期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 交流电动机的应用

交流电动机的应用精品(七篇)

时间:2023-07-10 16:03:04

交流电动机的应用

交流电动机的应用篇(1)

关键词:交流电动机;动作时间;释放时间;元器件节能

1问题的提出

2013年,江西某水泥公司二号窑200kW鼓风机,2年内已烧毁3次,造成直接经济损失200多万元。同时,由于停产检修,造成的间接损失难以估算。针对上述问题,该公司邀请了一个专业团队到公司协助解决该问题。

2原因分析

2.1生产现状

2013年3月,专业团队来到该公司,与该公司的工程技术人员一起进行了现场考察和技术资料研究。其中,该电动机的主电路图和控制电路如图1—2所示。

2.2原因分析

针对上述情况和相关参考文献[1—5],笔者认为造成该事故的原因如下。(1)主要原因是前面设计者没有考虑交流接触器线包动作时间和其释放时间;(2)在启动电动机运行前几十ms内,由于KM2未动作,导致KM2,KM3同时得电,则电源相序间短路,轻则烧断熔断丝和KM3主触头被烧坏可能,从而导致电动机缺相运行,电动机转速减慢,电流急增,随后,电动机可能被烧毁。由于以上第(2)点,造成KM3触头接触不良,造成电源三相不平衡,电动机转速减慢,温度升高,不及时关机,则有可能烧坏电动机;由于KM2释放时间问题,造成电动机瞬间失电,从而电动机又重新启动,电流加大,温度急剧上升,绕组磁路饱和,绕组发热,最后,电动机可能被烧坏。

3电路设计

针对以上原因,文章总结了以下几点设计改进:(1)充分考虑KM2的动作时间,利用KM2-4和KM1-4动作时间才能使KM3得电,避免了KM2和KM3在电动机启动前几十毫秒内同时得电;(2)在KM2线包控制电路中又串联KM3触点进行互锁,又避免了KM2释放时间问题即电动机重新启动;(3)同时使KT并联在KM3线包中,使KM3动作时KT不得电,从而更加节能,延长电路元器件的寿命。改进设计后的电路控制如图3所示。

4实施效果

改造后,该电动机在3年内未出现电动机烧毁现象,由此,可确定本次分析和解决措施是完全正确的。同时,直接为公司节约成本200多万元。

5结语

综上所述,不难得出如下结论:在交流电动机的控制电路设计过程中,必须要对继电器的动作时间和释放时间有充分的考虑;本次排障的过程中,文章提出了一套既满足控制要求,又能实现元器件节能的新型电路。

[参考文献]

[1]齐亚琳,柳新军,刘艳丽,等.提高继电器触点抗浪涌能力的一种新颖旁路保护电路[J].电子元器件应用,2012(5):5-7.

[2]李述香,邱召运.继电器触点的保护技术[J].电工技术,2004(8):60-61.

[3]鹿泽伦,李岩.中间继电器构成的断相保护电路[J].自动化技术与应用,2008(12):110-111.

[4]黄三伟,高峰,周熠.三相异步电动机的断相保护[J].广西物理,2006(2):43-45.

[5]周云旭,钟水蓉.继电器触点保护电路设计[J].电子技术与软件工程,2013(16):118.

交流电动机的应用篇(2)

关键词:交流调速;节能;变频;调压调速;变极对数调速

前言:

20世纪60年代以前的调速系统以直流机组为主,70年代中期全世界范围内出现的能源危机迫使各国投入了大量的人力财力来研究交流调速系统,交流调速技术得到了快速的发展。20世纪80年代交流调速系统在性能上开始可以与直流调速系统相媲美。之后,交流调速系统在调速领域中的比重逐步加大,目前已经成为调速系统的主流。

一、交流电动机常用调速方法分析

1.1调压调速

调压调速是通过改变电动机定子电压改变电动机转差率,从而实现调速。这种调速方法比较适用于带动风机、水泵的异步电动机。其原因是:

由于风机负载转矩特性,当转速n降低时,负载显著减小,它可以稳定运行于电动机机械特性的非线性段,因而得到较低的转速,扩大了调速范围。

在降压运行时,电动机的磁化电流可以忽略不计,则电机的电磁转矩T正比于转子电流的平方。当增加转差率S,为使电流保持额定值不变,电机的转矩也相应减小,显然这既不适应于恒转矩负载,更不适应于恒功率负载,而较适应风机、水泵负载。

1.2变频调速

变频调速是交流电动机一种最好调速方法。它是通过改变电源频率来改变旋转磁场同步转速,从而达到调速目的。

变频调速不仅能实现无级调速,而且根据不同的负载特性,通过适当调节电压U与频率f之间的关系,使电动机始终运行在高效区。

交流电动机采用变频调速能显著改善电动机起动性能,大幅度降低电动机起动电流,增加起动转矩。变频调速平滑性好,效率高,机械特性硬,调整范围广,同时可以适应不同负载特性的要求,尤为异步电动机调速的发展方向。

1.3变极调速

变极调速是通过改变磁场的极对数,来改变同步转速,以达到调节电动机转速。它也属高效调速方法之列。变极调速简单可靠,成本低,机械特性硬,但它是一种有极调速,而只适用于几种运行工况场合。例如纺织厂的空调风机,夏天一种速度,冬天另一种速度。应用交流电机调速实现对风机、水泵风量或流量的调节,是节约电能最佳途径,其社会效益和经济效益都是相当可观的。

二、变频技术在交流调速系统中的应用

在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业用户的青睐。

2.1、交流变频调速的优异特性

(1)调速时平滑性好、效率高。低速时,特性静差率高、相对稳定性好;

(2)调速范围较大、精度高;

(3)起动电流低,对系统及电网无冲击,节电效果明显;

(4)变频器体积小,便于安装、调试、维修简便;

(5)易于实现过程自动化;

(6)必须有专用的变频电源,目前造价较高;

(7)在恒转矩调速时,低速段电动机的过载能力大为降低。

2.2、与其它调速方法的比较

(1)改变转差率的调速方法

包含改变定子电压调速、绕线转子回路串电阻调速、电磁转差离合器调速、串级调速等方法

(2)改变极对数的调速方法

通过改变定子绕组的接线来改变极对数,就改变了同步转速。它可以获得恒转矩调速特性和恒功率调速特性。这种方法效率高、操作简单、机械特性强。缺点是有级调速,一般变极调速用于小容量、非平滑调速的场合。

(3)改变频率的调速方法

变频调速系统可分为两大类:

①交—直—交变频调速

先把电网中的交流电整流成直流电,再通过逆变器逆变为频率可调的交流电。目前生产的异步电动机变频器几乎都采用电压源型晶体管SPWM交—直—交变频电路,它具有体积小、重量轻,在采用矢量控制时系统性能好的特点,但需考虑回馈制动的问题。它是异步电动机交—直—交变频调速的主流。

②交—交变频调速

把工频交流电直接变换成可变频率的交流电,由于它只有一级功率变换,省去了直流环节,减少了损耗,进一步提高了效率。也因此结构复杂、额定工作频率较低、造价较高,主要适用于低速大容量的交流调速设备中。

三、变频调速的发展方向

交流变频调速技术是强弱电混合、机电一体的综合性技术,既要处理巨大电能的转换,又要处理信息的收集、变换和传输,因此它的共性技术必定分为功率和控制两大部分。目前主要发展动向有以下三个方面:

3.1新的控制策略

异步电动机是一个多变量、强耦合、时变的非线性系统,瞬时转矩的控制困难,使它的动态性能很长时间内不如直流电机。矢量控制技术开创了交流电机高性能控制的新时代,基于现代控制理论的滑模结构控制、自适应控制等均已引入电机控制,又如把模糊控制、人工神经网络控制、专家系统等无需精确数学模型的智能控制技术应用于变频调速中也得到了广泛的研究。

3.2新型变流装置和变流技术

随着电力电子元器件的不断发展,调速系统用的变流装置正朝向高电压、大容量、小型化、高频化的方向发展,中高电压、大容量的变频器已得到了应用,变流主元件的开发频率越来越高,装置的体积越来越小,为提高开关频率、降低开关损耗,软开关技术已经开始得到实际应用。

3.3全数字化控制

随着微机运算速度的提高和存储器的大容量化,全数字化控制已成为调速系统的主流方向,各类单片机和数字信号处理器在调速系统中得到了较为普遍的应用。

四、结语

随着生产技术的不断发展,直流拖动的薄弱环节逐步显现出来。由于换向器的存在,使直流电动机的维护工作量加大,单机容量、最高转速以及使用环境都受到限制。人们转向结构简单、运行可靠、便于维护和价格低廉的交流异步电动机。

交流电动机变频调速在能源利用方面有很多的优势。众所周知,能源工业作为国民经济的基础,对于社会、经济的发展和人民生活水平的提高都极为重要。在高速增长的经济环境下,中国能源工业面临经济增长与环境保护的双重压力。由此可见,对能源的有效利用在我国已经非常迫切,变频调速系统在我国将有非常巨大的市场需求,未来一定会得到更好的发展。(作者单位:华北电力大学机械工程系)

参考文献:

[1]李良钰.交流调速技术概述与发展方向.电气技术与自动化,2008.6

[2]高翔,姚大博.交流调速节能技术的应用.内蒙古石油化工,2009.7

[3]刘玲.交流变频调速技术的优势与应用.电气开关,2010(1)

[4]马志源.电力拖动控制系统.北京:科技出版社,2004

交流电动机的应用篇(3)

关键词:感应电机 软起动 交交变频

abstract:some starting manners of motor are given and analyzed in this paper, soft

starting is introduced emphasizly. but how to solve over loading starting is purposed

and ac-ac variable frequency is given.

keywords:inducing motor soft starting ac-ac variable frequency

1 引言

三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。然而,电动机的起动特性却一直举步维艰。这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。

2 传统的起动方法

2.1 定子串电抗器起动

对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损耗。又由于是分级起动,起动特性不平滑。

2.2 星-三角起动

起动时定子绕组星形连接,起动后三角形连接。在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。

2.3 自耦变压器起动

当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。同直接起动时相比,当电压降到w2/w1倍时,起动电流和起动转矩降到(w2/w1)2倍(w2/w1为自耦变压器的变比)。这种起动方式的优点是起动时定子电压的大小可调。比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。

.4 频敏变阻器起动

对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。

由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。

3 软起动

所谓软起动是指装置输出电压按一定规律上升,使被控电动机的电压由零升到全电压,转速相应的由零平滑加速到额定转速的过程。它是电力电子技术与自动化控制技术的综合,是将强电和弱电结合起来的控制技术。在软起动器中三相电源与被控电机之间串入三相反并联晶闸管,采用反并联接线的晶闸管接在电动机的每相,利用晶闸管移相控制原理,控制其内部晶闸管的导通角,电动机起动时,用调节6个晶闸管的不完全导通来控制电动机的供电电源。换言之,起动时只有三相正弦波形的一部分向电动机供电。

软起动的优点是起动特性曲线好,使晶闸管的导通角从零度开始,逐渐前移,电机的端电压从零开始逐渐上升,直至达到额定电压,起动电流从零线性上升至设定值,从而满足起动转矩的要求,保证起成功。表1为软起动同传统起动对照表。

4 重载起动方式(交-交变频起动)

4.1 交-交变频工作原理

尽管软起动具有起动平滑,起动时间等参数可调的特性,具有传统起动方法无法比拟的优越性,是传统降压起动器的理想换代产品。但可控硅调压方式的软起动器控制感应电动机,在减小电压的同时,供电频率仍为工频,使得其功率因数低,无功功率增加,这决定了其只能应用于轻载场合,对于重载起动就勉为其难了。然而在很多场合下,不能保证负载为轻载起动,如球磨机、破碎机、空气压缩机、风机等,这就使得我们想在降低电压的同时,能够减小供电电压频率,即保持v/f不变,保证恒力矩起动,因而变频器变频起动无疑是最好的起动设备,但如果把变频器仅作起动,不调速,资金浪费很大,特别是高压大容量的通用变频器价格就更为昂贵,且感应电动机的重载起动只是短时间的过程,故寻求一种感应电机的重载安全起动方法是很有必要的。纵上述几种起动方式可得出采用交-交变频器来实现重载起动。因为交-交变频没有中间直流环节,仅用一次变换就实现了变频,所以效率较高,而且大功率交流电机调速系统所用的变频器也主要是交-交变频来完成的。

交-交变频的工作原理是让两组交流电路按一定频率交替工作,就可以给负载输出该频率的交流电。改变两组变流电路的切换频率,就可以改变输出频率;改变变流电路工作时的控制角α,就可以改变交流输出电压的幅值。

如果让α角不是固定值,在半个周期内让正组变流电路p的α角按正弦规律从900逐渐减小到00,然后在逐渐增大到900。那么,正组整流电路在每个控制间隔内的平均输出电压按正弦规律从零逐渐增至最大,在逐渐减小到零。在另外半个周期内,对负组变流器n进行同样的控制,就可以得到接近正弦波的输出电压。和可控硅整流电路(软起动)一样,交-交变频电路也属于电网换相。

4.2 整流与逆变工作状态

假设负载的功率因数角为φ,即输出电流滞后输出电压φ角。另外两组交流电路在工作时无环流工作方式,即一组交流电路工作时,将另一组变流电路的脉冲封锁。下图给出了一个周期内负载电压、电流波形。

从图3中可以看出,那组变流电路工作是由输出电流的方向决定的,与输出电压极性无关。变流电路是工作在整流状态还是逆变状态,则是由输出电压方向和输出电流方向的异同决定的。

4.3 输出正弦波电压的调制方法

>使交-交变频电路的输出电压波形为正弦波的调制方法有多种,这里介绍广泛采用的余弦交点法。

晶闸管变流电路的输出电压为

(1)

式中,ud0为α=0时的理想空载整流电压。对交-交变频电路来说,每次控制时α角是不同的,式(1)中的u0表示每次控制间隔内输出电压的平均值。

设要得到的正弦波输出电压为

(2)

则比较式(1)和式(2)可得(3)

(3)

式中γ称为输出电压比,

因此 (4)

上式就是用余弦交点法求变流电路α角的基本公式。

式(4)可以用模拟电路来实现,但线路复杂,且不易实现准确的控制,所以采用微机来实现上述运算。可把事先计算好的数据存入存储器中,运行时按照所存的数据进行实时控制。为了用计算机实现实时控制,必须具备三相低频信号、同步信号、零电流检测三个基本条件。

4.4 三相低频信号的产生原理

用计算机产生三相低频信号,必须首先将要产生的低频信号进行数字化。这不仅在幅值上数字化,在时间上也要数字化。在时间上,以一度为单位(分辨率已经足够),将低频信号的一个周期分成360等份。根据需要的频率求出低频信号一度的时间,以次作为定时时间,这样每隔一度,便输出一次低频信号的对应值,每360循环一次,构成低频的周期。其它两相输出和上面一样,只是输出的对应数值不一样,正好相差120、240度。这样就构成了互差1200的低频信号。由于准梯形波具有较高的基波幅值,因此这里采用它作为低频参考信号,它是限幅的正弦波,当等于600时就已经到达了最大值。其目的是提高直流电压的利用率。

下面以准梯形波为例来说明三相低频信号实现的具体方法。

a. 建立一个准梯形波波形的表格,表格的大小为360个数据,这些数据分别以1度为间隔的准梯形波波形数据。表格存放在表首地址为table的内存中,第一个数据为1度时对应的波形数据,最后一个为360度对应的波形数据。表格的数据是按比例得到的。

b. 设一计数指针coun,初始化时,使coun=0,并起动定时器。在定时时间到达之后,计数指针coun增1,同时取出表中的数据(对应内存地址为table+coun)输出。当计数指针coun=360时,使coun复位为0,便完成了本周期的数据输出,为下一周期做准备。这样周而复始不断的取数输出,就产生了低频数字信号。

c. 其它两相低频信号分别滞后120、240度的同样波形,可以完全使用同样的表格。

d. 为了得到复值可变的低频信号,在低频数字信号输出之前,应乘以调制系数,调制系数的范围是0~1。

e. 1度对应的时间是由所需输出频率决定的,将其转换为定时时间常数后,存放于time的单元中,它就是控制交-交变频器输出频率的变量。

4.5 同步信号电路

采用微机定时方式进行交-交变频的移相控制时,需要给微机提供各晶闸管控制角起时定时时刻的方波信号,使移相控制装置向晶闸管发出的触发脉冲信号在电源电压的每个周期内均能重复出现。因此,这一方波信号的频率应与电源频率相同。所以,一般将此方波信号称为同步信号。此外,同步信号的另一作用是微机利用它的状态来进行判相定管,决定是某相的上管或下管工作与否。

取a相电压经同步变压器降压后,进入rc移相电路形成滞后30度的正弦电压,由三级管将正弦波形成方波,再经光电隔离、反相及输出电路,在输出端得到同步脉冲信号。

4.6 零电流检测电路

不论是电压型还是电流型控制的无环流交-交变频器,正反组变流器的换向都必须处于零电流状态,此时两组变流器的触发脉冲都被封锁。因此,实际的零电流一定要准确可靠的检测出来,这关系到换相的死区长短,以及换相的可靠性。

检测方法 检测负载电流的方法常用的有两种:lem电流传感器和检测和晶闸管端电压法。用lem电流传感器检测负载电流,可将主电路与控制电路完全隔离,且检测电路结构简单。但由于换相等原因,负载电流含有丰富的电流谐波,给电流检测、尤其是过零点检测带来了一定困难。lem传感器输出信号经滤波、整形后,会产生伪过零点,使控制系统出现误动作。由于晶闸管导通时其端电压为管压降,近似等于零,而阻断时端电压等于其所接交流电压(电网线电压或相电压)。同时检测变频器主电路中每一相上的六个晶闸管,如有一管导通说明此相有电流。如六管全关断则说明此相无电流,也就是电流过零点。这种方法直接检测零电流,不需要对电流波形进行整形,其输出信号完全对应着电流波形中的零电流,使检测电路更加准确、可靠。图4为零电流检测电路。

5 出现的问题及解决方法

交-交变频电路的输出电压是由若干段电网电压拼接而成的。当输出频率升高时,输出电压一个周期内电网电压的段数就减少,所含谐波分量就要增加。这种输出电压的波形畸变是限制输出频率提高的主要因数之一。所以最高输出频率不高于电网频率的1/3-1/2。但由于我们主要用于起动,一旦速度达到了1/3全速,可以控制相应的晶闸管,使它们切换到软起动,软起动方式仍由本装置实现。在软起动的作用下完成起动结束。因为此时电压相对较小,切换的过程中,不会有很大的冲击电流。

由于采用无环流控制方式,有换流死区,所以输出波形有一点畸变。可以采用快速的,比较好的零电流检测方法来减小死区时间。

6 结束语

传统起动方式将逐渐被可控硅软起动所取代,然而软起动却不能很好解决感应电机的重载起动,因而给出了一种实用的交-交变频起动方式来解决这个问题。由于目前采用交-交变频技术成本相对过高,同时由于国内的研究开发相对滞后,致使该技术还主要限于大型矿井的关键设备。但随着这一技术相对成本的不断降低,人们节能意识的不断深入,该技术在矿井中的应用必将迎来一个全新的时期,同时在应用范围上也将扩大,并有待开发和完善。

参考文献

[1] 电动机降压起动器的选择与分析 凌浩 2000.12 vol.20 p66

[2] 交流异步电动机的软起动与保护探讨 何友全 矿山机械 2000.5

[3] 陈伯时,陈敏逊, 交流调速系统,机械工业出版社,1997

交流电动机的应用篇(4)

关键词:伺服电动机 单相异步电动机 性能比较

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

二、永磁交流伺服电动机

20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。

1、永磁交流伺服电动机同直流伺服电动机比较,主要优点有:

⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。

⑵定子绕组散热比较方便。

⑶惯量小,易于提高系统的快速性。

⑷适应于高速大力矩工作状态。

⑸同功率下有较小的体积和重量。

2、伺服电动机与单相异步电动机比较

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:

(1)起动转矩大

由于转子电阻大,与普通异步电动机的转矩特性曲线相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

(2)运行范围较广

(3)无自转现象

正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)

交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。

性能比较

三、伺服电机与步进电机的性能比较

步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

1、控制精度不同

两相混合式步进电机步距角一般为1.8°、0.9°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如三洋公司生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以三洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

2、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。

3、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

4、过载能力不同

步进电机一般不具有过载能力,交流伺服电机具有较强的过载能力。以三洋交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

5、运行性能不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

交流电动机的应用篇(5)

   论文摘要:交流电动机固有的优点是:结构简单,造价低,坚固耐用,事故率低,容易维护;但它的最大缺点在于调速困难,简单调速方案的性能指标不佳,这只能够依靠交流调速理论的突破和调速装置的完善来解决。本文论述了交流调速传动的现状和 发展  

 

 

交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力 电子 电路的电力变换技术、交流电动机控制技术以及微型 计算 机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开: 

 

1 采用新型功率半导体器件和脉宽调制(pwm)技术 

 

功率半导体器件的不断进步,尤其是新型可关断器件,如bjt(双极型晶体管)、mosfet(金属氧化硅场效应管)、igbt(绝缘栅双极型晶体管)的实用化,使得开关高频化的pwm技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和交-交变频器三种。电流型交-直-交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型pwm变频器在中小功率电力传动系统中占有主导地位。但电压型变频器的缺点在于电动机处于制动(发电)状态时,回馈到直流侧的再生电能难以回馈给交流电网,要实现这部分能量的回馈,网侧不能采用不可控的二极管整流器或一般的可控整流器,必须采用可逆变流器,如采用两套可控整流器反并联、采用pwm 控制方式的自换相变流器(“斩控式整流器”或 “pwm整流器”)。网侧变流器采用pwm控制的变频器称为“双pwm控制变频器”,这种再生能量回馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功率因数保持为1并且能量可以双向流动的特点,代表一个新的技术发展动向,但成本问题限制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变频器功率密度大,而且没中间直流环节,省去了笨重而昂贵的储能元件,为实现输入功率因数为1、输入电流为正弦和四象限运行开辟了新的途径。 

随着电压型pwm变频器在高性能的交流传动系统中应用日趋广泛,pwm技术的研究越来越深入。pwm利用功率半导体器件的高频开通和关断,把直流电压变成按一定宽度 规律 变化的电压脉冲序列,以实现变频、变压并有效地控制和消除谐波。pwm技术可分为三大类:正弦pwm、优化pwm及随机pwm。正弦pwm包括以电压、电流和磁通的正弦为目标的各种pwm方案。正弦pwm一般随着功率器件开关频率的提高会得到很好的性能,因此在中小功率交流传动系统中被广泛采用。但对于大容量的电力变换装置来说,太高的开关频率会导致大的开关损耗,而且大功率器件如gto的开关频率目前还不能做得很高,在这种情况下,优化pwm技术正好符合装置的需要。特定谐波消除法(selected harmonic elimination pwm——she pwm)、效率最优pwm和转矩脉动最小pwm都属于优化pwm技术的范畴。普通pwm变频器的输出电流中往往含有较大的和功率器件开关频率相关的谐波成分,谐波电流引起的脉动转矩作用在电动机上,会使电动机定子产生振动而发出电磁噪声,其强度和频率范围取决于脉动转矩的大小和交变频率。如果电磁噪声处于人耳的敏感频率范围,将会使人的听觉受到损害。一些幅度较大的中频谐波电流还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提高功率器件的开关频率,但这种方法会使得开关损耗增加;另一种方法就是随机地改变功率器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随机pwm 技术。

2应用矢量控制技术、直接转矩控制技术及 现代 控制理论 

 

交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象,vvvf控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20世纪70年代初提出用矢量变换的方法来研究交流电动机的动态控制过程,不但要控制各变量的幅值,同时还要控制其相位,以实现交流电动机磁通和转矩的解耦,促使了高性能交流传动系统逐步走向实用化。目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的 发展 ,现代控制理论中的各种控制方法也得到应用,如二次型性能指标的最优控制和双位模拟调节器控制可提高系统的动态性能,滑模(sliding mode)变结构控制可增强系统的鲁棒性,状态观测器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。另外,智能控制技术如模糊控制、神经元 网络 控制等也开始应用于交流调速传动系统中,以提高控制的精度和鲁棒性。 

 

3广泛应用微 电子 技术 

 

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(digital signal processor--dsp)、专用集成电路(application specific integrated circuit--asic)等。其中,高性能的 计算 机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。 

 

4开发新型电动机和无机械传感器技术 

交流电动机的应用篇(6)

论文摘要:交流电动机固有的优点是:结构简单,造价低,坚固耐用,事故率低,容易维护;但它的最大缺点在于调速困难,简单调速方案的性能指标不佳,这只能够依靠交流调速理论的突破和调速装置的完善来解决。本文论述了交流调速传动的现状和 发展

交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力 电子 电路的电力变换技术、交流电动机控制技术以及微型 计算 机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开:

1 采用新型功率半导体器件和脉宽调制(pwm)技术

功率半导体器件的不断进步,尤其是新型可关断器件,如bjt(双极型晶体管)、mosfet(金属氧化硅场效应管)、igbt(绝缘栅双极型晶体管)的实用化,使得开关高频化的pwm技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和交-交变频器三种。电流型交-直-交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型pwm变频器在中小功率电力传动系统中占有主导地位。但电压型变频器的缺点在于电动机处于制动(发电)状态时,回馈到直流侧的再生电能难以回馈给交流电网,要实现这部分能量的回馈,网侧不能采用不可控的二极管整流器或一般的可控整流器,必须采用可逆变流器,如采用两套可控整流器反并联、采用pwm 控制方式的自换相变流器(“斩控式整流器”或 “pwm整流器”)。网侧变流器采用pwm控制的变频器称为“双pwm控制变频器”,这种再生能量回馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功率因数保持为1并且能量可以双向流动的特点,代表一个新的技术发展动向,但成本问题限制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变频器功率密度大,而且没中间直流环节,省去了笨重而昂贵的储能元件,为实现输入功率因数为1、输入电流为正弦和四象限运行开辟了新的途径。

随着电压型pwm变频器在高性能的交流传动系统中应用日趋广泛,pwm技术的研究越来越深入。pwm利用功率半导体器件的高频开通和关断,把直流电压变成按一定宽度 规律 变化的电压脉冲序列,以实现变频、变压并有效地控制和消除谐波。pwm技术可分为三大类:正弦pwm、优化pwm及随机pwm。正弦pwm包括以电压、电流和磁通的正弦为目标的各种pwm方案。正弦pwm一般随着功率器件开关频率的提高会得到很好的性能,因此在中小功率交流传动系统中被广泛采用。但对于大容量的电力变换装置来说,太高的开关频率会导致大的开关损耗,而且大功率器件如gto的开关频率目前还不能做得很高,在这种情况下,优化pwm技术正好符合装置的需要。特定谐波消除法(selected harmonic elimination pwm——she pwm)、效率最优pwm和转矩脉动最小pwm都属于优化pwm技术的范畴。普通pwm变频器的输出电流中往往含有较大的和功率器件开关频率相关的谐波成分,谐波电流引起的脉动转矩作用在电动机上,会使电动机定子产生振动而发出电磁噪声,其强度和频率范围取决于脉动转矩的大小和交变频率。如果电磁噪声处于人耳的敏感频率范围,将会使人的听觉受到损害。一些幅度较大的中频谐波电流还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提高功率器件的开关频率,但这种方法会使得开关损耗增加;另一种方法就是随机地改变功率器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随机pwm 技术。

2应用矢量控制技术、直接转矩控制技术及 现代 控制理论

交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象,vvvf控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20世纪70年代初提出用矢量变换的方法来研究交流电动机的动态控制过程,不但要控制各变量的幅值,同时还要控制其相位,以实现交流电动机磁通和转矩的解耦,促使了高性能交流传动系统逐步走向实用化。目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的 发展 ,现代控制理论中的各种控制方法也得到应用,如二次型性能指标的最优控制和双位模拟调节器控制可提高系统的动态性能,滑模(sliding mode)变结构控制可增强系统的鲁棒性,状态观测器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。另外,智能控制技术如模糊控制、神经元 网络 控制等也开始应用于交流调速传动系统中,以提高控制的精度和鲁棒性。

3广泛应用微 电子 技术

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(digital signal processor--dsp)、专用集成电路(application specific integrated circuit--asic)等。其中,高性能的 计算 机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成全数字化控制系统达到了较高的性能价格比。

交流电动机的应用篇(7)

关键词:交流电机、变频调速、通用变频器

Abstract: With China has strongly advocated for power saving, energy-saving AC motor technology has become essential. AC motor energy, the key is for frequency control motor, AC Motor typical application is the general-purpose inverters. Therefore, this article inverter AC motor drive applications and general-depth study and discussion.Keywords: AC motor, frequency control, general-purpose inverters

中图分类号:TN77文献标识码:A

概论

1.交流电机调速的发展和趋势

近年来,交流电机变频调速及其相关技术的研究己成为现代电气传动领域的一个重要课题,并且随着大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、快的动态响应以及在四象限并可逆运行等良好的技术性能。交流电动机调速系统的性能越来越好,特别是鼠笼式交流异步电动机的变频调速系统,其性能己与直流电动机调速系统相媲美。由于鼠笼式交流异步电动机具有结构简单、体积小、重量轻、价格低、坚固耐用、工作可靠、维护方便、适应性强等一系列优点,而且功率、转速、电压的允许值高于直流电动机,所以交流变频调速技术得到了迅速的发展,并有取代直流电动机调速的趋势。

2.交流电机变频调速的应用

在拖动系统中,交流电机变频调速的典型应用就是通用变频器,用变频器驱动电动机的目的就是实现调速,让电动机按照希望的方式运转。除变频以外的另一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,虽然仍在特定场合有一定的应用,但由于其性能较差,终将会被变频调速所取代。

以下就以通用变频器为例,论述交流电机变频调速的应用

2.1变频器的发展前景

中国是能源大国,能源利用率很低,而能源储备不足。然而2011年中国发电总量约为46037亿千瓦时,电力拖动系统消耗的发电量约为23018.5亿千瓦时,风机水泵类负载消耗6113亿千瓦时。因此国家大力提倡节能,并着重推荐了变频调速技术。应用变频调速,可以大大提高电机转速的控制精度,使电机在节能的转速下运行。许多电机一般按最大需求来选择电机的容量,故设计裕量偏大,而实际运行中轻载运行所占比例较高。如果采用变频调速,可大大提高轻载运行时的工作效率,因此,电机的节能潜力巨大,变频器应用于各行业。

2.2变频器应用的行业

  变频器主要用于交流电动机转速的调节,是交流电动机最理想、最有前途的调速方案,除了具有卓越的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。自上世纪80年代被引进中国以来,变频器作为节能应用与速度控制的自动化设备,得到了快速发展和广泛的应用。在水利、电力、市政、化工、钢铁行业、矿井提升、水泥行业风机、恒压供水等领域中,变频器都在发挥着重要作用,产生了巨大的经济效益。

2.3变频器的选型

通用变频器的选型主要依据变频器的使用类型和容量两方面。

变频器的类型要根据负载要求来选择。一般来说,生产机械的特性分为恒转矩负载、恒功率负载和二次方律负载。

变频器容量的选择由很多因素决定,如电动机容量、电动机额定电流、电动机加减速时间等,其中最主要的是电动机额定电流,电动机的额定功率作为参考。变频器的容量应按运行过程中可能出现的最大工作电流来选择。

2.4变频器的工作原理以及应用

2.4.1工作原理

交流电机变频调速系统包括主电路和控制电路两部分,主电路主要完成功率的转换,控制电路主要完成对变频主电路提供各种控制信号。

(a)在交流变频调速系统中,主回路作为直接执行机构,其可靠性和稳定性直接影响着系统的运转,因此,必须选择合适的主电路。交-直-交变频电路实现由整流器将电网中的交流电整流成直流电,经过滤波,然后由逆变器逆变成交流电供给负载。中间环节采用在理想情况下是一种阻抗为零的恒压源的大电容滤波;在主电源方面,由于电动机是不需要频繁制动和反转的,所以选择不可控二极管整流桥方式。滤波电路采用阻容方式,逆变电路为三相全桥形式。在功率器件方面,由于变频调速系统,一方面要求开关频率足够高,另一方面要求有足够的输出容量,所以采用驱动功率小而饱和压降低的IGBT。在变频调速系统中,电动机的减速和停机,是通过逐渐降低频率来实现的。这时,从电动机的角度来看,电动机处于再生制动的工作状态;从变频调速系统的角度来看,拖动系统在转速下降时减少的动能,由电动机“再生”电能后,在变频主电路的直流环节中被消耗掉了。

主电路原理图

(b)控制电路作为交流电机变频调速系统的核心部分,影响着整个系统的性能,而控制系统的性能又取决于其运算速度和控制精度,这在某种程度上依赖于实现该系统的电子芯片。

在控制逆变部分,根据PWM波形的生成原理,用IGBT控制PWM波形,从而产生完美的正弦波。根据系统的设计要求,选择了转速负反馈控制,从而提高了系统的精度和稳定度。保护电路主要包括电机过压、过流、以及调速系统的保护等。控制电路和保护电路作为交流电机变频调速系统的核心部分,在影响整个系统的性能方面占有极其重要的地位,它主要是向变频主电路提供各种控制信号,使主电路安全、可靠的工作。

2.4.2变频调速的控制策略

变频调速经过了两代控制方式的转变,实现了由恒压频比控制到矢量控制的转变。

第1代变频器采用的是恒压频比控制方式,它根据异步电动机等效电路确定的线性进行变频调速。电压是指基波的有效值,改变U/f只能调节电动机的稳态磁通和转矩,谈不上动态控制。

第2代变频器的主要特征是采用矢量控制方式,它参照直流电动机的控制方式,将异步电动机的定子电流空间矢量分解为转子励磁分量和转矩分量。首先是要控制励磁,所以又把矢量控制称为磁场定向控制。矢量控制的主要缺点是需要复杂的坐标变换运算,以及需检测转速信号。因此,进一步提出无速度传感器矢量控制的方法,它根据异步电动机实际运行的相电压和相电流,以及定转子绕组参数推算出转速观测值,以实现磁场定向的矢量控制。

2.4.3交流变频调速的优越性:

(1) 在恒转矩调速时,低速段电动机的过载能力大为降低。

(2) 电机总是保持在低转差率运行状态,减小转子损耗。

(3) 可实现软启、制动功能,减小启动电流冲击,节电效果明显。

2.4.4变频器与负载电机的通讯协议

变频器的节能效果与普通调速的对比优势在于所用的通讯协议。通用变频器一般都带有RS232/422/485通讯接口,可以实现上位工控机对变频器的1对1或1对多的通讯功能,可将上位机的运行指令下达,或将变频器的运行状态上传。在需要高精度控制时,可选用编码器,将转速反馈信号反馈到变频器,构成闭环系统。完善的软件功能和规范的通讯协议,使它可实现灵活的系统组态,组成现场总线系统,变频器在其中作为通讯的从站和传动执行装置。

2.5变频器调速与传统调速方法的比较

上世纪八十年代到九十年代初,高压电机要实现调速,主要采用三种方式:(1)液力耦合器方式。(2)串级调速。(3)高低方式。

上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调速效果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要求比较严格,功率较大时(500KW以上),可靠性较低。

与传统的调速方法相比变频器可以实现软启动和软关闭,任意调整发动机的加/减速时间,平稳的启动电机。

3.结束语

在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,成为现代调速传动的主流。

变频器不仅具有卓越的节能作用、显著的调速性能和保护功能,还具有优越的控制方式。应用变频调速,不仅可以使电动机在节能的转速下运行,而且还可以大大提高电动机转速的控制精度,提升工艺质量和生产效率,是企业技术改造和产品更新换代的理想调速装置。

参考文献

(1)王建峰、秦庆国、李永军、任建业 浅谈交流电机的变频调速--《科技创新与应用》2012年13期

(2)倚鹏 高压变频器的产品和市场状况--《电器工业》2006年06期

友情链接