期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 航空航天测控技术

航空航天测控技术精品(七篇)

时间:2023-08-31 16:22:32

航空航天测控技术

航空航天测控技术篇(1)

关键词 航空摄影;大比例尺;地形测绘

中图分类号P231 文献标识码A 文章编号 1674-6708(2012)73-0095-02

摄影测量初期应用于实际工程测量中是以模拟测量的形式出现的,后来随着科学技术的发展进步。摄影测量技术也逐步发展为数字摄影测量应用阶段。其中航空摄影测量在实际工程测量应用中不仅具有测量技术灵活,测量速度高、效率快等特点,而且适用范围十分的广泛,在许多工程测量以及领域等都有一定的应用。下文将以低空数码航空摄影在大比例尺山区地向测绘中的应用为例,对航空摄影测量在大比例尺地形测绘中的应用优势以及相关特征等进行论述。

1 航空摄影测量技术的发展以及测量应用优势

随着摄影技术的发展以及进步,在地形测绘应用中,越来越多的引入数码航空摄像机进行地形测量应用。如今,使用航空摄影进行地形测绘应用中,不仅摄像机使用数码摄像机,克服过去胶片摄像机在测量应用中的局限,而且在使用航空摄影进行地形测绘应用中也越来越多的引入一些现代通讯以及定位技术等,一般经常会与GPS差分定位以及惯性导航等现代通讯技术进行结合应用,使航空摄影地形测量的应用具有更大的测量应用优势。现代航空摄影测量技术进行测量应用中不仅可以克服传统航空测量技术受机场以及天气情况的影响与局限作用,而且在进行地形测量应用中具有低成本以及大范围测量的优势。使用低空数码航空摄影测量技术进行地形测绘中,低空数码航空测量技术主要是通过数字摄影为基础进行航空摄影测量的,具有快速、经济以及简单等特征以及优势,而且由于高质量的数码相机还能够实现一些严峻天气条件下的摄影记录,对于地形测量的效率以及周期等都有一定的保障。

2 数码航空摄影测量技术在地形测量中的应用

下文将以数码航空摄影测量技术在实际地形测量中的应用为例,对低空数码航空测量技术的特点以及相关测量应用技术进行分析论述。

2.1 测量地形概况

要进行测量的是某一山区地形,并且该地形区域内气候测量条件较恶劣,多雨雾天气,需要进行测量的地形面积与最终测量成图的比例尺均较大。现需要使用航空摄影测量技术对该地区的地形情况进行测量描述,以方便实际应用对于该地区地形的了解以及掌握。

使用航空摄影测量技术进行该地区地形的测量中,所运用的航空拍摄系统是从国外引进的较为先进的具有较高像素的数码航空摄影器材。在进行该地区地形的测量中需要运用数码航空摄影测量结合卫星定位导航系统以及自动化控制操作进行该地区地形航空拍摄测量工作的协助进行。对于该地区地形测量的要求就是要保证对于该地区地形特征拍摄以及测量结果的准确度,保证测量质量。

2.2 航空摄像测量中像片的控制测量

对于运用航空摄像测量技术进行该地区地形的测量中对于像片的控制测量主要是为了通过将航空拍摄过程中所拍摄的资料和全球定位导航系统的导航定位信息相互结合,从而通过对于航空拍摄资料和地面额测量之间关系换算实现对于该地区地形的真实地形特征以及情况进行反应记录。在进行航空摄像测量过程中通过对于像片控制点进行一定的设置与分布通过全球定位导航系统相关的测量技术对像控点测量区域的地形进行测量,对于像控点测量中的一些外业控制点在进行测量中应注意定位操作,一般情况下对于像控点中的外业控制点要设置在地形道路的拐角或者斑马线等一些具有明显特征与参照物的地方,在进行测量过程中注意对各控制点的位置关系等进行绘图记录,以方便后期测量工作的进行。

2.3 航空摄像测量中空中三角测量

进行航空摄像测量过程中,对于航空摄像测量中的空中三角测量主要是在使用航空数码摄像器材进行地形测量中,对于航空摄像所拍数码影像的内定向设置不需要通过人工操作与干预,可以通过系统设置实现自动化的计算与生成。在使用航空摄像进行地形情况的测量过程中,对于实现空中三角测量需要对人工选择的连接点先完成相对定向以及测量模型的连接、测量航带连接等,再通过对航空摄像测量中的连接点以及像控点位置等的调试,从而达到该地形航空摄像测量的比例绘制等要求,实现对于该地区地形情况的准确测量。

2.4 航空摄像测量中内业立体采编测量

在经过以上的测量操作后,接下来需要对航空摄像测量对地形情况的测绘中内业立体信息的测量采编。一般情况下,使用航空拍摄进行地形测量中对于内业的采编操作是使用GE0wAY与JX4软件来实现的。在进行航空拍摄测量地形中对于内业的立体采集中应准确的采集各线状地形结构以及物体的线节点以提高采集信息的准确度。但对于该地形中的等高线以及水涯线应当通过手绘的方式进行采集。对于地形区域内的房屋结构中的内业信息采集时,使用航空拍摄对地形区域内的房屋结构以及物体进行测量时要切准房屋结构中屋顶的边缘部分,通过外业操作进行房檐测量结果的改正,对于房屋测量结果的规则需要通过自动化直角进行改正。另外进行航空拍摄测量地形操作中,应当注意对于地形结构区域内的其它类似于电杆等物体的测量采集,以避免航空拍摄测量中对于内业采编的重复或者返测等麻烦,对于那些不能够通过航空摄像进行自动测量的部分及位置应当做好相关标记以便进行外业测量与采集,保证地形特征测量的完整。

2.5 航空摄像测量中外业补测操作

在使用航空摄像技术进行该地区地形特征的测量中,对于那些不能通过航空摄像测量技术进行测量的地形结构死角或者较隐蔽的地形位置,一般需要进行外业补测操作。在进行外业补测操作中,为了实现对于航空拍摄测量结果准确性的检测会选择一定数量的测量结果以及测量绘图结果进行对比,通过对比查找出测量中的错误改正,或者对地形区域内一些较隐蔽或者有一定的测量难度的区域以及建筑进行补测并对结果进行对照,发现测量错误进行改正,保证测量结果的准确。

3 结论

使用航空摄像测量技术进行大比例尺的地形测绘实施中,不仅可以高效、准确、快速的完成地形测绘操作,与传统的地形测绘技术相比测绘成本也有一定的控制效果,但需要注意的是航空摄像测量技术在进行大比例尺地形测绘中也具有一定的局限性。

参考文献

[1]唐健林,黄向勇.小型数码航空摄影在大比例尺地形测绘中的应用[J].人民长江,2011(9).

航空航天测控技术篇(2)

关键词:无人机;航空遥感;测量系统

1 引言

无人机航摄系统是一种以无人机(Unmanned Aerial Vehicle,简称 UAV)为平台,搭载小型影像传感器,借助卫星导航技术、通讯技术实现低空航摄飞行,快速获取地面影像数据的系统。该系统具有机动性强、成本低、外部环境影响小、分辨率高、作业周期短等优势,逐渐成为工程数据获取的重要手段之一。发展低空遥感产业,不仅能满足一定范围的数据获取的需要,更重要的是能促进完善我国航空遥感体系,改善我国地理空间数据的获取、处理和分析能力,促进高分辨率遥感数据在国家不同领域的应用,减少对国外高分辨率遥感数据的过分依赖。

2 无人机摄影测量系统的组成

2.1 硬件组成

无人机测绘遥感系统由无人机飞行平台、传感器、飞行控制系统、地面监控系统以及地面运输与保障系统五部分组成。国内比较成熟的飞行平台有“垂直尾”型无人机、“双发”型无人机“倒桅尾”型无人机等,搭载高端单反数码相机,无人机飞行控制系统主要包括自动驾驶仪、GPS导航仪、姿态控制仪、高度计、气压计等。关键技术为GPS导航控制的定点曝光技术和相机旋偏改正技术。地面监控系统主要包括通讯系统、监控软件系统和维护系统。

2.2 软件组成

无人机航空摄影及影像处理比传统航测复杂很多,为保证航摄质量需进行精确航摄规划、航摄质量快速检查及影像快速预处理等,完成这些工作需配置相应的软件。

精确航摄任务规划软件主要用于航摄任务规划,功能包括:设计成果统计与制图、自动/半自动航摄分区、自动航线敷设、自动调整曝光点间距、航线间距,保证立体观测重叠度指标、修改编辑曝光点、航线功能、构架航线、基站布设功能、片数、航线长度、距离等统计报告。航摄质量快速检查软件包括以下技术内容:快速浏览影像质量、检叠度指标、检查旋偏角指标、自动形成像片预览索引图、影像自动批量打号、输出航摄质量检查统计报表、快速检查飞行数据覆盖情况,以便决定补飞以及撤场事宜。同时直接关系到作业效率,飞行质量检查与评价。最核心的指标是重叠度和旋偏角,必须满足航测规范的要求。两张相邻航片,通过一对同名点即可根据影像宽度计算重叠度和旋偏角,数字航片原始片像素数固定,按照同样方式重采样后的预览片也可计算重叠度。

影像快速预处理软件的主要目的是为了改正无人机航摄影像的畸变差,基于影像纠正变换的畸变差改正软件就是为了提高摄影测量的精度,以便于后期处理时模型间的相对定向。软件包括以下技术功能:

⑴ 批处理读入TIF格式原始影像数据。

⑵ 读入相机参数文件。

⑶ 自动完成畸变差改正。

⑷ 对影像上像点坐标进行系统误差改正。

3 无人机摄影测量的特点

无人机飞行平台自身的特性,使得无人机航摄影像和传统航摄影像之间有一定的差异。与传统航空摄影相比,无人机航摄系统的主要特点包括:搭载的是非量测数码相机、无人机平台飞行姿态不稳定、影像不仅像幅小而且重叠度大以及基商比小等。目前,专业的量测相机有SWDC-4数码航摄仪、ADS40、ADS80、Ultra CAM大幅面数字航摄相机以及数字航摄相机DMC(Digital Mapping Camera)等,这些专业量测相机质量大、价格高主要适用于有人飞机的航空摄影测量,小型无人机平台是无法荷载这些专业测量相机的。因此,无人机航摄系统使用的都是价格低、质量轻的非量测数码相机。传统航空摄影使用最多的是23cmX23cni和18cmX 18cm两种规格的胶片,而像幅尺寸与胶片大小有直接关系。但是,无人机航摄系统使用的非量测数码相机的像幅很小,航摄时通常设置成最大像幅模式,以便更好的利用像幅面积。因为航摄图片像幅的大小,直接影响航摄基线的长短。所以,当使用无人机进行航摄作业时,航摄基线变短,基高比变小。这就意味着空中三角形的稳定性变差,解算精度下降。小型无人机飞行平台自身的特性决定了它在低空飞行时容易受到气流的干扰。传统摄影测量采用有人大型飞机,飞行时受气流影响小姿态比较稳定。只要姿态角在±3°内,航向重叠度达到60%、旁向重叠度达到30%就可满足精度要求。同样的天气状况,无人机平台的姿态角会达到±10°或者更大。所以无人机影像重叠度都要比传统航摄影像的重叠度大很多,通常航向重叠度设置为70-85%、旁向重叠度设置为35-55%。以此来保证航摄影像的质量和后续处理成果的精度。

4 无人机航测的应用

4.1电网应急救灾

我国属于自然灾害多发国家,平均每年因灾造成直接经济损失近2000亿元,灾害突发时,采取恰当的应急措施可以大幅降低经济损失。为应对突发的自然灾害,减轻灾害对国家电网造成的损失,及时恢复、重建电网,国家电网公司建立了应急救灾指挥中心,但应急手段还须完善。灾害发生时及时获取灾区的高清晰影像,第一时间为应急救灾指挥中心 提供现场影像资料至关重要。但是,灾害发生时往往伴随恶劣的天气状况,如2008年南方冰灾,当时的受灾地区受天气影响,采用普通航飞、卫星拍摄等方法无法及时获取灾区的高分辨率影像,利用无人机低空遥感系统机动性高、环境适应性强、无需机场起降、对天气条件要求低等特点,可以及时、高效获取高清晰影像,为国网公司应急救灾指挥中心进行灾害评估、制定救灾决策、制定电网重建方案提供先进、可靠的技术手段。

4.2无人机航测绘制大比例尺地形图

无人机航摄系统自身的特点和性能决定影像的获取和处理都与传统的航空数码影像存在差异,下面将具体介绍无人机航摄影像的获取与处理流程。采用DP Grid影像快速处理系统,对无人机影像进行处理。

(1)航空摄影:使用无人机飞行平台搭载Canon5DMarkII数码相机对测区进行航空拍摄,并获取摄区影像。航线设计是航摄影像信息采集前的关键技术,需要对影像的地面分辨率、航摄区域的形状和地形特点以及数码相机性能等因素进行综合考虑,以保证影像精度和质量为前提进行航线的最优设计。

(2)像片控制测量:像控点可按区域网布设,为提高像控点的加密精度,可以在区域网的两端和中部位置增加平高点。采用RTK、GPS静态或测距导线测定像控点平面坐标,采用GPS曲面拟合或图根水准测定像控点高程。

(3)内业测图:在全数字摄影测量工作站上进行地形要素数据集。影像模糊或立体判测有疑问的地物,要做出标记供外业补调,内业能定性的地形要素可直接标注图式符号。

(4)外业地形图调绘:外业调绘和补测时,简单易补测的新增地物可直接补测上图,只需标注好与附近相关地物的距离尺寸;成片新增地物可用全站仪或RTK进行野外集数据,配合外业草图进行编辑。

(5)将编辑好的数字线划地形图按照CASS软件的数据标准,编辑成需要的数字地形图。

参考文献:

[1]刘小民.基于全数字摄影测量系统的数字正射影像图的制作[J].测绘科学.2010,35(4):198-199.

航空航天测控技术篇(3)

关键词:航空摄影测量;新技术;应用;发展

中图分类号:K826文献标识码: A

航空摄影测量即是在飞机上利用航摄仪器对地面进行连续拍摄,绘制地形图的过程,其原理是利用航摄仪器的摄影光束相交而确定地面点的位置。随着科学的进步,以及社会建设中对土地利用的现状,航空摄影测量技术在不断得到创新和完善,并推动了航测行业的发展。

一、我国航空测绘的发展现状

我国对航空摄影测量技术的应用可以追溯到20世纪80年代。当时,我国各大城市开始应用航空摄影测量技术进行对城市大比例尺地形图的测绘,以便科学合理的使用土地。在城市化进程以及生产的需要中,大比例尺城市测绘技术被广泛应用于各城市测绘企业单位。在科学技术不断发展的今天,数字化技术迅猛发展起来,在航空摄影测量技术上,涌现出数字航摄仪DMC、IMU/DGPS新技术、LIDAR 激光测高扫描系统、雷达等先进技术设备,为城市大比例尺地形图的测绘创造了更多的技术条件,不断推动着航测行业的发展。然而,受诸多客观因素的影响,我国航空摄影测量技术力量还相对薄弱,其测绘精确度仍有待落实,航测工作有待进一步完善。

二、航空摄影测量主要新技术的应用

1、对数字航摄仪DMC的应用

数字化技术是现代信息社会不可或缺的技术手段呢,无论对人们生活和社会各项工作的开展都起到不可比拟的作用。而数字航摄仪DMC也是在数字化的基础上创造的航测产品,它是一种用于高精度、高分辨率的航空摄影测量的数字相机系统。这一航空相机摒弃了传统胶片相机的设计思想,由四个全色传感器及四个多波段传感器组成。其四个全色传感器用于捕捉每一个设想的特定区域,从而确定一个大的镶嵌影像;四个多波段传感器则主要用于捕捉红、蓝、绿色及进红外数据。因此,航摄仪DMC能满足小比例尺和高分辨率大比例尺航摄的需求。与此同时,在低空进行测绘时,DMC能够在无人控制的情况下实现机动、快速的摄影测量,其测量精度高。

2、对IMU/DGPS新技术的应用

IMU技术是惯性测量单元的简写,主要是由陀螺、加速度、电路构成,它能够独立提供高精度的导航参数,同时具有抗电子干扰、隐蔽性好等特点。但这一技术的不足之处在于不适合长时间单独飞行,否则容易造成导航位置参数的误差。而大家熟知的GPS全球定位系统功能强大,被广泛应用于航空摄影测量、工程测量等诸多领域。因此,将IMU与GPS集成起来构成组合导航系统,能有效提高系统的导航精度与其测绘性能,就是目前的IMU/DGPS航空摄影测量系统。这一新技术的应用能够减少地面控制的工作,提高了测绘效率,并降低了在高山荒漠等区域测绘的危险性,推动了航测事业的发展。

3、对LIDAR 激光测高扫描系统的应用

对LIDAR 激光测高扫描系统的应用,主要是针对困难地区、无图区及边界区而实施的新技术。该技术主要利用GPS辅助空中三角测量技术,从而减少地面控制点,完成对外空难度大的测绘区高精度及大比例尺的测绘工作,这一技术的应用有利于缩短作业周期,减低生产成本而提高生产效率。这一技术对于实施我国西部大开发战略、完善国家地形图有深远的意义。

4、SAR合成孔径雷达成像系统

SAR合成孔径雷达成像系统具有高分辨率的成像技术,不受客观恶劣天气条件的影响便能获取空间数据,大大改善了对困难地区地形图绘制的困境。这一成像系统的使用原理是将合成孔径雷达安置机上,利用孔径雷达发射微波对地面目标扫描,从而经过对空间坐标的计算,记录回波特性得出地面目标的空间特性,再经过数据处理成像。这一系统的运行主要由天线系统、数据记录系统、监控系统、发射与接收系统协调运行而完成。

三、对航空摄影测量技术应用的和主要注意事项

1、落实测绘区选点工作

航测人员在开展航空摄影测量工作过程中,运用IMU/DGPS作业的前提必须对测绘区做好现场踏勘的选点工作,这一选点工作要按照前期设计图纸要求并结合GPS定位测量范围的选点要求进行实地选点定位。选点的点位要位于交通方便、便于安置设备便于埋石操作的区域;点位还要在视野开阔的地方,避开建筑物及水域便于信号及电磁波的传输。同时,点位之间还要做好加密与联测工作,以便测量工作的连续开展。

2、确定航摄仪、比例尺及航高

在航空摄影测量工作开展之前,首先要做好航摄仪、比例尺及航高的选择与确定工作。在选择航摄仪时要优先考虑其性能质量,进而保证航摄资料的准确性。在确定比例尺时,首先要按照国家对大比例尺地形图航空摄影标准并根据当地地形实际与相应的精度要求,以及配套仪器的利用,综合确定航摄比例尺与航高数据。

3、策划检校场的布设方案

检校场的布设方案主要针对IMU /DGPS 系统设备生产商而言的,这些生产商在从事 IMU /DGPS 系统设备生产过程中对于检校场的布设方案的策划,一般要考虑达到如下工作的因素:检校场要根据比例尺大小设置相邻的平行航线;检校场要能保证航向重叠和旁向重叠都是60%;采用直接定向法,使航测高度与摄区高度一致;对于检校场的位置可以选择在离摄区较远的区域或摄取中任意两条航线位置等。

四、结语

在科学技术迅猛发展的今天,我国航空摄影测量实现了岁数字测绘技术的应用与完善,取得了相应的进展。但是,我们也应看到在航空摄影测量新技术应用方面较西方先进国家还有很长的距离。我国的航测领域应该在认识航摄新技术优点的同时,找寻并探索其对于该技术应用中应注意的问题,有针对性的做好航摄工作,提高航摄效率,保证影像质量,进而推动整个数字摄影测量事业的发展,满足社会经济发展和环境的可持续发展需求。

参考文献:

[1]杨传玲.航空摄影测量新技术的应用与发展[J].科技论,2011.

航空航天测控技术篇(4)

编者的话:经常有航模爱好者来信询问一些航空、航模基础知识,模型飞机与真飞机的相同和不同点等各种问题。为此,本刊几年前便与北京航空航天大学飞行器设计专业的万志强博士探讨在杂志上开设有关航空、航模基础知识的专栏文章的可能性。经过两年多的准备,万博士终于完成了此系列文章的整体构思及前期文章的写作,现从本期开始连载,希望能得到大家的喜欢。

一、人类的航空壮举

当我们仰望天空的时候,总会发现时不时有飞机掠过。或许不少人会问,这样一个庞然大物,其质量少则数百千克,多则几十吨、上百吨,怎么能够如此自如地在蓝天上飞翔呢?飞行究竟需要具备哪些条件呢?

其实,关于怎样才能像鸟儿一样在蓝天上翱翔,我们的先辈们探索了数千年,设想和尝试了许多种飞天方式,但基本都以失败告终。直到1903年12月17日,美国的莱特兄弟驾驶着他们设计和制造的“飞行者”1号(图1),进行了时间不到1分钟、距离只有260m的人类历史上第一次持续而有控制的动力飞行之后,人类才真正从根本上解决了飞上蓝天的关键问题。此后,飞机越造越大、越飞越高、越飞越快、越飞越远,各方面的性能都有了翻天覆地的提高(图2~图5)。

实际上,无论是莱特兄弟设计的“飞行者”1号,还是现代的先进客机、战斗机、运输机……之所以能飞上蓝天,归纳起来是因为它们具备了飞行的3个最基本的要素:

(1)具有能产生升力的机翼,平衡飞机的重力(图6);

(2)具有能提供拉力或推力的动力系统,平衡飞机的阻力(图6);

(3)具有能控制飞机姿态的操纵系统,实现飞机按照预定的轨迹飞行。

莱特兄弟的第一次飞行,虽然飞行时间只有几十秒,飞行距离只有几百米,离地高度也只有几米,但他们的探索精神却永远值得我们学习,其成功一直激励着后人对航空航天的持续探索。

莱特兄弟的壮举,让人类开始漫步于天空,继而遨游于天宇。人们把这些能够在天空和宇宙中飞行的机器统称为飞行器。飞行器主要分为航空飞行器(简称航空器)和航天飞行器(简称航天器)。前者是指在空气中飞行的飞行器,后者是指主要在大气层外飞行的飞行器。而航模作为一种与航空器和航天器密切相关的模型,则既包括航空模型,又包括航天模型。在飞行器的发展过程中,航模发挥了重要的作用,无论是利用航模进行原理验证,还是利用航模完成载人飞机难以完成的飞行科目。现代无人机则与航模更是有密切的关系,不少无人机就是从航模发展而来的。

航空和航天技术都是高度综合的现代科学技术。力学、热力学、材料学是航空航天的科学基础;电子技术、自动控制技术、计算机技术、喷气推进技术和制造工艺技术对航空航天的进步起到了重要作用;医学、真空技术和低温技术则促进了航天的发展。上述科学技术在航空和航天的应用中相互交叉和渗透,产生了一些新的学科,使航空和航天科学技术形成了完整的体系。

航空航天的发展都与其军事应用密切相关,但人类在该领域取得的巨大进展对国民经济和社会生活也产生了重大影响,甚至改变了世界的面貌。如我们乘坐飞机旅行,使用GPS进行导航,收看海外电视直播,进行天气预报,这些都离不开航空航天的发展。航空航天科学技术是牵动其他高新技术发展的动力之一,航空航天工业是国民经济建设中的阳光产业,而航空航天产品则是附加值很高的高新技术产品。

二、翱翔天空的航空器

任何航空器要升到空中,都必须产生一个能克服自身重力的向上的力,这个力叫作升力。另外,航空器在空中的飞行还必须具备动力装置产生推力或拉力来克服前进的阻力。根据产生升力的基本原理不同,航空器分为轻于(或等于)同体积空气的航空器和重于同体积空气的航空器两大类。前者靠空气的静浮力升空,又称浮空器;后者靠与空气相对运动产生升力升空。按照不同的构造特点,航空器还可进一步细分,如图8所示。

1.轻于空气的航空器

轻于(或等于)空气的航空器包括气球和飞艇,它们先机出现。

(1)气球(图9)

气球一般无推进装置,主体为气囊,下面通常有吊蓝或吊舱。按照气囊内所充气体的种类,可分为热气球、氢气球和氦气球三种。

(2)飞艇(图10)

飞艇安装有推进装置,并可控制飞行。根据结构形式,可分为软式、硬式和半硬式三种。飞艇与气球的最本质区别就是它带有动力和操纵舵面,可按照预定的飞行方向飞行;而气球由于没有动力装置和操纵舵面,在水平方向只能随风飘移,但在垂直方向可以通过调节浮力的大小或改变质量的大小进行升降。

2.重于空气的航空器

重于空气的航空器靠自身与空气的相对运动产生空气动力升空飞行。常见的这类航空器主要有固定翼和旋转翼两类,另外还有像鸟一样飞行的扑翼航空器和新近出现的倾转旋翼航空器。

(1)固定翼航空器

固定翼航空器包括飞机(图11)和滑翔机(图12)。

飞机是指由动力装置产生前进推力或拉力,由固定机翼产生升力,在大气层内飞行的重于空气的航空器。滑翔机是指没有动力装置的重于空气的固定翼航空器。

滑翔机可由飞机拖曳起飞,也可用汽车等其它装置牵引起飞。部分动力滑翔机装有小型辅助发动机,无需外力牵引就可自行起飞,但滑翔时必须关闭动力装置。飞机和滑翔机最本质的差别在于大部分飞行时间内是否依靠动力装置。实际上,在莱特兄弟发明飞机之前,人类就已经发明了滑翔机,并为飞机的发明奠定了空气动力学和飞行操纵等方面的基础。

(2)旋翼航空器

旋翼航空器包括直升机(图13)和旋翼机(图14)。

直升机是指以航空发动机驱动旋翼旋转作为升力和推进力来源,能在大气中垂直起降及悬停并能进行前飞、后飞、侧飞、定点回旋等可控飞行的重于空气的航空器。直升机和固定翼飞机的最本质区别在于,直升机能够依靠旋翼垂直起降,对起降场地的依赖性很小;而通常意义上的固定翼飞机则只能水平起降,对起降场地的依赖性很大。相对于固定翼飞机,直升机飞行速度慢、震动大。

旋翼机是一种利用前飞时的相对气流吹动旋翼自转以产生升力的旋翼航空器,全称自转旋翼机。

(3)扑翼机

扑翼机是指能像鸟和昆虫翅膀那样上下扑动的重于空气的航空器(图15),又称振翼机。扑动的机翼不仅产生升力,而且产生向前的推进力。

(4)倾转旋翼机

倾转旋翼机是一种同时具有旋翼和固定翼,并在机翼两侧翼梢处各装有一套可在水平与垂直位置之间转换的旋翼倾转系统组件的飞机。旋翼倾转系统处于垂直位置时,倾转旋翼机相当于横列式直升机,可垂直起降,并能完成直升机的其它飞行动作;旋翼倾转系统处于水平位置时,旋翼倾转机则相当于固定翼飞机。现在世界上唯一有实用价值的倾转旋翼机为美国贝尔公司研制V-22(图16)。

三、遨游天宇的航天器

航天器是指主要在地球大气层以外的宇宙空间,基本上按照天体力学规律运动的各类飞行器,又称空间飞行器。与自然天体不同的是,航天器可以在人的控制下改变其运行轨道或回收。航天器为了完成航天任务,必须具备发射场、运载器、航天测控和数据采集系统、用户台站以及回收设施的配合。

航天器分为无人航天器和载人航天器。根据是否环绕地球运行,无人航天器分为人造地球卫星和空间探测器。按照各自的用途和结构形式,航天器还可进一步细分(图17)。

1.无人航天器

无人航天器包括人造地球卫星和空间探测器。

(1)人造地球卫星

人造地球卫星是数量最多的航天器(图18,图19)。人造地球卫星一般由有效载荷和平台组成。有效载荷是指卫星上用于直接实现应用目的或科研任务的仪器设备,平台则是为保证有效载荷正常工作的所有保障系统。按照卫星的用途,可分为科学卫星、应用卫星和技术试验卫星。

(2)空间探测器

空间探测器是指对月球和月球以远的天体和空间进行探测的无人探测器,也称深空探测器。探测器的基本构造与一般人造地球卫星差不多,不同的是探测器携带有用于观测天体的各种先进观测仪器。

月球是人类进行空间探测的首选目标,世界上多个发达国家向月球发射了探测器(图20,图21),并进行了月球实地考察。美国和苏联早在20世纪50年代末就开始发射月球探测器,为1969年人类首次载人登月奠定了基础。

在行星和行星际探测方面,美国、欧盟、苏联和日本等国发射了多个探测器,对火星、金星、哈雷彗星、土星、木星、太阳及其星际之间进行了探测。

2.载人航天器

载人航天器是人类在太空进行各种探测、试验、研究及从事军事和生产活动所乘坐的航天器。与无人航天器的主要不同是载人航天器具有生命保障系统。目前的载人航天器分载人飞船、空间站和航天飞机三大类。

(1)载人飞船

载人飞船是载乘航天员的航天器,又称宇宙飞船。按照运行方式的不同,载人飞船分为卫星式载人飞船和登月载人飞船两类。前者载人绕低地球轨道飞行,后者载运登月航天员。苏联、美国成功实现了多次载人飞行,美国还实现了人类登月。美国的阿波罗计划是人类第一次登上月球的伟大工程(图22),美国也是目前仅有的进行过登月的国家。我国的载人航天计划采用飞船形式(图23)。“神州”号试验飞船由轨道舱、返回舱和推进舱组成。轨道舱是航天员生活和工作的地方;返回舱是飞船的指挥控制中心,航天员乘坐它上天和返回地面;推进舱为飞船的飞行和返回提供能源和动力。载人飞船的附加用途是为空间站接送航天员或运送货物。

(2)空间站

空间站是航天员在太空轨道上生活和工作的基地,又称轨道站或航天站。空间站一般采用模块化设计,分段送入轨道组装。空间站发射时不载人,也不载人返回地面,航天员和货物的运送由飞船或航天飞机完成。空间站的功能可以根据任务要求而变更或扩大,弥补了其它航天器功能单一的不足。苏联于1971年发射世界上第一个空间站。我国于2011年发射了第一个空间站――“天宫”1号(图24)。多个国家的空间站还在太空连接构成了国际空间站。

(3)航天飞机

航天飞机是世界上第一种也是唯一一种可重复使用的航天运载器,也是一种多用途载人航天器。20世纪七八十年代,美国、苏联、法国和日本等国曾经开展了航天飞机研制计划,但只有美国的航天飞机投入使用,并进行了长达30年的运行。美国自1981年成功发射其第一艘航天飞机“哥伦比亚”号(图25)之后,先后共研制使用了5艘航天飞机,其中“挑战者”号服役后因为发射失败而造成爆炸导致7名航天员全部丧生;“哥伦比亚”号服役后因为返回失败而造成爆炸导致7名航天员全部丧生;其余3艘都在2011年退休。航天飞机由一个轨道器、两个固体助推器和一个大型外挂贮箱组成,可以把质量达23 000kg的有效载荷送入低地球轨道。航天飞机提供了在空间进行短期科学实验的手段,有许多国家的航天员参加了航天飞机的飞行。

3.火箭和导弹

火箭与导弹是一类特殊的飞行器,它们均可在大气层内和大气层外飞行,但都只能使用一次。我国通常把火箭和导弹划分为航天器。

(1)火箭

火箭是靠火箭发动机提供推进力的飞行器。火箭发动机自身携带全部推进剂,不依赖空气或其它工作介质产生推力。根据使用的能源不同,火箭可分为化学火箭、核火箭和电火箭三类。化学火箭又分为固体火箭、液体火箭和混合推进剂火箭。按照用途,火箭可分为无控火箭弹、探空火箭和运载火箭三种类型。

航空航天测控技术篇(5)

关键词 航天故障 诊断 容错处理技术

中图分类号:V647 文献标识码:A DOI:10.16400/ki.kjdkz.2016.10.072

Abstract Aerospace fault diagnosis is the key to ensure the space work smoothly, this paper starts from the development of aerospace fault diagnosis and fault tolerant processing technology, the shortcomings of the aerospace fault detection in the presence of are analyzed, and combined with the specific problems of fault-tolerant processing technology design, is very important to enhance the level of fault treatment in spacecraft.

Keywords aerospace fault; detection; fault tolerant processing technique

0 引言

自从1903年俄国科学家齐奥尔科夫斯基发表《用喷气装置探测宇宙空间》,并从理论上论证采用多级火箭可以克服地球引力进入太空之后,特别是在哥达德、奥伯特、布劳恩、科罗列夫等一代科学巨匠的不懈努力之下,飞向太空终于在20世纪中叶从梦想变成了现实。

1 航天器故障的主要特点

1.1 航天器故障的危害性较大

航天器无论质量还是体积都足以对人的安全构成较大的危害。因此,航天器如果结构较为复杂,则很有可能在使用的过程中产生质量层面的问题。此外,航天器的元件比较容易产生质量故障。因此,航天器对精密仪器的质量要求较高,如果航天器在精密性仪器产生质量方面的问题,将会使航天器难以根据固定的模式进行故障的处理,也无法保证航天器可以提前结束对故障性因素的处理。还有一些航天器在实施任务处理的过程中,并不能保证当前的实用技术可以适应系统的技术处理方案,使得一些航天器在应用的过程中可能产生坠亡的问题,导致航天器的应用过程出现一系列的经济损失。航天器如果产生较为严重的质量问题,不仅会在问题的发生阶段出现质量问题,也很有可能影响到后来的技术研制工作的计划,使航天器的后续使用难以得到有效的保证。

1.2 航天器运行环境较为特殊

航天器在使用的过程中,难以保证具备足够的使用性能。因此,必须随时对航天器应用过程中的技术细节加以调整,使航天器具备充分适应运行环境的特点。此外,要结合航天器使用过程中的运行轨道特点,对全部的空间环境加以分析,使航天器可以在空间环境的带动之下进行运行性能的有效控制,保证航天器可以在操作的过程中凭借动力因素的特点加以技术性处理。航天器的运行还受到温度因素的影响较多。因此,航天器必须能够有效的针对噪音问题进行运行环境的适应,而技术应用过程中的电磁干扰等问题很有可能在外部因素的影响下发生变化,最终造成航天器的运行环境发生改变。航天器在应用的过程中,所处的整体外部环境与航天器生产过程中的日常环境并不一致,因此,航天器很有可能在元器件的质量发生问题的情况下受到零部件质量问题的干扰,造成零部件难以在实验过程中正常运行,形成较为强烈的质量问题。

1.3 航天器本身资源有限

航天器在运行的过程中,必须使用计算机系统对诸多资源因素加以研究和处理,因此,所有的计算机配置工作,都必须保证在能源处理过程中实现配置方案的优化。除此之外,必须结合全部的能源应用特点,对燃料质量控制过程中的故障分析机制加以研究,使全部的故障诊断工作都可以在容错技术的有效支持之下进行故障诊断机制的重构。此外,必须结合故障诊断技术的有效性分析结果,对全部的故障诊断机制加以研究,因此,航天器在诸多事务共同影响之下,难以预留足够的空间用来应对航天器的资源处理问题,也难以保证适应航天器运行模式的变化问题。还有一些航天器的资源储藏工作必须保证与航天器的运行技术相适应,因此,航天器在进行运行可靠性分析的过程中,必须使全部的应用技术都能与资源储藏现状相适应,这就使得航天器的资源储藏问题难以有效的保证与航天器的其它飞行性任务相适应。

2 航天器故障检测工作中存在的问题

2.1 信息资源融合角度的故障处理问题

目前,一些航天器在故障处理机制的设计过程中,并没有充分按照传感器的运行方式进行惯性因素的设计,使得一些传感器只能在技术层面上应用较差处理的方式进行信息资源的处置,无法从根本上适应传感器的应用技术要求。传感器的信息资源是保证航天器应用质量的关键。但是,一些传感器由于信息处理领域存在不确定性问题,难以保证传感器对诸多有效的信息资源实施完整的处理,也无法使传感器可以将信息资源以互补的形式完成设计,因此,必须通过互补性机制构建的方式进行传感器的不确定性因素的分析。但是,很多航天器在技术处理过程中,并不能从信息资源价值的角度实施航天器故障的有效分析,使得很多的航天器难以从故障处理有效性的角度进行航天器性能的控制,使得一些航天器只能简单的凭借传感器的基础性能进行故障处理机制的构建,难以保证航天器可以有效的整合全部信息资源的价值。还有一些航天器在处理故障因素的过程中,难以保证信息资源具备足够的有效性,使得信息系统无法完整的保证与信息利用机制相适应,造成很多信息资源的可信度难以得到充分的保障。

2.2 航天器闭环系统存在诊断技术问题

航天器在应用技术的选择方面,具备很强的复杂性,此外,航天器的控制系统不仅需要对常规的控制技术加以处理,还必须对航天器的全部组成构件加以研究。因此,所有的航天器都会在使用故障因素的影响下产生工作系统的紊乱。除此之外,必须对系统已经产生的故障进行分析,并对系统全部的运行故障进行关联机制的控制,使后续的系统运行活动可以在具备更强关联性因素的特点下进行故障处理机制的构建,确保故障能够在处理的过程中更加有效的同数据资源相适应。但是,一些航天器的避免系统并不能对诸多的航天器分支系统进行技术性处理,造成很多的航天器资源难以适应部件运行过程中的技术应用要求。还有一些航天器难以在使用的过程中对相关故障性因素实施处置,使得很多的部件运行程序难以在检测技术运行时间的有效控制下进行任务的处置,造成很多任务难以有效的凭借检测技术的应用特点进行测量机制的构建。还有一些航天器在闭环系统的质量诊断方面,并不能保证对闭环系统的全部的信息资源实施有效的采集处理,造成很多的闭环系统难以结合故障的具体存在特征进行信息检测机制的处理,最终导致很多的检测技术难以适应系统运行状态的控制要求。

2.3 模型诊断技术的应用不足

目前,很多航天器在实施诊断技术应用的过程中,都将硬件资源的质量控制作为工作的重点,这虽然能够保证诊断技术的应用可以增强航天器的技术处理质量,却容易导致很多的航天器无法在系统复杂性因素的影响下进行运行水平的提高。还有一些硬件资源在进行可靠性研究的过程中,并不能对已经产生的故障信息实施新型技术的重构,导致很多的信息资源无法应对现阶段的刚性需求。还有一些航天器必须对体积较大的液体燃料资源进行质量控制,导致很多的燃料处理程序难以适应动力基础的处理要求,虽然很多的模型诊断工作都可以适应燃料箱的技术应用特点,却难以充分保证所有的动力学模型都可以在航天器的质量控制过程中实施有效的技术性处理,也难以使全部的模型诊断技术可以在故障处理过程中实现诊断水平的提高。

3 航天故障诊断和容错处理技术的实践方案

3.1 运用信息融合技术实施故障诊断

首先,必须对航天器运行过程中的全部信息融合技术进行整合处理,使信息资源的控制工作可以在融合技术的有效支持之下实施传感器的质量控制。除此之外,必须对全部的传感器装置实施惯性因素的有效判断,以便传感器装置的诸多容错技术都可以在不同类型的传感器装置共同影响下实现容错技术的合理控制,提升传感器运行过程中的信息资源价值。在应用传感器对大量信息实施处置的过程中,必须保证所有的信息资源可以适应信息采集程序的要求,使全部的信息都可以在航天器运行过程中产生足够的互补性影响,确保所有的信息采集机制能适应资源互补性处理的要求。要加强对多种类型的传感器资源的关注,使传感器可以利用互补机制进行信息采集模式的适应,确保所有的信息资源都可以结合传感器应用程序的要求进行合理的分析机制的处理,切实保证传感器能够在有效的整合分析过程中实现信息资源处理质量的提高。

3.2 完善闭环系统质量控制机制

首先,必须加强对航天器运行过程中系统复杂性的关注,通过系统各类组成部件的有效分类管理,对航天器质量控制工作推进过程中的系统复杂性加以研究,使所有的系统质量控制工作都可以结合系统正常运行的技术性要求实施处置,以便系统可以有效的应对质量控制工作推进过程中的各项故障特点,并使全部的数据处理机制可以同数据运行的异常特点保持一致。在完成故障传播机制处理之后,必须对全部的系统运行质量关联性特点实施传播技术的处理,使得很多的故障性因素难以根据故障的实际特点对故障的实际呈现状态加以控制。因此,必须结合闭环控制技术的运行要求,对系统之间的各个组成部件是否具备足够的关联性加以研究,使后续的系统故障特点能够在传播模式的影响下得到更好的处理,保证数据资源的全部处置工作可以适应系统的关联性运行特点。

3.3 提升模型在航天器故障处理中的应用深度

首先,必须对航天器的所有组成材质进行质量可靠性分析,使后续的硬件资源可以结合系统的复杂性特点进行航天器的质量控制,保证航天器可以有效的增强全部的成本工作执行要求。其次,技术性因素的控制必须保证同成本控制的要求相适应。可以结合模型应用程序的特点,对故障诊断过程中的信息重构技术加以分析,使航天器的运行工作能够同全部的燃料装置形成结合,共同保证航天器装置可以在力学模型的技术指导下加以处置。

4 结论

容错技术和故障诊断技术是保证航天器运行质量的重要技术,深入地分析航天故障诊断技术的发展历程,并集合航天工作中的主要技术性问题进行容错处理技术的设计,能够很大程度上增强容错处理技术的实施质量。

参考文献

[1] 胡绍林,孙国基.基于系统仿真的故障检测与诊断技术[J].系统工程理论与实践,2014.21(6):8-14.

[2] 胡绍林.现代计算机控制系统的容错设计技术[D].中国科学技术大学,2015:1-120.

航空航天测控技术篇(6)

4月10日,中国卫星通信集团公司重组并入中国航天科技集团公司,通过资源整合,中国航天将形成卫星制造、发射、运营、地面应用完整的产业链。

中国卫通原是我国六大基础电信运营商之一,整体拆分后,卫通基础电信业务并入中国电信集团,中国卫通及其卫星运营和卫星应用业务并入航天科技集团,并入总资产约66亿元。

今后,中国卫通将重点发展卫星空间段运营、地理信息与位置服务和卫星地面应用三大主营业务,着力构建天地一体卫星运营服务体系。

目前中国卫通在轨运行的卫星有8颗,分为商用通信广播卫星、广播电视专用卫星和直播卫星三大类。今天,随着中国卫通的整体并入,航天科技集团将从传统意义上的“研制卫星”拓展到“卫星运营”,延伸了宇航系统的产业链。

据了解,未来5年我国还计划发射7颗通信广播卫星,到2015年,我国通信广播卫星资源的拥有量将达到15颗,进入世界前五位。

(新 华)

环境与灾害监测预报小卫星A、B星在轨交付

3月30日,国家国防科技工业局举行了环境与灾害监测预报小卫星A、B星在轨交付仪式。中国航天科技集团公司和中国卫星发射测控系统部将卫星交付给民政部和环境保护部使用。

该星座首发星A、B星于2008年9月6日在太原卫星发射中心由一院为主研制的长征二号丙SMA火箭发射。9月8日成功获取第一幅图像,10月13日环境A、B星星座成功建立,形成了小卫星星座的雏形。

A、B星在轨测试期间,已向亚太空间合作组织成员国提供了部分图像,并为澳大利亚扑灭森林火灾提供了及时的服务。目前,已有多个国家提出了建站接收数据的申请。环境A、B星将成为继美国陆地卫星、法国斯波特卫星之后,又一个具有广泛影响的陆地观测卫星。

(航讯)

美国航天基金会授予神七团队太空成就奖

美国航天基金会3月30日宣布,将该基金会的2009年“太空成就奖”授予中国神舟七号载人航天飞行任务团队(简称神七任务团队)。中国载人航天工程总设计师周建平、神七任务航天员翟志刚等当天代表神七任务团队参加了颁奖仪式,并领取了奖项。

在当天的颁奖仪式上,美国航天基金会主席埃利奥特・普勒姆说,神七航天飞行只是中国的第三次载人航天飞行,但仅仅通过这一次飞行,中国就获得了多项具有里程碑意义的“第一”,例如实现了中国的首次三人乘组飞行,中国航天员进行了首次太空行走等。

(航讯)

嫦娥二号将作为先导星降低二期技术风险

3月12日,中国探月工程领导小组组长、国防科工局局长陈求发表示,将把由探月一期工程的备份星技术改进而成的嫦娥二号卫星,作为探月工程二期的先导星,用于试验验证二期工程轨道、测控和软着陆等五个方面的关键技术,降低探月工程二期的技术风险。

嫦娥二号卫星搭载的CCD相机分辨率由120米提高到10米,它将于2011年底前完成发射。

中国探月工程二期在科学技术方面,将实现四个第一:要研制并发射我国第一个地外天体着陆探测器和巡视探测器;第一次利用“长征三号乙”运载火箭发射地月转移轨道航天器;第一次建立和使用深空测控网进行测控通信;第一次实现月球软着陆、月面巡视、月夜生存等一系列重大突破。

(航讯)

许达哲当选中高会理事长

航空航天测控技术篇(7)

Abstract: Unmanned aerial vehicle aerophotogrammetry technology are mobile and flexible, it can obtain high-precision digital elevation model, digital orthophoto map, digital line graphic and other products. Using this technology into highway land acquisition project of Qinghai-Tibetan Plateau can get rich and intuitive type of outcome and greatly improve work efficiency. The outcome can provide a scientific basis for project planning and design, land acquisition compensation. It is of great significance for the successful implementation of the project.

关键词: 无人机;航空摄影测量;青藏高原;公路征地

Key words: unmanned aerial vehicle;aerophotogrammetry;Qinghai-Tibetan Plateau;highway land acquisition

中图分类号:P231 文献标识码:A 文章编号:1006-4311(2015)35-0240-02

0 引言

目前,公路带状地形图测量采用的方法有全站仪测量法、GNSS RTK测量法、传统航空摄影测量等。全站仪测量及GNSS RTK测量需要投入大量人力、物力,工作周期较长,并且有一定的局限性,比如在地形破碎、建筑密集地区以及人员无法到达的高山、沼泽地区等难以测量;微地貌容易被漏测,成图精度低等。传统航空摄影测量虽然技术成熟,但由于对客观条件要求很严格,比如要租用正规的机场做为起降场地并需向有关部门申请空域等,每次飞行程序较复杂、成本高、作业周期较长,所以也存在着一定的弊端。

随着科学技术的不断发展,低空无人机航空摄影测量技术弥补了以上这些缺陷。无人机遥感航测系统是航空、计算机、通讯、微电子以及“3S”等技术的高度集成,具有机动灵活、高效快速、精细准确等优势,目前已广泛应用于诸多领域。尤其在青藏高原地区,经过不断的探索和实践,已将无人机航测技术应用到了灾害应急监测与评估[1]、国土资源调查与管理[2-3]、矿山测绘[4]、水利工程建设[5]等生产实践当中,取得了良好的社会效应和经济效益。本文通过对青藏高原某矿区进场公路征地项目中无人机航空摄影测量的技术方法进行探讨,以期为今后类似工作提供新的技术方案。

1 无人机航测技术流程

1.1 航空摄影

根据项目设计比例尺和精度要求,结合测区实际情况,确定地面分辨率(GSD)和航高。根据带状测区的特殊地形进行无人机航线设计(见图1),并保证航向重叠度和旁向重叠度均能满足要求。为了达到测图目的,带状测区旁向航线原则上不能少于2条,一般在3至4条左右,遇到盘山路或是道路交汇处时则会出现并列的多条。作业飞行时为了保证无人机飞行安全,每个架次航程控制在130公里之内,并且在航线离本场最远处选择2至3处备降场地。如果不受天气和其它因素的影响,每天能够完成单机5个架次的飞行作业,每架次飞行面积约35平方公里。

1.2 像控点布设与测量

搜集有关基础控制资料,像控点联测以测区原有四等GPS点作为起算点。根据项目区情况,像控点布设采用航后刺点的方式进行并应满足CH/Z 3004-2010《低空数字航空摄影测量外业规范》4.3.1和4.3.2条区域网布点的规定要求。像控点的目标影像应清晰,易于判刺和立体测量,如选在交角良好(30°~150°)的细小线状地物交点、明显地物拐角点、原始影像中不大于3×3像素的点状地物中心,同时应是高程起伏较小、常年相对固定且易于准确定位和测量的地方,以线状地物交点和平山头为宜。

像控点的布设在航向六片或五片重叠范围内,根据CH/Z 3004-2010《低空数字航空摄影测量外业规范》的规定要求,参考基线跨度计算公式,使布设的像控点能够公用,并且尽量使点位矩形分布,在不规则区域应在凸凹点处布点。在大片的平地区域要加大像控点的布设密度,以保证线划图的高程精度。

1.3 空中三角测量

利用无人机航空摄影资料和像控成果,采用全数字摄影测量系统中的空三测量软件及光束法区域网平差程序,进行航测内业区域网空三加密,为下一工序提供模型定向。

1.4 数字线划图制作

将空三成果导入摄影测量工作站,在全数字摄影测量系统中恢复立体模型,采集居民地、道路、水系、地貌等地形要素,以图幅为单位,将采集的地形要素与数字正射影像叠加制作调绘片,提供野外调绘与补测。内业根据外业调绘成果和立体测图数据,对矢量数据进行编辑,完成地形图测绘。

1.5 数字正射影像图制作

以像对为单位创建像对正射影像。为了保证影像的完整和质量,一般左右像片的正射影像都要生成,并将合并后的正射影像作为像对成果进行按图幅的DOM镶嵌。按幅拼接后的DOM应叠加标准公里格网。

1.6 其它图件的制作

将DOM与DLG叠加后的影像图与公路的设计范围线套合,添加地类代码、图斑面积,转入MAPGIS即可制作勘测定界图、宗地图、征地补偿分户图等。

2 结论与展望

无人机遥感系统作为一种新型的航空摄影和对地观测遥感平台,已成为卫星遥感、有人航空遥感和地面遥感的有效补充手段。在公路征地项目中,采用无人机航测技术比采用常规测绘要更加快捷、高效,尤其在常规测量方法完成困难的地区,无人机航测技术具有更大的优势,而且获得的数据更加全面、直观。获取的高分辨率遥感影像图对于项目规划设计、征地补偿提供了有力的证据,对于项目的顺利实施具有重大的意义。

利用无人机飞行平台获取的遥感数据能够为社会经济各部门提供快速及时的信息,从而增强其决策能力和服务水平,今后,低空无人机遥感航测技术会在国家基础建设中发挥越来越重要的作用。

参考文献:

[1]张启元.无人机航测技术在青藏高原地质灾害调查中的应用[J].青海大学学报(自然科学版),2015,33(2):67-72.

[2]张启元.无人机航测技术在高寒地区基本农田测绘中的应用[J].青海大学学报(自然科学版),2014,32(2):55-59.

[3]李玉梅.无人机航空摄影在农村土地承包确权工作中的应用[J].价值工程,2015(6):233-234.

友情链接