性,基因工程改造Bs4基因LRR区可能增强其识别TALE的特异性和亲和力。

3.2突变易感S基因的启动子区

TALEs通过RVDs识别特定的植物靶基因启动子区,水稻抗性基因xa13,其对水稻白叶枯病菌Xoo的抗性表现在启动子区一个小区域的多态性,导致Xoo中TALEPthXo1不能与xa13启动子区结合,进而影响Xoo生长所需碳源(Chenetal.,2010)。利用基因工程将不敏感的基因xa13启动子区整合至易感S基因启动子区,使植物获得新抗性。这一方法在易感S基因Os11N3基因上应用成功,获得了水稻白叶枯病菌Xoo的抗性。另一个例子是,增加一个易感S基因的等位基因,这个等位基因的启动子区对于TALEs不敏感(Lietal.,2012)。这一方法需注意:植物中的靶基因无其它未知功能且没有冗余的拷贝;启动子区的改变不能影响看家基因的功能;该靶基因对病原菌的致病性至关重要,最好能抗多个TALEs(Schornacketal.,2013)。S基因的激活对于促进病原菌的致病至关重要,突变S基因的启动子区是对大多数的TALEs比较有效的方法。

3.3增加抗性基因启动子区

EBEs陷阱利用抗性基因xa27和Bs3的启动子区陷阱,即用生用工程的方法体外合成一个或者多个TALEs结合的EBEs位点至监控基因的启动子区,使得转基因植物在病原菌感染过程中注入TALEs时,迅速识别启动抗性反应。这一方法成功的例子是在Bs3基因上,通过在启动子区增加2个EBEs位点,一个是辣椒斑点病致病变种X.euvesicatoria中TALEAvrBs3Δrep16的RVDs部分突变识别区EBEs位点,另一个是水稻白叶枯病菌Xoo中的TALEAvrX-a27的EBEs位点。结果表明,融合启动子区的Bs3表达构建在烟草Nicotianabenthamiana上瞬时表达能够增强寄主的识别能力(R觟meretal.,2009)。还有在启动子区增加6个EBEs的成功报道,通过在Xa27基因上分别增加3个水稻白叶枯病菌Xoo和3个水稻细条病致病变种X.oryzicola中的TALEs的EBEs,转基因植株具有这2种病原细菌的抗性(Hummeletal.,2012)。

3.4筛选新的监控基因

与已知的NBS-LRR抗性基因对比,在不同植物中存在上千个这样的抗性监控基因(Lietal.,2010)。利用深度测序RNA-Seq从辣椒Capsicumpubescens中鉴定并克隆TALEs激活的Bs4C的方法为鉴定更多新的监控基因提供了基础。对于某些情况下,需要减慢或加速过敏反应,可以从调整监控基因的数量或者类型方面进行生物工程改造(Strau覻etal.,2012;Schornacketal.,2013)。目前,有4个R基因被克隆:辣椒CapsicumannuumBs3(R觟meretal.,2007),辣椒C.pubescensBs4C(Strau覻etal.,2012),水稻OryzasativaXa10(Tianetal.,2014)和Xa27(Guetal.,2005)。筛选和克隆更多的植物NBS-LRR抗性基因,可以为生物工程改造提供更多的抗性资源。3.5生物工程改造获得新抗性利用TALEs识别位点和限制性内切酶融合表达,定点改造基因组,将会是成本低廉、特异性识别更强的手段(Schornacketal.,2013)。植物的利用富含NBS-LRR的抗性R基因监控病原菌的效应物,监控的有效应性依赖于效应物的保守性,对于病原菌越重要的效应物,R基因的识别越容易因该效应物的突变或丢失而失效,开发更多R基因对于增强和持续的识别是关键。许多植物病毒是DNA单链病毒,极少数是双链的。而单链病毒在复制增殖过程中形成DNA双链,利用TALEs特异的DNA双链识别特性,体外合成特异识别的模块,可用来防治植物病毒病。植物-病原菌互作是一个持续的进化过程,当病原菌一方通过消除或改变特定的效应物进化避开寄主的监控,意味着寄主的R基因系统被打败。寄主通过R基因互补的改变等才能恢复其抗性。如马铃薯NBS-LRRR3a介导识别致病疫霉菌Phytophthorainfestans的AVR3a效应物,AVR3a通过变异逃过R3a的识别(Vleeshouwersetal.,2011),而R3a被Se-gretin&Kamoun发现通过单个氨基酸的变异重新恢复识别变异的AVR3a(Schornacketal.,2013)。利用点突变的R基因获得高抗性的寄主植物。

4.结论

植物论文篇(6)

【论文摘要】:21世纪是生物科技迅猛发展的时代,生物技术为农业、渔业、林业以及食品工业的可持续发展提供了强有力的手段。近几年来,转基因植物推出的品种之多、推广面积之大、发展速度之快,远超出人们的预测。在研究与开发转基因产品的同时,理智、客观、安全地运用转基因技术,加强其安全性防范的长期应用研究。

植物转基因技术将为农业生产带来一场新的革命,它将为农作物的持续增产和解决全球人炸所造成的粮食危机做出巨大贡献。但也有人对这一技术持怀疑态度,认为目前人类还不能对它的潜在危险性做出正确的评价。因此,在大规模应用前有必要对转基因植物的安全性进行更深入的研究和分析。

1植物转基因技术的研究意义

转基因植物是指利用重组DNA技术将克隆的优良目的基因导入植物细胞或组织,并在其中进行表达,从而使植物获得新的性状。这一技术克服了植物有性杂交的限制,基因交流的范围无限扩大,可将从细菌、病毒、动物、人类、远缘植物甚至人工合成的基因导入植物。转基因作物可提高农作物产量,减少除草剂、杀虫剂等农药的使用量,并节省大量劳动力,因而给人类带来了巨大的经济和社会效益。根据农业生物技术应用国际服务组织(ISAAA)的年度报告,2006年,全球转基因作物的种植面积猛增了1200万公顷,首次突破了1亿公顷大关。转基因植物产生至今仅20年时间,但其研究和应用得到了非常迅猛的发展。

2对转基因植物安全性评价的必要性

从理论上说,转基因技术和常规杂交育种都是通过优良基因重组获得新品种的,但常规育种的安全性并未受到人们的质疑。其主要理由是常规育种是模拟自然现象进行的,基因重组和交流的范围很有限,仅限于种内或近缘种间。并且,在长期的育种实践中并未发现什么灾难性的结果。而转基因技术则不同,它可以把任何生物甚至人工合成的基因转入植物。因为这种事件在自然界是不可能发生的,所以人们无法预测将基因转入一个新的遗传背景中会产生什么样的作用,故而对其后果存在着疑虑。而消除这一疑虑的有效途径就是进行转基因植物的安全性评价。也就是说要经过合理的试验设计和严密科学的试验程序,积累足够的数据。人们根据这些数据可以判断转基因植物的田间释放或大规模商品化生产是否安全。对试验证明安全的转基因植物可以正式用于农业生产,而对存在安全隐患的则要加以限制,避免危及人类生存以及破坏生态环境。只有这样,我们才能扬长避短,充分发挥转基因技术在农业生产上的巨大应用潜力。

3转基因植物安全性评价的主要内容

目前,国际市场上的转基因食品按照要求必须进行了严格审查,证明它们对人类健康无副作用。检验不仅在生产国进行,而且联合国粮农组织和世界卫生组织联合委员会负责监管。对转基因植物的安全性评价主要集中在两个方面,一个是环境安全性,另一个是食品安全性。

3.1转基因植物的环境安全性

环境安全性评价要回答的核心问题是转基因植物释放到田间去是否会将基因转移到野生植物中,或是否会破坏自然生态环境,打破原有生物种群的动态平衡。

⑴对野生生物的影响:转基因植物种植推广后,释放到自然环境中的机会多。因其具有野生植物缺少的多种抗性,将会迅速成为新的优势种群,从而影响生态平衡。虽然利用"终止因子技术",以及"化学催化"技术可以限制转基因植物的扩散,但因此项技术对农业的持续发展等诸多方面影响而受到多方面的关注。

⑵对自然生物类群的影响:出现高抗药性有害生物。"病毒重组"或"异源包装"是否会产生新的农作物病原物,自然界存在着植物病毒的重组现象,包括DNA病毒和RNA病毒。转外壳蛋白(CP)基因的抗病毒植物,当有其它病毒侵染时,入侵病毒的核酸有可能被转基因植物表达的外壳蛋白质包装,从而改变病毒的寄主范围,使病毒病防治更加困难。担心作物中转入抗虫或抗病基因后,会加大对某一种害虫或病原体的选择压,使害虫或病原体加速突变产生抗性,给防治增加麻烦。

3.2转基因植物的食品安全性

食品安全性也是转基因植物安全性评价的一个重要方面。如果转基因植物生产的产品与传统产品具有实质等同性,则可以认为是安全的。若转基因植物生产的产品与传统产品不存在实质等同性,则应进行严格的安全性评价。在进行实质等同性评价时,一般需要考虑以下一些主要方面。

⑴有毒物质:必须确保转入外源基因或基因产物对人畜无毒。如转Bt杀虫基因玉米除含有Bt杀虫蛋白外,与传统玉米在营养物质含量等方面具有实质等同性。要评价它作为饲料或食品的安全性,则应集中研究Bt蛋白对人畜的安全性。

⑵过敏源:在自然条件下存在着许多过敏源。在基因工程中如果将控制过敏源形成的基因转入新的植物中,则会对过敏人群造成不利的影响。所以,转入过敏源基因的植物不能批准商品化。另外还要考虑营养物质和抗营养因子的含量等。

4总结

植物基因工程食品在解决全球饥饿问题和保障农业的可持续发展方面发挥着举足轻重的作用,并可通过转基因能源植物为缓解世界能源危机作出巨大贡献,尽管与之相伴的转基因植物安全性问题与公众态度、贸易中的技术壁垒及伦理、宗教等复杂因素交织为一个科技含量很高的政治、经济问题,成为了国际、国内普遍关注的焦点和热点,但转基因植物辉煌的发展前景是不容置疑的。在研究与开发转基因产品的同时,理智、客观、安全地运用转基因技术,加强其安全性防范的长期应用研究。建立起一整套完善的、既符合国际标准又与我国国情相适应的检测体系,确保转基因产品进出口的安全性,让植物转基因生物技术成为21世纪解决健康、环境、资源等重大社会与经济问题的有效手段。

参考文献:

[1]陈君石主译,转基因食品:基础知认及安全性,人民卫生出版社,2003.8

[2]闫新甫,转基因植物(生命科学专论),科学出版社,2006.3

[3]吴爱忠,基因转移,上海教育出版社,2004.9

植物论文篇(7)

论文摘要:作者概述了在蕨类孢子萌发研究中所使用的培养基质,包括了以自然土壤为主的培养基质和以营养液为主的液体或琼脂培养基。并简略分析了影响蕨类孢子萌发的其它因素。

1前言

蕨类植物是古老的维管植物,也是植物界系统演化中一个独特的自然类群,在其生活史中明显地存在可独立生活的配子体和孢子体。蕨类植物与人类生活有着比较重要的关系,体现在其食用性、药用性及工业上的某些特殊用途等方面[1](如石松属的孢子含油达40%,可在冶金工业的模型铸造中作为优良的分型剂,也可用作照明工业的闪光剂)。经典的蕨类植物研究着重蕨类植物的系统分类及孢子体形态的描述。近年来,也出现了许多关于蕨类植物配子体发育的研究,为蕨类植物的大量繁殖和开发利用提供了理论基础。

2常见的培养基质

在蕨类孢子繁殖的研究中,常采用以土壤为主的培养基质和以营养配方为主的液体或琼脂培养基质。

2.1以土壤为主的培养基质

(1)过细筛的草炭土与细沙混合的培养基质,培养乌毛蕨[2](Blechnumorientale)、剑叶凤毛蕨[3](Pterisensiformis)及三角鳞毛蕨[4](pryoterissubtriangularis)的孢子,保持盆土湿润,约1周左右萌发。

(2)在蕨类孢子萌发中,也可采用单一基质进行培养,如蛭石、珍珠岩、河沙。但相较于以过筛园土和过筛腐殖土(体积比1:2)的培养基质而言,在对天南星蕨(Microsoriumfortunei(Moore)Ching)孢子繁殖的试验中[5],以上各种基质对天南星蕨孢子萌发基本无差异。但从原叶体生长发育来看,园土和腐殖土的混合基质相对较好,在河沙上原叶体部分出现了软腐或黄化现象,以上各种基质播种的孢子均能正常产生孢子体。

(3)在以蕨(PteridiumaquilinumvarLatiusculum)孢子为繁殖材料的试验中[6],采用自配土(泥炭:粉碎田园土:洗净河沙体积比1.5:1.5:5)和自然生长土壤分别作培养基质,第一株孢子体出现时间分别是前者90天,后者为80天,配子体发育成孢子体比率为10%。此外,在以高大肾蕨(Nephrolepisexaltata)、粗脉蕨(Phlebodiumaureum)及夏威夷树蕨(Cibotiumglaucum)孢子在自然土壤田园土(PH6.8)和火山土(pH6.8)上的萌发来看[7],说明对自然土壤采取干燥、灭菌、消毒、去杂等处理后,是可以成功进行蕨类孢子的人工繁殖的。

2.2以营养配方为主的液体或琼脂培养基

(1)在对华南鳞盖蕨(MicrolepiahanceiPrantl)的孢子培养中[8],以MS为基本培养基,诱导孢子果的萌发。

(2)在对蕨(PteridiumaquilinumvarLatinusculum)的孢子萌发试验中[6],采用的琼脂培养基成份为:KNO31g,MgSO40.25g,KH2PO40.25g,FeSO4(1%)0.2ml,以上化合物加水1000ml溶解,加入10g琼脂制备而成。第一株孢子体出现时间为60天,配子体发育成孢子体的比率为20%。

(3)在对单叶双盖蕨(Diplaziumsubsi-nuatum(WallexHooketGrev)Tagawa)孢子萌发处理的试验中[9],采用的是改良knop''''s液体培养基,接种后2-4天后孢子破壁萌发。

(4)在网藤蕨属(LomagrammaJ.Smith)植物的配子体发育及形态学研究中[10],利用Parker和Thomson′s营养液配方,加入1%的琼脂制配而成的培养基,在温度为22±2℃,光强600英尺烛光(600ft.C)条件下,孢子约15-20天左右萌发。此外,对濒危的热带树蕨(Dicksoniasellowiana)孢子培养所使用的是添加了0.01%苯菌灵(Benomgl)的Mohr''''s营养液配方[11]。

3影响孢子萌发的其它环境因素

蕨类孢子的正常萌发除了和培养基有较为直接的关系外,还和光照、温度、湿度等环境因子有关。

3.1光因子

光的有无和光照强度的大小会影响蕨类孢子的萌发及萌发后的生长状况。有研究表明,高大肾蕨(Nephrolepisexaltata)、粗脉蕨(Phlebodiumaureum)及夏威夷树蕨(Cibotiumglaucum)在有光条件下,孢子均可以在自然土壤上正常萌发,而在无光或黑暗环境中则几乎没有孢子的萌发[7]。光照强度会影响萌发后丝状体细胞的长度。当光照极照时,细胞长度会增加;发育出的丝状体如果放在黑暗处,则不能进行二维生长[12]。在众多的配子体发育研究中,常采用2000-3000lx左右的光照强度及每天不低于6h左右的光照时间。

3.2温度与湿度

蕨类配子体生长的最适温度为20℃-30℃,最适pH为5-6[13]。在用天南星蕨(Microso-riumfortunei(Moore)Ching)孢子繁殖试验时[5],分别采用了40%、70%以及90%的盆土湿度,结果表明,90%的盆土湿度效果较好,即盆土湿土处于饱和或过饱和状态利于孢子的萌发。此外,鲁雪华等采用华南鳞盖蕨(MicrolepiahanceiPrantl)组培试管苗移栽基质湿度为90%[8]。

3.3其他影响因子

在对土壤营养元素的分析中,有研究表明,土壤中N、P、K、Ca等含量的高低会对蕨类孢子繁殖的早期发育产生影响[11]。对于同一种蕨类的孢子,播种期不同,原叶体和幼孢子体的出现所经历的时间长短不同[14]。

4结语

蕨类植物作为古老的维管植物,越来越多地受到人们的关注。部分蕨类植物被引种驯化后作为鲜切花配材、优美的观赏盆栽植物或作为食用及药用植物。在自然条件下,蕨类主要通过孢子进行繁殖或通过营养器官进行无性繁殖。但许多蕨类孢子萌发率的原叶体成苗率低[14]。随着研究的深入,已经积累了一些促进孢子萌发培养基质的经验,但对于孢子萌发后的生长及幼孢子体的形成所需培养条件的研究有待进一步深入,为蕨类资源的合理开发利用提供有用的理论依据。

参考文献

[1]梁家骥,汪劲武.植物的类群[M].北京:人民教育出版社,1985:149-151.

[2]张开梅,石雷,李冬.乌毛蕨配子体发育的研究[J].热带亚热带植物学报,2005,13(5):419-422.

[3]张开梅,石雷,李冬.剑叶凤尾蕨配子体发育的研究[J].植物学通报,2005,20(5):566-571.

[4]张开梅,石雷,张宪春.三角鳞毛蕨配子体发育的研究[J].武汉植物研究,2005,23(3):276-279.

[5]魏德生,曾莉莉,王用平等.天南星蕨孢子繁殖试验[J].中草药.1999,30(3):224-225.

[6]岳思君,苏建宇.蕨孢子培养[J].宁夏农学院学报,2002,23(1):72-73.[7]Wen-HsiungKo.GerminationofFernSporesinNaturalSoils[J].AmericanFernJournal.Volume93Issue2(April2003):70-75.

[8]鲁雪华,郭文杰,刘润东等.华南鳞盖蕨的组织培养和快速繁殖[J].植物生理学通讯,2005,41(4):495.

[9]戴锡铃,曾建国,张莹等.单叶双盖蕨配子体发育的研究[J].植物研究,2007,27(2):151-153.

[10]SubhashChandra,MrittunjaiSrivastava,RuchiSrivastava.Contri-butiontotheGametophyteMorphol-ogyoftheFernGenusomagrammaJ.SminIndia[J].AmericanFern

Journal.Volume93.Issue1(January2003):25-31.

[11]CláudiaCristinaL.F.Suzuki,MariaTerezinhaPaulilo,AureaM.Randi.Sub-strateandIrradianceAffecttheEarlyGrouthoftheEndangeredTropicalFernDicksoniasellowianaHook.(Dicksoniaceae)[J].AmericanFernJournal.Volume95.Issue3(July2005):115-125.

[12]曾汉元,丁炳扬.蕨类植物配子体发育的研究[J].植物研究,2003,23(2):154-158.